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Abstract

Transcription factor (TF) regulation is often post-translational. TF modifications such as reversible phosphorylation and
missense mutations, which can act independent of TF expression level, are overlooked by differential expression analysis.
Using bovine Piedmontese myostatin mutants as proof-of-concept, we propose a new algorithm that correctly identifies the
gene containing the causal mutation from microarray data alone. The myostatin mutation releases the brakes on
Piedmontese muscle growth by translating a dysfunctional protein. Compared to a less muscular non-mutant breed we find
that myostatin is not differentially expressed at any of ten developmental time points. Despite this challenge, the algorithm
identifies the myostatin ‘smoking gun’ through a coordinated, simultaneous, weighted integration of three sources of
microarray information: transcript abundance, differential expression, and differential wiring. By asking the novel question
‘‘which regulator is cumulatively most differentially wired to the abundant most differentially expressed genes?’’ it yields the
correct answer, ‘‘myostatin’’. Our new approach identifies causal regulatory changes by globally contrasting co-expression
network dynamics. The entirely data-driven ‘weighting’ procedure emphasises regulatory movement relative to the
phenotypically relevant part of the network. In contrast to other published methods that compare co-expression networks,
significance testing is not used to eliminate connections.
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Introduction

Evolution, normal development, immune responses and

aberrant processes such as diseases and cancer all involve at

least some rewiring of regulatory circuits [1–3]. Indeed it is the

subtle (and sometimes not so subtle) differences in circuit wiring

that makes each individual unique. The key nodes in regulatory

circuits are frequently transcription factors (TF) [4]. Thus, there

is a great deal of interest in developing methods for decoding TF

changes. Regulator-target interactions can be assessed by ChIP-

on-chip but this requires large amounts of homogenous starting

material and TF-specific reagents. Furthermore, the recruitment

of a TF to a promoter does not necessarily correlate with

transcriptional status, so biological interpretation can be

complex [5]. Likely sites of key regulatory mutations can be

revealed by Whole Genome Scans (WGS) but this approach

requires large numbers of individuals and very dense SNP

panels. Even so, the exact causal gene may remain ambiguous if

there are several genes near the marker. In any case, little insight

is gained into the underlying regulatory mechanisms. In order to

gain further insights into the regulatory apparatus, computa-

tional approaches are continuously being proposed. To date,

they all operate by integrating information from multiple levels

of biological organisation particularly eQTL, protein-protein

interaction and TF binding site data [6–9].

Identifying regulatory change solely through contrasts in gene

expression data has been elusive because TF tend to be stably

expressed at baseline levels [10] close to the sensitivity of standard

high-throughput expression profiling platforms. Further, TF

activation is often regulated post-translationally and thereby can

act somewhat independently of expression level. Biologically

important common TF activation processes (localisation to the

nucleus, phosphorylation, ligand binding, formation of transcrip-

tionally ‘open’ euchromatin, and presence of cofactors, all in

addition to mutations in the protein coding region of the regulator)

are poorly detected by conventional differential expression (DE)

analysis.

We hypothesised that a system-wide network approach might

have utility, on the grounds that while a differentially-regulated TF

might not be DE between two systems, its new position in the

network of the perturbed system might allow detection of the

‘smoking gun.’ To allow reliable evaluation of such a hypothesis a

well-defined experimental model system is required. Piedmontese

cattle are double-muscled because they possess a genomic DNA

mutation in the myostatin (GDF8) mRNA transcript [11]. The

resulting dysfunctional myostatin protein is a transcriptional
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regulator that releases the brakes on muscle growth reflecting the

importance of TGF-b signalling pathways in the determination

of final muscle mass and fibre composition [12,13]. A

preliminary analysis of the expression of myostatin in Piedmon-

tese6Hereford versus Wagyu6Hereford animals found that DE

of myostatin was not detectable using cDNA-based expression

microarrays [14,15].

Thus we have a system in which we know the identity of the

gene containing the causal mutation, myostatin (MSTN), but we

cannot identify it by DE of the mRNA in muscle samples. By

contrasting the muscle transcriptomes of the Piedmontese and

Wagyu crosses across 10 developmental time points, our aim was

to establish the question to which myostatin is the answer. In other

words, what question do we need to ask of the gene expression

data for it to reveal the identity of the transcriptional regulator

containing the causal mutation?

Results

Conventional differential expression
We found that 11,057 genes gave valid expression signal: noise

data across the 10 developmental time points for the 2 crosses

(Table S1). Of these 11,057 genes 920 were deemed to be gene

expression regulators (Table S2). The experimental design

(Figure 1) allowed us to assess DE between the crosses and we

visualised the data on an MA plot (Figure 2), identifying 85 DE

genes using conservative statistical criteria. The most DE genes

included slow twitch muscle structural genes (e.g. MYL2), which

were higher in the Wagyu crosses (W6H) than in the

Piedmontese crosses (P6H) and immune genes (e.g. HLA-

DQA2), which were higher in the P6H than in W6H. The most

DE transcriptional regulator was CSRP3 which was higher in

W6H than in P6H. Consistent with previously published data

using a cDNA-based microarray [14] myostatin was not DE

between the crosses.

Differential wiring
Next, we examined the difference in the specific behaviour or

co-expression of targeted pairs of genes between the two crosses,

by subtracting the correlation coefficient in Wagyu from that in

Piedmontese. This approach has a very recent precedent [16].

However, two important modifications presented in the current

co-expression work include an absence of significance analysis and

the decision to limit the computation to a targeted subset of genes

(i.e., transcriptional regulators versus DE genes). This targeting

better emphasises the transcriptional regulation of the change in

two systems. This quantification of a gene’s differential connec-

tivity is more sensitive than the majority of published approaches

where only the total number of ‘significant’ connections is

contrasted. Instead, like [16] we exploit the identity of the

connectors and the differential magnitude of each connection,

even in circumstances where the correlation is weak in either (or

both) of the networks. As this principal forms the basis of the rest of

our analysis and appears to capture the regulatory rewiring that

takes place in myostatin mutant muscle, it will be referred to from

this point on as differential wiring (DW).

In circumstances where we do analyse changes in total numbers

of ‘significant’ connections, we elected to use the term differential

hubbing (DH) on the grounds that the total number of connections

determines the extent to which a gene can be considered a hub.

The PCIT algorithm was used to establish significance in these

cases [17]. Table 1 contains definitions for the main terms used in

our new analysis, and identifies those aspects which are completely

novel (PIF and RIF) from those which have been published in

some form (DE, DH and DW).

