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Shape evolution of ooids: a 
geometric model
András A. Sipos 1,2, Gábor Domokos1,2 & Douglas J. Jerolmack3

Striking shapes in nature have been documented to result from chemical precipitation — such as 
terraced hot springs and stromatolites — which often proceeds via surface-normal growth. Another 
studied class of objects is those whose shape evolves by physical abrasion — the primary example 
being river and beach pebbles — which results in shape-dependent surface erosion. While shapes may 
evolve in a self-similar manner, in neither growth nor erosion can a surface remain invariant. Here we 
investigate a rare and beautiful geophysical problem that combines both of these processes; the shape 
evolution of carbonate particles known as ooids. We hypothesize that mineral precipitation, and erosion 
due to wave-current transport, compete to give rise to novel and invariant geometric forms. We show 
that a planar (2D) mathematical model built on this premise predicts time-invariant (equilibrium) shapes 
that result from a balance between precipitation and abrasion. These model results produce nontrivial 
shapes that are consistent with mature ooids found in nature.

Ooids are rounded, sand-sized particles of calcium carbonate that typically form by mineral precipitation in 
warm and shallow coastal waters. Their transport by waves and currents gives rise to spectacular shoals and 
white sand beaches, for example in the Bahamas1,2 (Fig. 1). Because ooids grow under a restricted range of con-
ditions, they are increasingly being investigated for their potential to record environments of the geologic past3–5. 
A remarkable aspect of ooids is that–like trees–they record their own growth history, as accretion of carbonate 
occurs in concentric layers (Fig. 1). Unlike tree rings, however, the formation of concentric ooid layers is poorly 
understood6–8.

Although aspects of ooid formation remain enigmatic, there is general agreement among modeling, labora-
tory and field studies on the qualitative picture. In the absence of collisions with other particles, isolated ooids 
form spheres with little to no layering6,7. This may occur in quiescent environments9, or when particles are small 
enough to be suspended by wave action6. If growth is restricted by neighboring particles, ooids can become 
non-spherical and eventually merge together10. The mechanism of growth is (possibly biologically-mediated) sur-
face precipitation of calcium carbonate under super-saturated conditions11,12. The presence of ooid-sand waves in 
energetic environments shows that these particles are also transported as bed load1,2 – i.e., by rolling, sliding and 
hopping along the sediment bed – a process that is known to result in abrasion13,14. Importantly, ooids transported 
in bed load often exhibit non-spherical shapes and concentric layering. An additional relevant observation is that 
layer thickness tends to decrease from the center outwards15, suggesting an increase in abrasion rate (relative to 
precipitation rate) as ooids grow.

Patterns resulting from either growth by chemical precipitation16,17, or erosion by physical abrasion13,18,19, are 
well studied. To our knowledge, however, the shape evolution of objects under the action of both has not been 
examined. Moreover, a systematic study of the shape of ooids, and its evolution recorded in their concentric 
layers, is lacking. Recent work has made substantial progress on a related aspect of this problem, however;20 have 
demonstrated that the equilibrium size of ooids is determined by a balance between growth by chemical precipi-
tation and erosion by abrasion. Here we seek to construct a geometric model that builds on this result, that encap-
sulates the basic processes of ooid growth and erosion, and that is motivated by and compared to ooid shapes.

Physical picture
For a particle immersed in a fluid with uniform solute concentration, mineral precipitation is known to result in 
surface-normal growth16. In the absence of abrasion this growth process produces spherical shapes7. Abrasion 
under bed-load transport involves two distinct processes: collisions, which drive erosion toward spherical shapes, 
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and friction, which causes flattened and elongated shapes21. For abrasion to occur, particle momentum must be 
large enough to overcome viscous dissipation. This condition is determined by a critical Stokes number, beyond 
which abrasion is proportional to particle mass22. This implies that abrasion is insignificant for nascent ooids, 
but becomes increasingly important as ooids grow–consistent with the onset of layering and deviations from 
surface-normal growth that are observed for ooids above a critical size6.

It is uncertain as to whether ooids alternate between periods of growth and abrasion, or if both occur simul-
taneously. To allow a continuous description of ooid evolution we will assume the latter; even in the case of the 
former, this assumption should remain valid so long as shape evolution encompasses many growth and abrasion 
events. From the above picture, one might naively expect that at some size the competing processes of growth 
and erosion balance each other. This intuition was recently confirmed experimentally by20, who clearly demon-
strated that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Whether 
this also implies the existence of invariant shapes is a more delicate question: shape fluctuation constrained by 
some conserved scalar quantity (e.g. linear size, perimeter, surface area, energy or mass) has been broadly studied 
in subjects ranging from flexible membranes to pulsating stars23–25 and those results indicate that constant size 
does not necessarily imply constant shape as well. Here we show that a reasonable mathematical model based on 
standard surface evolution equations predicts an affirmative answer. A few key additional observations, from the 
literature and our own work, help to motivate and constrain the development of a model for ooid shape evolution.

