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Abstract
American marten (Martes americana) are a conservation priority in many forested regions of North America. Populations are
fragmented at the southern edge of their distribution due to suboptimal habitat conditions. Facilitating gene flow may improve
population resilience through genetic and demographic rescue. We used a multiscale approach to estimate the relationship
between genetic connectivity and landscape characteristics among individuals at three scales in the northeastern United States:
regional, subregional, and local. We integrated multiple modeling techniques and identified top models based on consensus. Top
models were used to parameterize resistance surfaces at each scale, and circuit theory was used to identify potential movement
corridors. Regional gene flow was affected by forest cover, elevation, developed land cover, and slope. At subregional and local
scales, the effects were site specific and included subsets of temperature, elevation, developed land cover, and slope. Developed
land cover significantly affected gene flow at each scale. At finer scales, lack of variance in forest cover may have limited the
ability to detect a relationship with gene flow. The effect of slope on gene flow was positive or negative, depending on the site
examined. Occupancy probability was a relatively poor predictor, and we caution its use as a proxy for landscape resistance. Our
results underscore the importance of replication and multiscale approaches in landscape genetics. Climate warming and
landscape conversion may reduce the genetic connectivity of marten populations in the northeastern United States, and represent
the primary challenges to marten conservation at the southern periphery of their range.

Introduction

Habitat conversion for human use has reduced the ranges of
many species and fragmented them into smaller isolated pat-
ches (Hanski 2011). Population persistence in areas where

species are patchily distributed is positively influenced by
connectivity and exchange of individuals between patches
(Beier and Noss 1998; Haddad et al. 2003; Whiteley et al.
2015). Connectivity reduces the probability of extinction from
stochastic events, provides rescue effects following local
extirpations, and increases genetic diversity within populations,
which can reduce the likelihood of inbreeding depression
(Hanski 1997; Quinn et al. 2019). For species affected by
habitat fragmentation, identifying and protecting corridors that
facilitate dispersal and gene flow between disjunct populations
is a conservation priority (Tischendorf and Fahrig 2000).

The American marten (Martes americana) is a forest
carnivore species that depends on deep snow pack to out-
compete larger mesocarnivores (Carroll 2007; Kelly et al.
2009). Martens occur throughout the boreal forests of
Canada and Alaska, and were historically widespread in
forested regions of the northeastern United States (US) and
Great Lakes region (Hagmeier 1956). During the nineteenth
and twentieth centuries, anthropogenic land development
and unregulated harvest led to widespread population
declines, and contracted the southern extent of their range
(Hagmeier 1956; Gibilisco 1994).
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The southernmost extant population occurs in the
northeastern US (O’Brien et al. 2018). Historically, the
landscape was almost entirely forested, and the marten
population was likely panmictic (Foster et al. 2002). Habitat
fragmentation in the nineteenth- to mid-twentieth centuries
led to population declines (Gibilisco 1994). As forests have
recovered in recent decades, demographic and genetic data
suggest that marten populations have also re-expanded
(Kelly et al. 2009; Aylward et al. 2019). Nonetheless, the
species is regionally considered rare, threatened, or endan-
gered, and maintaining genetic connectivity is a conserva-
tion priority (Vermont Wildlife Action Plant Team 2015;
New Hampshire Department of Fish and Game 2015).
Furthermore, this system affords an opportunity to better
understand gene flow dynamics that likely resulted from
relatively recent landscape changes.

Gene flow is affected by the extent of landscape con-
nectivity, which is often estimated based on measures of
habitat quality like occupancy probability (O’Brien et al.
2006; Stevenson-Holt et al. 2014; Spear et al. 2015; Aylward
et al. 2018). However, it is often unclear whether measures of
landscape connectivity accurately represent functional con-
nectivity (Tischendorf and Fahrig 2000). Landscape-genetic
approaches infer landscape effects on dispersal and migration
by examining relationships between genetic differentiation
and landscape conditions between sampling locations (Spear
et al. 2005; Epps et al. 2007). Identifying landscape char-
acteristics that have positive or negative effects on gene flow

can improve management strategies for population con-
nectivity. For example, identifying the impact of major
roadways on wildlife population genetic structure contributed
to the creation of forested overpass structures that facilitate
large mammal gene flow across highways in Banff National
Park in Canada (Sawaya et al. 2014).