The most DE gene in our dataset is MYL2, and myostatin is the

third most DW regulator to it, with a value of 1.103. The

derivation of DW is illustrated for the myostatin-MYL2 connec-

tion in Figure 3. It is built on the differences in the myostatin-

MYL2 co-expression patterns across development in the Pied-

montese cross minus the Wagyu cross. A positive DW is generated

where the expression of the target (e.g. MYL2) is positively

correlated with the regulator (e.g. myostatin) in P6H, while in

W6H the expression is either less positive or negative. The

converse applies for negative DW.

Phenotypic and regulatory impact factors
In an attempt to assess the importance of each DE gene to the

change in phenotype, we propose a new metric: the ‘‘phenotypic

impact factor (PIF).’’ PIF is a mathematical abstraction designed to

‘weight’ for the contribution the various DE genes make to the

difference in the molecular anatomy of the two systems, based

purely on their numerical properties. The values were generated

by combining the amount of DE between the crosses, coupled with

the average abundance calculated for both crosses at all time

points for each of the 85 DE genes. Abundant transcripts that were

highly DE scored highly, whereas scarce transcripts that were only

slightly DE scored poorly. The high phenotypic impact genes

enriched for slow twitch muscle structural genes (MYL2, MYL3,

TNNT1, MYH7, ACTN2 and MYOZ2) correctly highlighting

the observed phenotype change between the breed crosses, namely

the gross muscle fibre transition. The coherence of the output is

very consistent with an expectation based on the observed gross

anatomical fibre change [18].

We formalised this observation using the GOrilla tool [19]

comparing the GO terms enriched by high DE to those enriched

by high PIF, computed for all 11,057 genes. Not surprisingly, the

extremes of both lists strongly enrich for muscle structural

components because the transcriptome data was derived from

muscle tissue. However, GOrilla assigned a p-value for ‘contractile

Author Summary

Evolution, development, and cancer are governed by
regulatory circuits where the central nodes are transcrip-
tion factors. Consequently, there is great interest in
methods that can identify the causal mutation/perturba-
tion responsible for any circuit rewiring. The most widely
available high-throughput technology, the microarray,
assays the transcriptome. However, many regulatory
perturbations are post-transcriptional. This means that
they are overlooked by traditional differential gene
expression analysis. We hypothesised that by viewing
biological systems as networks one could identify causal
mutations and perturbations by examining those regula-
tors whose position in the network changes the most.
Using muscular myostatin mutant cattle as a proof-of-
concept, we propose an analysis that succeeds based
solely on microarray expression data from just 27 animals.
Our analysis differs from competing network approaches
in that we do not use significance testing to eliminate
connections. All connections are contrasted, no matter
how weak. Further, the identity of target genes is
maintained throughout the analysis. Finally, the analysis
is ‘weighted’ such that movement relative to the
phenotypically most relevant part of the network is
emphasised. By identifying the question to which myos-
tatin is the answer, we present a comparison of network
connectivity that is potentially generalisable.

The Hunt for Myostatin
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fibre part’ – the top match within the ‘cellular component’ context

- that was 7 orders of magnitude, or 10,000,000 times more

significant for extreme PIF than for extreme DE (p = 3.14E-21

versus p = 2.01E-14). We thus conclude that PIF performs well at

enriching those genes which appear to contribute strongly to the

difference in phenotype between the two states, although a full

justification of this conclusion requires further experimental

evidence.

On the other hand, the PIF metric is not particularly well suited

to regulators, although they were included in the analysis.

Regulators are often stably expressed at close to baseline levels

making detection of isolated changes in expression level challeng-

ing and possibly misleading. To account for this, we ascribed

‘‘regulatory impact factors’’ (RIFs) to each of the 920 regulators

based on their cumulative, simultaneous, DW to the DE genes,

accounting for the PIF of the DE genes. This metric was intended

as a mathematical abstraction to represent the relative importance

of the regulators in driving the phenotypically relevant part of the

network described above, based on differences in their correla-

tions.

Those regulators that were highly DW to many of the high PIF

genes received strong scores, whereas those that were DW to a

few, low PIF genes scored poorly. Figure 4 illustrates the extent to

which myostatin is highly DW to the high PIF genes, with

Piedmontese and Wagyu co-expressions plotted on the two axes.

The 85 red circles correspond to the 85 myostatin-DE gene co-

expression values. Circle size corresponds to the PIF of the DE

gene co-expressed with myostatin at that particular co-expression

intersection. The perpendicular distance from the diagonal line

corresponds to the amount of differential wiring. For myostatin,

this distance tends to be greatest for the high PIF genes (largest

circles). The five largest circles are MYL2, CSRP3, MYH6, CA3

and MYL3.

It is important to note that Figure 4 also reveals that most of the

mass (i.e., most of the correlation coefficients) are either close to

21 or close to +1. This bimodal distribution in the correlation

coefficients affecting DE genes has already been documented [20]

and contrasts with the expected uni-modal distribution that would

be obtained across all genes where most of the mass is centred

around zero.

We explored 2 alternative methods to compute RIF scores (Eq4

and Eq5 Materials and Methods). Myostatin had the fourth most

positive RIF using Eq4 and the second highest using Eq5 (Table 2).

Overall the RIF values calculated using the two equations had a

correlation efficient of ,0.7.

In the absence of evidence favouring one approach over the

other we decided to follow the original thread of defining the

question to which myostatin was the answer. When we calculated

the mean of the two different RIF values, myostatin received the

highest score out of the 920 regulators with a RIF of 3.49 (Figure 5

and Table 2). Two muscle transcription factors MEF2C and

MYOD1 also appeared in the top ten, although the former was

ranked much lower by Eq4. In addition, SUV39H2 (a histone

methyltransferase that cooperates with SMADs [21], components

of the TGF-ß pathway though which myostatin is proposed to act,

lay in third place (Table 2). No major muscle TF, or components

of the TGF-ß pathway, were in the top ten negative RIF genes

(Table 3). The remainder of the top 10 positive and negative RIF

regulators are annotated in Tables 2 and 3, and can be compared

and contrasted to the top 10 positive and negative DE regulators

in Tables 4 and 5.