	 1.	 Ooids found in the same location tend to have roughly similar maximal size2,20 and similar shape1,2.
	 2.	 Ooid shapes range from spherical to elongated pill structures, and these shapes have been proposed to be 

related to transport environment10.
	 3.	 Ooid shapes tend to be rotationally symmetric around their longest diameter (major axis) (Fig. 1)6.
	 4.	 Ooid contours (planar projections of ooids) have two orthogonal axes of symmetry (Fig. 1).

The above observations apply only to unconstrained ooids where neither growth nor abrasion was prevented 
by contact with other ooid particles. Below we develop a minimal model for unconstrained ooid shape evolution. 
The model is based on the listed four observations; it produces invariant and nontrivial shapes, and it is consistent 
with the known processes governing ooid formation.

Figure 1.  Ooids and their environment, with scale bars indicated for each image. (a) Ooids sampled from 
a sand shoal in Joulters Keys, Bahamas. Some example shapes are highlighted in blue. White lines show the 
approximate axes of reflectional symmetry. (b) Close-up cross section of an ancient ooid showing concentric 
layers. This ooid is not in (a), but is shown relative to (a) for context and scale. Image credit: Wikipedia, Creative 
Commons License. (c) Ooid sand shoals in the Bahamas; image from SEPM Strata Website36. Reprinted by 
permission of the SEPM whose permission is required for further use.
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Results
Model development.  Although ooids are three dimensional objects, they exhibit (approximate) rotational 
symmetry around the major axis; this observation is supported by published cross sections of ooid particles in 
the literature (e.g.6). Thus the development of a 2D model, aimed at capturing the evolution of the meridian curve 
(contour), appears to be a plausible first step. We acknowledge that this dimension-reduction is far from trivial, 
and therefore we provide a critical assessment of the 2D assumption for each step of model development.

Abrasion.  The geometric theory of abrasion goes back to Aristotle26, while the modern theory of 
individual-particle abrasion operating with partial differential equations (PDEs) appears to start with the work 
of Rayleigh27–29. The first PDE model developed on physical grounds is due to Firey19 who considered repeated 
collisions of an arbitrary convex shape with an infinite plane. Firey’s equation for collisional abrasion can be for-
mulated for a smooth, convex body by expressing the speed v in the direction of the inward normal at an arbitrary 
surface point as

κ=v c , (1)1

where κ is the Gaussian curvature of the particle and c1 is a constant. Firey’s model (1) can also be interpreted for 
planar, convex curves Γ: in this case κ is the scalar curvature. Firey’s theory was developed further by Bloore18 by 
considering collisions not only with planes, but with objects of finite size, resulting in a generalization of eq. (1) to

μ κ= + +v b c1 2 , (2)1

where μ is the mean curvature, κ is the Gaussian curvature, and b and c1 may be constants or integrals (depending 
on the geophysical interpretation). The planar version of (2) can be written as

κ= +v c1 (3)1

where again κ is the scalar curvature at an arbitrary point on the surface of the particle. While there are various 
geophysical interpretations for (3), one possible interpretation is to regard the abrading environment as (statisti-
cally) constant. In this case c1 appears as a time-independent constant in eq. (3). For the case of convex, rotation-
ally symmetric bodies with moderate elongation, the 2D simplification (3) produces a moderate error compared 
to (2): among prolate ellipsoids the maximal deviation in the normal speed between the 2D and 3D models is 
less than 10% provided that the aspect ratio is smaller than 3:1. Since most observed ooids are below this aspect 
ratio, and we are primarily interested in qualitative features of shape evolution, we use the planar (2D) model to 
study the evolution of the contour. Ooids are typically well sorted1,2, and it has been shown21 that collisions among 
like-sized grains result in abrasion that is qualitatively well approximated by eq. (1) in the sense that all shapes 
converge to the sphere. Accordingly, we implement eq. (1) to model collisional abrasion.

Collisions account only partly for the shape evolution of sedimentary particles; frictional abrasion also plays a 
key role. Unlike collisions, friction does not have a broadly accepted geometric model. Nevertheless, in21 a set of 
axioms for such models was listed and some specific models have also been investigated. The key idea of frictional 
abrasion is that–unlike collisional abrasion–it depends not only on the local properties (e.g. curvature) of the 
surface but also on global ones. In simple terms, flat shapes tend to become flatter under sliding friction, and thin 
shapes tend to become thinner under rolling friction. Here we implement the simplest possible friction model, 
orthogonal affinity, consistent not only with the axioms in21 but also with the above-described intuitive picture. As 
we aim to describe shape evolution of rotationally symmetric particles around their largest diameter, orthogonal 
affinity is applied on the cross section of the particle. In this planar case, sliding and rolling are not distinguished 
and this model describes the effect of friction as an affine shrinking of the curve orthogonal to its largest diameter 
e. In the PDE model this can be formulated as

δ γ=v c cos , (4)2

where δ is the distance of the investigated point from e, γ is the angle of the tangent line at the given point with 
respect to e (cf. Fig. 2), and c2 is a time-independent constant.