A common landscape genetics approach involves esti-
mating relationships between genetic distance and an esti-
mated cost of movement between sample locations. This
movement cost is often calculated by using a resistance
surface, a gridded representation of the landscape in which
each cell value represents the degree to which the landscape
conditions inhibit dispersal (Spear et al. 2015). Next, tech-
niques like circuit theory can be applied to estimate the
likelihood of dispersal and the most probable movement
corridors between two points (McRae 2006). Resistance
surfaces are challenging to parameterize, often relying on a
priori assignment of resistance values to certain landscape
characteristics (Spear et al. 2015). One approach, called
causal modeling, limits biases associated with a priori
resistance assignments by allowing the genetic data to
determine the optimal parameterization scheme (Cushman
et al. 2006). Causal modeling involves testing a wide range
of resistance values for each landscape variable, and iden-
tifying the optimal parameterization based on correlation
coefficients or information criteria (Smouse et al. 1986;
Legendre et al. 1994; Burnham and Anderson 2002).

In this study, we used a hierarchical approach to para-
meterize models that predict how landscape conditions
affect genetic connectivity of American marten populations
in the northeastern US. The landscape conditions that
facilitate or inhibit long-distance dispersal between sub-
populations may differ from those that facilitate or inhibit
local dispersal within subpopulations (Parks et al. 2013).
Furthermore, observed landscape-genetic relationships may
vary in different parts of a species’ range (Short Bull et al.
2011). Therefore, we estimated landscape-genetic relation-
ships across the entire study area (“regional” scale), among
groups of subpopulations (“subregional” scale), and within
subpopulations (“local” scale). We used multiple analytical
approaches to construct candidate models and verify their
predictive power. We also identified potential dispersal
corridors at each spatial scale.

Methods

Study area

The study area included the US states of Vermont, New
Hampshire (NH), and Maine (ME), the Adirondack
Mountain region of New York (NY), and part of the
Canadian province of Quebec, south of the St. Lawrence

Fig. 1 The study area includes the US states of Maine (ME), New
Hampshire (NH), and Vermont (VT), the Adirondack Mountain
region of New York (NY), and part of the Canadian province of
Quebec (QC) south of the St. Lawrence River. Dots represent
individual marten sample locations used in this study. Blue polygons
show the extent of subregional study areas, which were determined
from broad-scale genetic population clusters (Aylward et al. 2019).
Purple polygons show the extent of local study areas, which were
determined by finer-scale population genetic clustering (Aylward et al.
2019). The inset shows the location of the study area (dark shading) in
relation to the Atlantic coast of the United States. Samples in southern
Vermont were not used for model development because of human-
mediated gene flow from a reintroduction attempt. However, this
location was used in corridor modeling due to the importance of
identifying corridors for genetic connectivity to this population.
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River (total area= 220,132 km2, Fig. 1). This area occurred
along the southern limit of marten distribution. The study
area was defined by regions harboring marten populations
in the northeastern US and areas most likely to be used for
long-distance dispersal between populations. The region is
characterized by historically widespread forests that
experienced significant fragmentation following European
colonization (Foster et al. 2002). Forests have been in
recovery in the region since the mid-1900s (Foster et al.
2002). Today, the study area is ~80% forested land cover,
and more specifically, 20% spruce–fir forest, which may be
the preferred cover type for martens (Bowman and Robi-
taille 1997; Godbout and Ouellet 2010). Demographics of
forest mammals in the region are believed to have followed
a similar trajectory, declining through the 1800s and reco-
vering within the past several decades (Foster et al. 2002;
Giblisco 1994; Hapeman et al. 2011; Aylward et al. 2019).

Genetic data

Genetic data used in this study were a subset of micro-
satellite data previously used to estimate genetic structure in
the northeastern US (Aylward et al. 2019). Genetic material
was obtained from tissue samples of animals collected by
trappers in NY and ME, where martens are legally har-
vested, and incidental take by trappers and road kill in
Vermont and NH, where martens are endangered and
threatened, respectively. Previous estimates suggest hier-
archical genetic structure within the region (Aylward et al.
2019). At a broad scale, two genetic clusters were present,
which are referred to as “subregional” sites in this study: (1)
NY and (2) New England (NHME). At a fine scale, five
subpopulations were present: (1) ME, (2) New Hampshire
and north-eastern Vermont, (3) southern Vermont (VT-S),
(4) eastern New York (NY-E), and (5) western New York
(NY-W). These fine-scale subpopulations are referred to as
“local” sites in this study. We removed the subpopulation in
VT-S from this analysis, as it was likely reintroduced from
ME (Aylward et al. 2019), and translocations result in
genetic patterns that are not indicative of natural processes
(Colella et al. 2019). Furthermore, we removed any indi-
vidual whose township locality could not be determined.
The dataset for this analysis included ten microsatellite loci
from 102 individuals from the four remaining subpopula-
tions. We used these data to produce a novel analysis of
landscape effects on the observed genetic distances between
individuals.