To highlight which cluster of DE genes are being ‘perturbed’ by

which cluster of regulators, the DW values for the 920 regulators

(in rows) and the 85 DE genes (in columns) (Table S3) can be

assembled into a ‘perturbation matrix’ which we visualised using

PermutMatrix software [22]. This novel representation of gene

Figure 1. The design of the microarray experiment. Within each cross symbols with the same number indicate samples derived from the same
individual animal.
doi:10.1371/journal.pcbi.1000382.g001

The Hunt for Myostatin
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expression data (derived from the more traditional configuration

with genes in rows and samples in columns) allows for the

separation of DE genes from regulators and, after hierarchical

clustering, reflects the way in which the regulators are co-

differentially wired with each other (i.e., where the differential

wiring behaves in a co-ordinated manner).

In Figure 6 a small section of the perturbation matrix is shown.

Of particular note was a tight cluster of 18 DE genes comprising 5

genes encoding high PIF slow twitch structural proteins (MYL3,

TNNT1, MYH7, ACTN2 and MYOZ2) and also featuring

SMPX and 2 DE regulators (ANKRD1 and CSRP3). MYL2,

another gene encoding a slow twitch structural protein, did not

feature in this DE module, but clustered on its own. The

regulatory axis contained several high impact regulatory ‘hot

spots.’ One of these included myostatin and MYOD1 at its heart,

and also included CSRP1, USF1, POU5F1, NR3C2, SBNO1 and

PITX2. The very tight clustering of myostatin and MYOD1

reflects closely coordinated patterns of DW between the two

crosses across the 85 DE genes.

These biologically-sensible clusters imply that co-differential

wiring can be used as an explicit criterion to form an edge in a

regulatory perturbation network. We used a hard 0.9 threshold to

establish network edges between those regulators that were highly

co-differentially wired to the 85 DE genes. We visualised the

deduced network in Cytoscape [23]. This approach led to an

enormous cohesive module of low impact regulators (those

regulators that apparently do not contribute to the change in

phenotype), plus a number of smaller high impact modules (those

regulators that apparently do contribute to the change in

phenotype). A notable high impact module comprised 3

transcriptional regulators: MSTN, MYOD1 and IFRD1. The

derivation of the high co-differential wiring between the crosses for

myostatin and MYOD1 is illustrated in more detail with specific

respect to the slow twitch module genes in Figure 7. In contrast to

myostatin and MYOD1, which are highly positively co-differen-

tially wired to each other, the other member of the module,

IFRD1, is highly negatively co-differentially wired to them. The

greatest DW values for all three transcriptional regulators tend to

be associated with the high PIF muscle structural genes at the far

right of the x axis (ANKRD1, MYOZ2, TNNT1, MYH6, SMPX,

CSRP3 and ACTN2).

However, positive correlation of DW of regulators does not

necessarily imply positive correlation, or indeed any significant

correlation, of expression of the regulators themselves and vice

versa. In other words, neither the clustered regulators on the y axis

of the perturbation matrix nor the clustered DE genes on the x

axis are actually significantly co-expressed with each other in any

combination, based on a PCIT analysis (unpublished data).

Furthermore, Myostatin, MyoD1 and IFRD1 are not significantly

co-expressed with any of the other 11,057 genes in the system, let

Figure 2. MA plot. Genes expressed more highly in the Wagyu cross are on the bottom, and genes expressed more highly in the Piedmontese cross
are on the top. Regulators are denoted by triangles. MYL2 (slow twitch muscle structural protein) is the most differentially expressed gene. CSRP3 is
the most differentially expressed regulator. Myostatin is neither abundant nor differentially expressed.
doi:10.1371/journal.pcbi.1000382.g002
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Table 1. The definitions of the terms used in this analysis.

Our
Nomenclature

Existing Literature
Nomenclature Formal Definition Purpose and Further Notes

Differential
Expression (DE)

Differential
Expression (DE)

The difference between the expression
level of a given gene in state 1 minus its
expression in state 2

Compares the transcriptional status of a given gene to itself in
two states. In longitudinal experiments where DE is averaged
across the developmental time points, it will yield a conservative
measure of true DE.

Differential
Hubbing (DH)

Differential
Connectivity (DC)

The difference in the number of significant
connections a gene has in two different
states e.g. a gene that has 5 significant
connections in state 1 and 3 significant
connections in state 2 yields a DH of 523 = 2

In order to compute differences in the number of significant
connections, one first computes which of the co-expression
arrangements are significant in the two states. Typically, most
connections will be deemed non-significant. The difference
between the two states can be computed by subtracting the
significant connections a gene has in state 2 from state 1. In the
present data this approach fails to identify myostatin as being
differentially behaved in Piedmontese versus Wagyu muscle.

Differential Wiring
(DW)

Differentially
Correlated [16]

The difference in co-expression between
a specified pair of genes in two different
states. For example GDF8 and MYL2 have a
co-expression of +0.761 in the Piedmontese
and 20.342 in the Wagyu giving a
DW of + 0.761 - - 0.342 = 1.103

This approach forms the basis of our RIF analysis (in conjunction
with PIF, see below). In contrast to conventional analyses, no
significance testing is used to establish connections.

Phenotypic Impact
Factor (PIF)

None, no
precedent for
the method

The average expression (state 1 and state
2 combined) multiplied by the DE
(see above for definition), computed for
all DE genes.

A mathematical abstraction quantifying the contribution the
various DE genes make to the difference in the molecular
anatomy of the two systems. Abundant highly DE genes are
emphasised. In the present dataset this enriches for slow muscle
structural proteins, correctly reflecting the fibre type shift
observed at the gross anatomical level.

Regulatory Impact
Factor (RIF)

None, no
precedent for
the method

The cumulative DW of each regulator
relative to the target DE genes, weighted
for PIF.

Regulators that are highly DW to the high PIF (i.e., abundant
highly DE genes) score highly. In our data, the regulator awarded
the highest RIF was myostatin, the causal Piedmontese mutation.

doi:10.1371/journal.pcbi.1000382.t001

Figure 3. Expression profiles of myostatin and MYL2 in Piedmontese and Wagyu crosses. Myostatin is not differentially expressed, but it
is highly differentially wired to the highly DE MYL2.
doi:10.1371/journal.pcbi.1000382.g003
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alone the subset in the matrix. The same applies to ACTN2, MYH6,

CSRP3, ANKRD1, MYL3 and MYOZ2 (unpublished data).

Rather, it is the coordinated manner in which two genes differ in

their behaviour in the two systems that drives co-differential wiring.

Data simulation
We tested the distributional and numerical properties of RIF1

and RIF2 (Eq4 and Eq5) on a simulated data to assess the extent to

which our real output could be ascribed to chance. The simulated

data comprised 5,000 genes surveyed across 10 experimental

conditions (in line with the 10 time points) in two treatments (in

line with the two breed crosses). In accordance with the real data,

expression values were simulated from a normal distribution with

a mean of 8.6 and a standard deviation of 2.8 and truncated at 4

and 16. Also, for each gene, its expression profile across the two

treatments was simulated to have a correlation of 0.95.