Growth.  Growth phenomena with strictly local rules are commonly described by the Kardar-Parisi-Zhang 
(KPZ) equation30. Again, appealing to rotational symmetry and mild elongation of ooid shapes, as an approxima-
tion we use the planar version of the KPZ equation. Similar to the heat equation, the KPZ equation is most often 
described in fixed, external Cartesian coordinates where its connection to the Bloore equation is hard to realize. 
However, the KPZ equation also has an intrinsic, invariant formalism developed in31 and32, and by adopting this 
approach the planar version can be written as

κ χ= − − − .v c1 (5)

As we can see, (5) is essentially identical to the planar Bloore model given in eq. (3), with an added stochastic term 
χ; if we restrict ourselves to deterministic models then the two equations are identical, with opposite sign. This 
formulation not only shows the connection between the two equations, but it also provides an intuitive physical 
interpretation: the first (constant) term corresponds to area-driven growth, while the second term corresponds to 
curvature-driven growth. The observed spherical growth pattern of ooids under pure chemical growth7 is strong 
evidence that the first term in the KPZ equation (5) has to be adopted in our growth model, while the second 
(curvature-driven) term can be neglected.
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Combined ooid shape evolution model.  We consider the simplest PDE model for simultaneous abrasion and 
growth in two dimensions for a closed, planar curve Γ with no self-intersections. We assume that Γ has a unique 
maximal diameter e. For modeling abrasion, we adopt Firey’s curvature-driven theory given in eq. (1) and the 
simplest affine friction model given in eq. (4) satisfying the axioms in21.

For modeling growth, we consider only the constant v = −1 term in the KPZ equation. When adding the 
growth and abrasion terms we also consider the fact that abrasion is proportional to mass, which in the planar 
model is represented by the area A enclosed by Γ. We do not explicitly treat the threshold Stokes number for the 
onset of abrasion, but some aspect of this effect is captured in that abrasion is negligible for small mass. Based on 
these considerations we arrive at the non-local PDE model

κ δ γ= − + + .v c A c c( 1 ( cos )) (6)3 1 2

The two parameters c1 and c2 set the weights of wave-induced collisions and sliding/rolling, respectively, rela-
tive to growth by precipitation (Fig. 2); they may be scaled in various manners. The shape evolution or geometry 
of the particle is determined entirely by c1 and c2, which do not contain any description of rate or timescale. 
Parameter c3 is introduced as a kind of rate constant, in order to scale the speed of shape evolution; its value is 
expected to vary with environmental setting depending on chemical and physical conditions. At the moment 
there are no data available for the shape evolution of ooids in order to test our local evolution equation (6). Recent 
experiments, however, have documented the evolution of volume under growth ( Vp) and abrasion ( Va)20. The net 
volume growth rate can be described by a global model, = − +  V V Vp a, where clearly an equilibrium volume is 
reached when abrasion balances precipitation. The simplest global model for volumetric abrasion rate that is 
consistent with data is a linear relation ∼V Va

33; a comparable (though slightly more complicated) model was 
found to describe the experimental evolution of ooid volume well20. Our new local model (eq. 6) predicts volume 
evolution of ooids that is exactly consistent with predictions from the global linear-abrasion rate model33, for the 
case where c2 = 0. For c2 > 0 the friction term appears as an additional non-linear (quadratic) term for abrasion, 
that may be considered to provide a higher-order approximation at the global scale. A detailed derivation of the 
equivalence of the global and local models is provided in the Supplementary Material.

For the remainder of this paper we aim to examine novel predictions of ooid shape evolution (rather than 
volume); without loss of generality we fix c3 = 1 for simplicity.

Application.  Physical intuition suggests that the combined action of growth and abrasion may result in 
time-invariant shapes. Indeed, it can be shown rigorously that equation (6) has smooth steady-state solutions, 
characterized by v ≡ 0. Here we describe a comprehensive interpretation of the analytical results, verify them 
numerically and apply the theory to ooid cross section images. The invariant solutions have rather appealing 
properties which have been verified rigorously; for our current purpose we merely list them:

	 1.	 Ellipses are not invariant solutions, i.e. they do not satisfy the v ≡ 0 condition for eq. (6) (see the explana-
tion in the Supplementary Material).