Individual-based genetic distance was estimated in the R
package “Gstudio” (Dyer 2012; R Core Team 2018) using
the dist_euclidean function. Euclidean genetic distance has
been shown to perform well in individual-based landscape
genetics analysis (Shirk et al. 2018). Sample locations were
obtained at the township level. Although precise GPS

locations would be preferable, township-level data were the
finest scale available for the majority of samples. To facil-
itate an individual-based approach, we assigned a location
for each sample within its given township. Locations were
randomly selected 1–3 km from the geographic center of
their township.

Landscape data

Spatial data for landscape variables were obtained from
public sources and scaled to the raster resolution of the
coarsest dataset (800 × 800 m, Supplementary Information
I). Based on previous research of marten habitat use, we
considered seven landscape variables: (1) forest land cover,
(2) spruce–fir land cover, (3) developed land cover, (4)
elevation, (5) winter (Nov–Mar) temperature, (6) road
density, and (7) slope (Bowman and Robitaille 1997; Kelly
et al. 2009; Godbout and Ouellet 2010). We also tested the
performance of estimated occupancy probability as a pre-
dictor using a model derived from expert-opinion data in the
northeastern US (Aylward et al. 2018). Incongruence of
spatial data across state or country boundaries limited our
ability to include other desirable variables, such as tree
canopy cover.

For each landscape variable, we constructed resistance
surfaces for a range of maximum resistance (Rmax) values
ranging from Rmax= 2–500 (Roffler et al. 2016; Supple-
mentary Information II). Landscape variables were coded
such that features hypothesized to reduce gene flow were
assigned higher values in the resistance surface. Variables
hypothesized to be positively related to gene flow included
forest land cover, spruce–fir land cover, elevation, and
estimated occupancy. Therefore, these variables were
reverse transformed to create resistance surfaces (e.g., 100%
forested cover= 1 and 0% forested cover= Rmax). Land-
scape variables hypothesized to have a negative relationship
with gene flow included winter temperature, developed land
cover, road density, and slope.

We then estimated the resistance distance between each
individual using Circuitscape (McRae et al. 2008). The
resistance distance based on a model of isolation by distance
(IBD) was estimated by creating a null resistance surface in
which the resistance value of each cell was 1, which is
considered the appropriate null model for Circuitscape-based
analyses (Roffler et al. 2016; Tucker et al. 2017).

Resistance surface parameterization

The optimal Rmax for each landscape variable was deter-
mined by estimating the relationship between genetic dis-
tance and landscape resistance distance for univariate
models. For analyses with underlying population sub-
structure (regional and subregional scale), we used
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maximum-likelihood population effects (MLPE) models
constructed using lme4 (Bates et al. 2015) to estimate
landscape-genetic relationships (Clarke et al. 2002). For
analyses within a single population (local scale), we con-
ducted partial Mantel tests (Smouse et al. 1986) using
Ecodist (Goslee and Urban 2007). MLPE models outper-
form Mantel and other regression methods when population
structure is present, whereas Mantel methods perform well
in the absence of population structure (Franckowiak et al.
2017; Row et al. 2017; Shirk et al. 2018). The optimal Rmax

for each landscape variable was determined by the Rmax

with the lowest AICc in MLPE models and highest R2 in
Mantel models (Shirk et al. 2018).