Simulations were performed under the null hypothesis of no

differential expression between treatments, no correlation between

genes across conditions, and no regulator-target relationships.

Therefore, in these settings any observed association could be

attributed to chance alone.

For the computations of RIF1 and RIF2, a random 920 genes

were selected and treated as potential regulators and their

regulatory impact factor computed against the 85 genes showing

the most extreme measure of differential expression across the two

conditions. Based on this approach a simulated version of Figure 4

was constructed (data not shown) which, unlike the observed

Figure 4 from our real data, bore most of its mass in its centre

(indicative of a bell-shaped distribution of correlation coefficients).

Both distributions were found to be statistically different as

indicated by the Kolmogorov-Smirnov two-sample test

(P,0.0001).

Differential hubbing
We used the PCIT algorithm [17] to establish the number of

significant connections for each regulator in the P6H and W6H

Figure 4. The co-expression relationships between the 920 transcriptional regulators and the 85 DE genes. The red circles represent
the co-expression relationships of myostatin to the 85 DE genes, with circle size corresponding to the PIF of the DE gene represented at that
particular co-expression intersection (DW). Myostatin is highly DW (as represented by long perpendicular distances from the diagonal) to the highest
PIF genes (largest red circles). This dynamic underpins myostatin’s exceptional RIF. The density of all points is highest at the extreme co-expression
range (i.e., +1, +1 and 21, 21) and lowest for a complete reversal (i.e., +1, 21 and 21, +1).
doi:10.1371/journal.pcbi.1000382.g004
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datasets, to determine how well this conventional approach

performed in comparison to RIF. In line with previous authors

we discovered that the DH axis (i.e., the change in the number of

significant connections between the two breeds) enriches at its

extremes for transcriptional regulators (Figure 8). The extreme 1%

DH (i.e., 110 genes out of the 11,057 available) contains 15

transcriptional regulators rather than the 9 expected by chance

alone (hypergeometric p-value = 0.0192). This enrichment is not

true for the DE axis, which contains 9 transcriptional regulators.

However, DH failed to capture myostatin in its extremes, which

suggests its usefulness as a metric for the identification of

transcriptional regulators of relevance may not be broadly

applicable (Figure 8). We also ran the ‘signed’ hubbing analysis

of [24] on our data and plotted the output (Figure S1). As with the

PCIT DH approach, myostatin was not enriched at the extremes

of the DiffK DH axis. This means it failed to identify the regulator

containing the known causal mutation as being differentially

behaved in the two muscle systems.

Discussion

Reducing type III error by defining a cogent question
In the introduction we posed a computational challenge:

identify the question in P6H versus W6H muscle development

Table 2. The top 10 positive differentially wired regulators P6H v W6H.

Regulator DE Gene Function RIF Rank Eq4 Rank Eq5

MSTN no Causal mutation in double-muscled Piedmontese
cattle, negative regulator of muscle mass. TGF-ß signalling.

3.49 4 2

MEF2C no Muscle transcription factor 3.21 37 1

SUV39H2 no Histone methyltransferase. Cooperates with SMADS to
repress promoter activity. TGF-ß signalling.

3.13 3 4

ACTL6B no Regulation of genes in the brain 3.02 14 5

HNRNPD 20.41 Pre mRNA processing 3.01 10 6

MYOD1 20.41 Master regulator of muscle cell differentiation 2.94 58 3

ATRX no Chromatin remodelling 2.85 106 7

IRF9 no Interferon regulatory factor 2.82 67 9

CCNK no Regulation of transcription 2.79 160 8

HAT1 no Histone acetyl transferase 2.79 13 11

doi:10.1371/journal.pcbi.1000382.t002

Figure 5. The relationship between regulatory impact factor and differential expression. The DEs of the 920 regulators are plotted
against their respective RIFs (mean dot Eq4+Eq5). Myostatin, indicated by a red dot, is awarded the highest RIF despite not being DE.
doi:10.1371/journal.pcbi.1000382.g005

The Hunt for Myostatin

PLoS Computational Biology | www.ploscompbiol.org 7 May 2009 | Volume 5 | Issue 5 | e1000382



to which myostatin is the answer. The subsequent analysis suggests

the following: ‘‘Which transcriptional regulator is cumulatively

most differentially wired to the abundant most differentially

expressed genes?’’ This question is clearly very different to the

conventional ‘‘which transcriptional regulator is the most

differentially expressed?’’ and unsurprisingly the latter gives quite

different answers, including the notable failure to identify

myostatin out of the 920 candidates.

This result suggests that traditional microarray approaches

generating lists of DE regulators may be committing type III

statistical error, the error committed when giving the right answers

to the wrong questions [25,26]. Regulators may indeed be

correctly identified as DE, but this does not mean that they are

differentially activated. The converse is also true. For example, TF

activity can be regulated in many ways, localisation to the nucleus,

chemical modification, change in accessibility of DNA binding

sites and availability of cofactors that by and large are independent

of TF expression level. It is therefore inevitable that these common

forms of regulatory change will be overlooked by DE analysis.

The positive identification of myostatin as the major regulatory

perturbation in this specific set of experimental contrasts is

noteworthy, despite the stated aims of the approach. The

Piedmontese causative mutation exists at the first level of

organisation (genomic DNA), and manifests its effect at the third

(protein) and higher levels (phenotype). Despite this, we can

identify it using only data at the second level of biological

organisation – the transcriptome. In addition, all animals were

Hereford hybrids so 50% of the protein translated by the P6H

animals was as functional as the myostatin protein translated by

the W6H; in line with this, the increase in muscle mass was

correspondingly subtle (,9%) (unpublished data).

Assigning phenotypic and regulatory impact factors
The new algorithm works, in effect, by firstly establishing a

Phenotypic Impact Factor (PIF) for each of the DE genes. Thus,

genes that are both highly abundant and highly DE between the

crosses derive a correspondingly high PIF, or discrimination

factor. Taken together, this weighting provides an abstract

molecular description of the phenotype perturbation specific to

the treatments under consideration. In the P6H versus W6H

comparison, the genes with the highest PIF (i.e., those that are

abundant and highly DE) tend to be slow twitch muscle

structural genes (MYL2, MYL3, TNNT1, MYH7, ACTN2

and MYOZ2). This correctly reflects the most pervasive

phenotypic change in Piedmontese myostatin mutants (along

with the increase in muscle mass) namely the gross fibre type

transition. We therefore conclude that DE, in the context of

transcript abundance, is a powerful measure of phenotypic /

anatomical change (but not necessarily, as we have already

argued, regulatory change).