	 2.	 Any smooth invariant solution must possess D2 symmetry, i.e. it must have two orthogonal axes of reflec-
tion symmetry.

	 3.	 c1 and c2 uniquely determine a smooth invariant solution.

We used the level set method34,35, to numerically compute the evolution of curves under eq. (6). Our compu-
tations confirm all three listed properties of the postulated invariant shapes. Moreover, we find that for any given 
c1, c2 the invariant shape is also a global, asymptotic attractor (cf. Fig. 3).

Let us denote the length of the longest diameter by a, the length of the smallest diameter by b and their ratio 
by λ = a/b. Since invariant shapes are fully determined by two parameters c1, c2, if we fix the area A then we arrive 
at a one-parameter family of shapes which can be conveniently parametrized by λ. This is illustrated in Fig. 4, 

Figure 2.  Notations and qualitative features of contour evolution. (a) The closed, convex curve Γ with maximal 
diameter e. (b) The effect of the constant (growth) term (i.e. first term in (5)) on Γ. All shapes converge to the 
(infinitely large) circle. (c) The effect of the collisional abrasion term on Γ. All shapes converge to the (infinitely 
small) circle19. (d) The effect of the frictional abrasion term on Γ. All shapes converge to ‘needles’.
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which can also be used to graphically determine the model parameters for measured values of λ — under the 
assumption that ooid shape evolution achieved equilibrium. If, beyond measuring the long and short axes a and 
b we are also able to measure the curvatures at their endpoints, then the model parameters c1, c2 can be expressed 
by simple closed formulae.

Discussion
With analytical results confirmed by numerical simulations, we can now make some observations. The param-
eters c1, c2 represent the physical environment; in particular, the respective strength of collisional and frictional 
abrasion relative to growth by precipitation. Our model predicts that in the same environment we should find 
identical shapes and sizes so long as all particles have reached equilibrium and the growth has been unconstrained. 
Natural settings may contain mature and immature ooids, while sediment transport by waves and currents 
may influence observed size distributions. Nonetheless, the prediction of invariant shapes is consistent with 
Observation (1) in the Introduction. In principle, our model also allows one to separate mature and immature 
ooids based on their shape alone: as shown in the Results Section, mature shapes form a one-parameter family 
which can be characterized by the axis ratio λ. This implies that the curvature κ at the endpoints of the contour 
can be given as κ(λ) on mature ooids. If the measured shapes show a different κ vs λ relationship then we may 
conclude that the evolution process did not reach equilibrium yet. It would be interesting to observe how this 
property correlates with the maximal size of ooids.

While it is not (yet) our goal to achieve a quantitative match, the model appears to capture the non-elliptical 
geometry of ooids reasonably well. Figure 5 shows an example ooid contour with model fit (c1 = 0.9206, c2 = 1.90). 
As we can see, there seems to be a discontinuity in the evolution of this ooid, as reflected by the intermediate 
contours. This discontinuity may indicate a change in the environment. In Fig. 6 we illustrate two different fitted 
invariant shapes; one models the evolution between the core and the intermediate contour, and the other corre-
sponds to the evolution between the intermediate contour and the final shape of the grain. Obviously, an invariant 
intermediate contour should be associated with lower speed for growth. This is indeed the case in our simulations, 
as the values of c1 and c2 are higher for the fit of the intermediate curve compared to the ones associated with 
the final shape. Apparently, the two-phase model provides a reasonable approximation also for the intermediate 
curves.

The complexity of our model is not sufficient to aim for quantitative agreement between model predictions 
and physical shapes, however, there are several immediate natural generalizations of the model which allow 
for more free shape parameters. One such generalization is to consider not only the second, but also the first 

Figure 3.  Invariant shapes as global attractors: shape evolution under eq. (6) with parameters c1 = 0.3, c2 = 2.0, 
starting from radically different initial conditions. Observe that regardless of the latter, the asymptotic invariant 
shape is uniquely determined by the equation and the two parameters. Note also that the concentric isochrons 
become more closely spaced outward from the center, consistent with observations of ooid layers.

Figure 4.  Variation of the parameters c1 and c2 and the perimeter S versus the aspect ratio λ for equilibrium 
shapes. Observe that invariant shapes with unit area form a one-parameter family as λ is varied.
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(constant) term in eq. (3). The next step would be to consider the 3D versions of all listed models. These general-
izations introduce new model parameters which could be used to match measured contours to higher accuracy. 
Nonetheless, predictions from the planar model could already be tested with new laboratory experiments that 
tune growth and erosion parameters independently. In particular, we predict that ooid growth under a constant 
environment saturates due to a balance between surface precipitation and abrasion, and produces an invariant 
shape that reflects the relative magnitudes of these processes. If verified, the model could be used to invert ooid 
shape for formative environment, aiding interpretation of the geologic record.
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