Table 3. The top 10 negative differentially wired regulators P6H v W6H.

Regulator DE Gene Function RIF Rank Eq4 Rank Eq5

HOXB13 no Body patterning along main axis, suppressor of cell growth 22.46 906 920

IFRD1 no Interferon-related development regulator 1 22.42 882 919

CDK7 no Link between regulation of transcription and cell cycle 22.39 885 918

FOSL2 no Regulator of cell proliferation, differentiation and transformation 22.30 898 917

MYT1 no Myelin transcription factor 22.28 914 915

MAFK no Erythroid transcription factor 22.28 870 916

PADI4 no Possible role in granulocyte and macrophage development 22.12 853 914

LMCD1 20.34 Negative regulator of muscle cell differentiation 22.11 874 913

CTNND2 no Catenin delta 2 22.10 897 910

KLF15 no Kruppel-like factor 15 22.05 857 912

doi:10.1371/journal.pcbi.1000382.t003

Table 4. The top ten positively differentially expressed regulators P6H v W6H.

Regulator DE Gene Function RIF Rank Eq4 Rank Eq5

HOXB6 0.37 Regulation of development 20.80 869 718

TFDP2 0.35 Transcription factor, E2F dimerization partner 2 20.88 476 764

HOXB5 0.34 Regulation of development 0.13 286 352

BHLHB5 0.33 Brain transcription factor 2.03 91 40

FOXO1 0.32 May play a role in myogenic growth and differentiation 20.54 481 637

SCAND1 0.30 Peroxisome proliferative activated receptor, gamma,
coactivator 1, role in lipid metabolism

20.62 664 666

BACH2 0.30 B-cell leucine zipper transcription factor 0.45 245 254

MLLT10 0.28 Remodelling histones/nucleosomes 2.40 101 17

FOXQ1 0.26 TGFB2 pathway 21.82 1 39

MAX 0.26 Role in cell proliferation and differentiation 21.39 162 50

doi:10.1371/journal.pcbi.1000382.t004
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RIF is based on the cumulative, simultaneous, differential

wiring (DW) of each regulator to the DE genes, ‘weighted’ for the

PIF of each DE gene. Satisfactorily, the regulator awarded the

highest RIF by this approach is myostatin, the gene that bears the

known causal mutation (SNP) in Piedmontese genomic DNA [11].

This positive result suggests that our concept and method of

assigning RIF represents a promising approach to the identifica-

tion of causal mutations, and additionally those regulatory ‘hot

spots’ resulting from non-genetic perturbations in other systems.

The highest impact regulators are documented in Table 2, and

include known muscle master regulators like MyoD1. A caveat:

some known muscle master regulators (e.g. Myf5) do not perform

strongly in our analysis, i.e., they are ascribed relatively low RIF’s.

This suggests not that these regulators are unimportant to bovine

muscle development, but rather that they play only a small role in

the rewiring that directs these two muscle phenotypes down

different developmental paths.

During the conceptual development of the algorithm we tried

several permutations. The best performer, as described above and

in the results section, incorporates the average abundance and

differential expression of the DE genes (which tend not to be

transcriptional regulators), and the cumulative DW of the

regulators to those weighted DE genes. Surprisingly, inclusion of

either the average abundance or DE of the regulators themselves

actually impairs the ability of the algorithm to identify myostatin

(data not shown).

Table 5. The top ten negatively differentially expressed regulators P6H v W6H.

Regulator DE Gene Function RIF Rank Eq4 Rank Eq5

CSRP3 20.83 Positive regulator of myogenesis 21.36 883 862

BTG2 20.63 Cell cycle regulator, anti-proliferative 20.93 701 795

ATF3 20.60 Negative regulator of Toll-like receptor 4 21.52 860 881

ANKRD1 20.53 Positive regulator of myogenesis 21.04 429 817

CDK9 20.49 Cell cycle regulator 1.28 531 97

FOS 20.44 Cell differentiation and proliferation in bone, cartilage and blood TGF-ß signalling 21.37 826 867

CILP 20.44 Negatively regulates TGF-ß signalling 1.30 7 123

FST 20.42 Positive regulator of muscle mass TGF-ß signalling 20.47 575 602

HOMER2 20.42 Negative regulator T cell activation 20.80 339 729

FRZB 20.41 Negative regulation of Wnt signalling 2.56 826 907

doi:10.1371/journal.pcbi.1000382.t005

Figure 6. The P6H v W6H ‘‘perturbation matrix.’’ We applied Permut Matrix’s hierarchical clustering algorithm to both rows (920 regulators)
and columns (85 DE genes). A subset of the full matrix including the high phenotypic impact slow twitch module (blue line) and the major high
impact transcriptional regulator circuit (red line). The scale is 21.53 (bright green) to +1.53 (bright red), with 0 being black.
doi:10.1371/journal.pcbi.1000382.g006
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While we assessed several versions of the algorithm, there is no

evidence that the data has been over-fitted because (1) the model is

relatively simple compared to the data it analyses, (2) like in any

other expression experiment, only the normalized gene expression

levels for each gene in each of the samples (or experimental

conditions) are needed, (3) it is built on sound mathematical

principles (mixed-ANOVA models and model-based clustering),

and (4) those mathematical principles mesh well with our

biological understanding of the behaviour of both structural

proteins (where DE and abundance are always important) and

transcriptional regulators (where DE and abundance are not

necessarily important, but transcriptional connectivity is impor-

tant) in a range of living systems.

The two versions of the algorithm provided (Eq4 and Eq5) are

alternatives in the sense that they are built on the same set of

concepts. However, at this stage, it is not clear whether one can be

considered superior to the other. Consequently, we have derived

our impact factor discussion from the combined, averaged output

of both equations (Table S2 and Tables 2 and 3). Equation 5 has

the appealing intrinsic mathematical feature that it allows for auto-

regulation, a biological feature thought to be true for myostatin

itself [11].

Conventional differential expression
Our observations imply caution when assessing isolated DE lists

of TF. That TF can behave differently in two systems without

being strongly DE, has been discussed before [24,27] and is

graphed for these data in Figures 2, 5, and 8. It is interesting that

the top 10 candidates generated by the new algorithm and the top

10 DE regulators do not overlap, although HNRNPD and

MYOD1 lie just outside the top ten most DE regulators; the most

DE regulator (CSRP3) was assigned only a modest RIF. CSRP3

has been reported to be a potential structural component of the

sarcomere [28], but also as a soluble component [29] and as a TF

involved in the transduction of mechanical stress signals from the

structural proteins to the nucleus [30,31]. ANKRD1, another

major DE regulator, may have a similar role [32,33]. The possible

structural roles of these regulators may place them in an

intermediate category between structural protein and regulator,

which complicates the decision to include them in a transcriptional

regulator list and may also have implications for interpretation of

the output.

Wiring the regulatory network
Assigning impact factors to the regulators (based on the

behaviour of its co-expression with respect to the phenotypically

most relevant part of the network) forms step 1 in a 2-step process,

and it yields biologically valid results. The next step is to

computationally wire up the high impact regulators into coherent

transcriptional modules, whose coordinated behaviour drives the

phenotype change. We attempted to do this by establishing

relationships between regulators who were ‘similarly’ or co-

Figure 7. The basis of an edge in a co-differential wiring network. Myostatin, MyoD1 and IFRD1 are highly co-differentially wired across the
85 DE genes (correlation coefficients .0.9 or ,20.9). Here their respective relationships are visualised against only those 18 DE genes that cluster
into the slow twitch Permut module, but the relationship holds for all 85 DE genes.
doi:10.1371/journal.pcbi.1000382.g007
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ordinately differentially-wired between the two crosses. To our

knowledge this is the first time co-differential wiring has been used

for reverse-engineering regulatory circuitry. The resultant output

captures the phenotypic and regulatory differences between the

two crosses and so we view it as a ‘perturbation matrix.’

The building and clustering of the perturbation matrix

satisfactorily resolves both axes into biologically sensible modules.

For example the DE axis generates a very tight module of high

phenotypic impact slow twitch muscle fibres (ACTN2, MYH7,

TNNT1, MYL3 and MYOZ2). Equally, the regulator axis resolves

a high impact regulatory module comprising myostatin and

MYOD1, among others. Myostatin is embedded in the middle of

this high impact module. We interpret these clusters of regulatory

disturbance as representing ‘hot spots’ of circuit rewiring that

account for the major phenotypic changes between the crosses.

The exceptionally tight coupling of myostatin and MYOD1 on

the y axis is the product of a near perfect matching of co-differential

wiring across all 85 DE genes (p = 0.917). Figure 7 illustrates the co-

differential wiring of these two regulators against the slow twitch

module DE genes. Unfortunately, our success in correctly

determining the rewiring of myostatin in (i.e., identifying the other

regulators through whom it communicates its effect on muscle mass

and muscle fibre composition) is harder to evaluate than the impact

factor data. This is because the regulatory events that transduce

myostatin’s influence on Piedmontese muscle mass and fibre

composition have not been well established. To establish the validity

of the co-differential wiring approach we examined the biological

identity of those genes with the highest co-DW coefficients. The

distinction belongs to PTTG1 and TOP2A (0.994) which are

involved in the same highly fundamental biological process, that of

chromatid separation during DNA replication.

With specific regard to the myostatin and MyoD1 clustering,

the high co-DW congruence makes a clear prediction that the

myostatin SNP in Piedmontese exerts its effect on skeletal muscle

via circuit rewiring with MyoD1. MyoD1 has not only been shown

to drive the expression of a set of genes necessary for fast muscle

differentiation [34], but also to be specifically regulated by

myostatin in mice [35]; thus, our prediction appears robust. The

separation of abscissa clustering predicts that MYL2 is under a

different regulatory program to the other slow twitch muscle

structural genes in the system.

When we next used the co-DW patterns to generate edges in a

network, myostatin was linked to 2 other high impact regulators,

MYOD1 and IFRD1. It is highly noteworthy that IFRD1, which

is required for myoblast differentiation, forms a known, experi-

mentally-verified regulatory circuit with MYOD1 [36] adding

further support to our co-differential wiring method. Taken

together, these results are very appealing because they indicate a

single method that not only correctly clusters regulators who

behave the same in the two systems (PTTG1 and TOP2A) but also

those who behave differently in the two systems (Myostatin,

MyoD1 and IFRD1). The additional myostatin module connec-

tions, i.e., between myostatin and IFRD1 (20.903) and between

MYOD1 and IFRD1 (20.925) (Figure 7) are not represented in

Figure 6 because Permut Matrix does not recognise inverted

patterns (i.e., the signs on the edges are negative instead of

positive). In contrast to MYOD1, the high RIF MEF2C is not part

of this cluster.

Qualifiers
The utility of this algorithm clearly relies on appropriate data

selection. Presumably, the microarray data must be assayed on the

right tissue and at biologically important times. However, the

dataset that we analysed was not designed to address the specific

question of identifying the gene containing the causal mutation,

rather it was designed to study the impact of nutrition restriction of

Figure 8. The DE and differential hubbing of all 11,057 genes. While the extremes of the DH axis enriched for transcriptional regulators in
general, myostatin is neither DH nor DE.
doi:10.1371/journal.pcbi.1000382.g008
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the mother on the subsequent performance of the calves [37,38]. A

limitation of our method is that the regulators must be identified at

the start of the analysis. However, other than the initial

identification of the regulators, all the downstream information

such as PIF, RIF and the topology of the co-differentially wired

network is entirely data-driven, i.e., computed directly from the

normalised microarray expression values.

Finally, during the development of the algorithm we initially

attempted to determine regulatory changes via a simpler version of

connectivity, i.e., describing changes in the number of connections

of each regulator, what we have termed DH (and what is

sometimes referred to as differential connectivity in the literature).

DH approaches have previously proved useful in identifying genes

that appear to play key regulatory roles in evolution [39], cancer

[40] and the development of sexual dimorphism [41]. However,

the procedure is limited because it requires the application of a

significance analysis to isolate the significant from the non-

significant connections. Which significance analysis to use is a

subject of ongoing debate with weighted networks appearing to

hold the most promise [17,24,42,43].

While it was true that high DH (coupled with low DE) proved

diagnostic of regulators in general (sensu [24,27]), it performed

poorly as a discriminatory metric with specific regard to myostatin

(Figure 8). A possible reason why can be illustrated by the

following hypothetical example. Consider a regulator with 100

positive associations in one system, and 100 negative associations

in another, and two entirely different sets of target genes. In its

most basic form, a DH analysis would suggest this regulator is not

differentially hubbed (as 1002100 = 0), clearly a false negative.

Thus, a DH analysis may suffer from (1) ignoring the identity of

the connected genes, (2) ignoring the sign on the edges, and (3)

ignoring the phenotypic impact of each connected gene. To

further compare RIF to published network approaches, we ran the

DiffK hubbing analysis of [24], which is a sophisticated ‘signed’

differential hubbing algorithm. This positioned myostatin 147th

out of the 920 regulators on the DiffK axis, i.e., it failed to identify

myostatin as behaving differently in the two muscle systems (Figure

S1). This result suggests that hubbing analyses, in their various

forms, are unable to identify the causal mutation in this particular

data.

Our definition of RIF does not require computation of the

number of connections of a given regulator in each of the two

networks. Therefore, algorithms for network re-construction

(weighted or otherwise) are of no relevance. Instead, the difference

between the connection weight of a given gene with each of the

DE genes, accounting for PIF, appears to be sufficient. In other

words, RIF has a set of refinements which make it highly sensitive.

These refinements include recognising the specific identity of

target genes, recognising the possible importance of ‘weak’ edges

that would be deemed non-significant by other methods and

recognising the phenotypic importance of the target genes.

This principle is well illustrated by the DW of myostatin to

MYL2. The co-expression relationship significantly changes from

+0.761 in the P6H system to 20.342 in the W6H system. The

20.342 Myostatin-MYL2 ‘edge’ in the Wagyu network would be

unequivocally discarded by all statistical methods as being

insignificant (whether by ARACNE, PCIT or some other

approach) whilst the +0.761 Myostatin-MYL2 ‘edge’ in the

Piedmontese would be borderline insignificant depending on the

exact analysis used. Therefore, comparisons between these

arrangements (which underpin the success of our present analysis)

cannot be sensitively quantified by DH. Further, the fact that

MYL2 is highly abundant and highly DE (and therefore of great

phenotypic importance) would be overlooked by DH, unless the

PIF metric was applied. It is a telling observation that myostatin is

neither DE nor DH (Figure 8), yet is cumulatively the highest RIF

regulator on the array by some margin (Figure 5).

Conclusions and future directions
We have argued that the algorithms success is built on

controlling type III error, i.e., it gives the right answer because it

asks the right question. The approach should be generalisable to

other ‘omics data because its mathematical approaches mesh well

with the known biology of regulatory and non-regulatory

molecules. Unlike other causal mutation finding computational

approaches [6–9], RIF requires data at only one level of

organisation (the transcriptome). Having said this, the future

availability of more complete TF binding data and other resources

will enable the determination of a more complete path from causal

mutation to phenotype. By extracting richer regulatory informa-

tion RIF may help establish novel regulatory perturbations. These

include a better understanding of the network topologies that

underpin evolutionary novelty and the mis-wiring events that lead

to aberrant development such as cancer.

Materials and Methods

Ethics statement
Use of animals and the procedures performed in this study was

approved by the New South Wales North Coast Animal Care and

Ethics Committee (Approval No. G2000/05).

Animals and samples
Hereford cows were artificially inseminated or mated to one of 5

different Wagyu sires or one of 6 different Piedmontese sires. All

Piedmontese sires were homozygous for the MSTN (GDF8)

missense mutation in exon 3 and none of the Wagyu sires carried

the mutation. We sequenced the myostatin transcript from cDNA

and found it to be heterozygous for the SNP mutation in all

Piedmontese samples with approximately equal peak heights for

both alleles. Muscle tissue from these animals has been contrasted

previously across both pre- [14] and post- [15] natal development

using a custom cDNA array derived from adult muscle and

adipose tissue libraries. Further details relating to experimental

design can be found therein. Total RNA was prepared as

previously described [14].

Microarray platform and experimental design layout
We used a bovine oligonucleotide microarray, developed in

2006 by ViaLactia Bioscience in collaboration with Agilent,

containing 21,475 unique 60-mer probes, representing approxi-

mately 19,500 distinct bovine genes. Four microarrays are present

on each Agilent chip. Issues considered in the experimental design

included the availability of biological replicates as well as the

quality of the extracted mRNA. The experimental layout was

designed to allow a focus on the cross comparison, but to also

permit a developmental aspect to be carried out (Figure 1). Two

clear components were included: gestation and post-natal. For the

gestation component of the experiment, a total of 12 dual-channel

hybridizations were performed including three biological replicates

for each cross and at the 4 time points (60, 135, 195 and 280 days).

For the post-natal component, 36 hybridizations were performed

including the same four biological replicates for each cross

surveyed at six ages from 3 to 30 months old. Alternate dye

channel was applied to allow accounting for systematic effects due

to dye bias. Microarrays were hybridized at the SRC Microarray

Facility of the Institute for Molecular Biosciences in Brisbane,

Australia (http://microarray.imb.uq.edu.au/).
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Generation of the list of regulators
We used a number of approaches to establish a reasonably

definitive list of genes encoding proteins that directly or indirectly

modify gene expression, including chromatin remodelers. We

made use of a comprehensive list of TF previously published in

humans [44] and identified the homologs on the Agilent bovine

array. This list was augmented by examining files available at

ftp://ftp.ncbi.nih.gov/gene/DATA/ which were obtained and

searched by accession number to identify gene ontology

information for each sequence. We also took advantage of a

range of online databases with information on TF binding motifs

to further corroborate the list. While we discriminated between

modifiers of gene expression, such as TF, non-transcription factor

regulators (e.g. myostatin), chromatin remodelers (e.g. HDAC2)

and signalling molecules (e.g. FRZB) in the list, the phrase

transcriptional regulator covers all together.

Microarray data processing, normalization and
differential expression

Gene expression intensity signals were subjected to a series of

data acquisition criteria based on signal to noise ratio and mean to

median correlation as detailed previously [45]. In brief, we

employed the following two editing criteria for data acquisition:

First, we required that the signal to noise ratio (computed by

dividing the background corrected intensity by the standard

deviation of the background pixels) be greater than unity; Second,

we required that the correlation between the mean and the

median signal intensities (computed by dividing the smaller of the

mean or median by the larger) to be greater than 0.85. Tran et al.

[46] suggested that a correlation of 0.85 or higher not only retains

more data than other methods, but retained data are more

accurate than traditional thresholds or common spot flagging

algorithms. However, these criteria were applied separately for the

red and for the green intensity channels so that a different number

of observations for each channel were obtained. These resulted in

a total of 2,083,641 gene expression intensity readings (1,027,379

red and 1,056,262 green) on 11,057 genes that were background

corrected and base-2 log transformed. The arithmetic mean and

standard deviation (in brackets) for the red and green intensities

were 8.67 (3.16) and 8.14 (2.82), respectively.

Data normalization was carried out using a linear mixed

ANOVA model as described in [47] and differentially expressed

(DE) genes identified by model-based clustering via mixtures of

distributions on the normalized expression of each gene at each

cross and time point as detailed in [47,48]. In brief, the following

linear mixed-effect model was fitted to the data:

Yijkvmn~mzCijkzGmzAGijmzDGkmzVGvmzeijktmn ð1Þ

where Yijkvmn represents the n-th background-adjusted, normalized

base-2 log-intensity signal from the m-th gene at the v-th

experimental variety treatment (breed cross and time point) from

the i-th chip, j-th array (i.e., there are four microarrays per chip)

and k-th dye channel; m is the overall mean; C represents a

comparison fixed group effects defined as those intensity signals

from the same chip, array and dye channel; G represent the

random gene effects with 11,057 levels; AG, DG, and VG are the

random interaction effects of array by gene, dye by gene, and

variety by gene, respectively. Finally, e is the random error term.

In what follows, it is understood that the v-th variety treatment

incorporates both the main class treatment of cross (e.g. P6H

versus W6H) as well as the sub-class level (e.g. the 10 time points).

That is: v = 1, 2, …, 10 for the Piedmontese cross at the 10 time

points; and v = 11, 12, …, 20 for the Wagyu cross also at the same

10 time points.

For the random effects in model (1), standard stochastic

assumptions are:

G*iid N 0, s2
g

� �
,

AG*iid N 0, s2
ag

� �
,

DG*iid N 0, s2
dg

� �
,

VG*iid N 0, s2
vg

� �
,

and e*iid N 0, s2
e

� �
,

where iid denotes independently and identically distributed and N

denotes the normal distribution. Variance components are

between genes (s2
g), between genes within array (s2

ag), between

genes within dye (s2
dg), between genes within treatment (s2

vg) and

within genes (s2
e). Variance components were estimated using

restricted (to zero error contrasts) maximum likelihood (REML;

see [49] for detailed formulae).

To determine which genes are DE between the two crosses, the

following t-statistic was computed for each gene in g:

DEg~
1

10

X10

v~1

VGgv{
X20

v~11

VGgv

" #
ð2Þ

This definition of DE is likely to be conservative as it is based on

overall variation in expression across all time points. However, it

has the advantage of dealing with irregular time intervals

compared with dynamic clustering methods based on autoregres-

sive models [50], where the time points have to be evenly spaced.

Finally, the DE measurement contrasts in (2) were processed by

fitting a two-component normal mixture model and posterior

probabilities of belonging to the non-null component were used to

identify DE genes with an estimated experiment-wise false

discovery rate of ,1% as described by [51].

Differential wiring
We introduce the term differential wiring (DW) which, defined

for every pair of genes, is computed from the difference between

the co-expression correlation observed between these two genes in

the Piedmontese network minus the co-expression correlation

between the same pair of genes in the Wagyu network.

In algebraical terms, DW is computed as follows:

DWfj~rp f,ið Þ{rw f,ið Þ ð3Þ

where f and i indicate the f-th TF and the i-th DE gene,

respectively;

rp(f,i) is the correlation coefficient between the expression of the

f-th TF and the i-th DE gene in the Piedmontese cross; and

rw(f,i) is the equivalent for the Wagyu cross.

Regulatory impact factors
For every regulator in our dataset, we introduce a new term,

namely Regulatory Impact Factor (RIF) which simultaneously

combines the DW between the TF and each of the DE genes,

weighted for the PIF of the DE genes, i.e., their expression

averaged across the two crosses (denoted as Ai, for the i-th DE
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genes) and their measure of differential expression given in

Equation (2).

In algebraical terms, the RIF associated with the f-th TF is

computed as follows:

RIFf ~
1

nde

Xnde

i~1

AiDEiDW2
if , ð4Þ

where nde denotes the number of DE genes. An alternate definition

of RIFf, providing similar rankings to (6) is given by:

RIFf ~
Xnde

i~1

EP2
i rp2

if {EW2
i rw2

if

� �
, ð5Þ

where EP2
i and EW2

i indicate the expression of the i-th DE gene in

Piedmontese and Wagyu, respectively; and rp2
if and rw2

if indicate

the square of the co-expression correlation between the f-th TF

and the i-th DE gene in the Piedmontese and Wagyu networks,

respectively. This alternate definition of RIF has the additional

appealing features of expressing the product of the average and the

differential expression as the difference of the squared expression

in each cross (i.e., a computational simplification), as well as the

squared correlations (i.e., coefficient of determination) between the

f-th TF and the i-th DE gene indicating the strength of one

variable (the TF) explaining variation in a second variable (the DE

gene). It also allows for the existence of self-regulation which more

realistically reflects biology (i.e., note that for DWfi = 0 for f = i; a

situation where a TF is also DE, impacting on the computation of

RIF as per Equation 4). RIF scores were normalized to a mean of

zero and a standard deviation of one.

PIF is implicit in the Equation 4 representation of RIF and is

defined as the product of the average and the differential

expression of a gene, computed as follows:

PIFi~AiDEi ð6Þ

Differential hubbing
Differential hubbing was calculated in two ways. Firstly, by

subtracting the number of significant connections a gene has in

Wagyu from the number of significant connections it has in

Piedmontese where significance was established using the PCIT

algorithm [17]. Secondly, we also computed a ‘signed’ DH using

the network strategy detailed in [24].

Supporting Information

Figure S1 The DE and DiffK for all 11,057 genes. Myostatin is

not DiffK.

Found at: doi:10.1371/journal.pcbi.1000382.s001 (0.28 MB TIF)

Table S1 The normalised mean expression for the 11,057 genes

across the ten developmental time points for the two breed crosses.

Found at: doi:10.1371/journal.pcbi.1000382.s002 (4.30 MB XLS)

Table S2 The list of the transcriptional regulators (column 1)

with their DE (column 2) and their combined, averaged RIF scores

from Eq4 and Eq5 (column 3).

Found at: doi:10.1371/journal.pcbi.1000382.s003 (0.09 MB XLS)

Table S3 The differential wiring arrangements (Piedmontese

coexpression minus Wagyu coexpression) for the 920 regulators

versus the 85 DE genes.

Found at: doi:10.1371/journal.pcbi.1000382.s004 (1.39 MB XLS)
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