Multivariate models were then constructed by combining
subsets of landscape variables. Only the optimal Rmax was
used for each landscape variable in multivariate models. We
removed geographic distance from each landscape variable
to isolate the impact of the landscape variable on landscape
resistance (Tucker et al. 2017). Regional and subregional
analyses used MLPE modeling for multivariate models, and
local analyses used multiple regression of distance matrices
(MRDM; Legendre et al. 1994) in Ecodist. We identified
several criteria to ensure that models contained informative
and uncorrelated variables. First, we restricted multivariate
models to include no more than one variable from each of
the following categories: forest characteristics (forest land
cover; spruce–fir land cover), anthropogenic land covers
(developed land cover; road density), and climatic variables
(elevation; winter temperature). Estimated occupancy was
not included in multivariate analyses, serving as an alter-
native hypothesis. Next, we excluded all models with sig-
nificant multicollinearity (one or more variables with a
variance inflation factor, VIF > 5) or uninformative land-
scape variables (β coefficient 95% confidence intervals
included 0).

Multivariate models were ranked by AICc, which had
strong concordance with R2 in MRDM models. For each
study site at each scale, the top models that contributed to
99% of the AICc weight were identified. One common
approach is to model-average top scoring models (Symonds
and Moussalli 2011), however, this could reintroduce pre-
dictor variables that were previously excluded from inclu-
sion in the same model. As an alternative, we conducted a
commonality analysis (CA; e.g., Prunier et al. 2015) in the
R program “yhat” (Nimon et al. 2013) to select a single
model from the top AICc model set to represent the resis-
tance surface for each study site. We computed structure
coefficients (rs) for each variable, an estimate of the amount
of variance in the dependent variable explained by each
predictor irrespective of collinearity among predictors
(Prunier et al. 2015). We eliminated any model with an
independent variable whose rs did not differ significantly
from 0. We then used CA to estimate the amount of

variance in genetic distance explained uniquely by each
independent variable (U) and shared among other predictors
(C), which sum to the total explanatory contribution of the
variable (T) (Nimon and Oswald 2013; Prunier et al. 2015).
The model with the set of predictors that contributed to the
greatest amount of variance in genetic distance (based on
the summed T of independent variables) was chosen to
parameterize the resistance surface for each study site.
Resistance surface parameterization was conducted based
on β weights of predictor variables in the resistance
surface model.

Corridor mapping

Resistance surfaces for each site at each scale were created
in Raster Calculator in ArcGIS 10 (ESRI, Redlands, Cali-
fornia, USA) by calculating a dot product of β-coefficients
in the model expression with the respective landscape
variable values. Resistance surface rasters were scaled
1–100 for use in Circuitscape (McRae et al. 2008). At the
regional scale, where conservation objectives are often to
identify long-distance corridors between isolated sub-
populations, we used Linkage Mapper (McRae and Kava-
nagh 2011) to estimate corridors. Focal nodes were
represented by the minimum convex polygon of marten
locations for each local population. At the subregional and
local scales, where practical corridor end points are less
clear, we used Circuitscape to estimate current density, as a
proxy for probability of gene flow, throughout each study
site. To limit focal node attraction bias, according to
recommendations by Koen et al. (2014a), we buffered each
site by ~20% the width of the study site and placed 30 focal
nodes evenly spaced along the perimeter of the buffer.

Results

Regional

Sixty-five models were fitted for the regional univariate
analysis: eight Rmax values for seven landscape variables
and occupancy probability plus the null IBD model (Sup-
plementary Information II). Selected Rmax values ranged
from the highest value tested (Rmax= 500; developed land
cover) to the lowest value tested (Rmax= 2; slope; Supple-
mentary Information II). The range of Rmax values tested in
our analysis is considered extensive based on previously
published literature (Roffler et al. 2016; Tucker et al. 2017),
and we considered it unnecessary to expand the range of
values tested.

After identifying the optimal Rmax for each landscape
variable, 55 multivariate models were fitted (Supplementary
Information III). After removing models with significant
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VIF and uninformative parameters, seven models con-
tributed to 99% of the AICc weight (Table 1). Variables
included in these models were forest land cover, spruce–fir
land cover, elevation, winter temperature, developed land
cover, and slope. The For+ Elev+Dev+ Slope model had
the greatest explanatory power (T= 17.9; Table 1), and was
used to create the resistance surface.

Subregional

In each subregion, 65 models were fitted for univariate ana-
lyses, and 55 models were fitted for multivariate analyses,
coinciding with the model set tested in the regional analysis.
In the NY subregion, most landscape variables had an optimal
Rmax of 2, with the exception of forest land cover (Rmax= 50),

developed land cover (Rmax= 500), and slope (Rmax= 10;
Supplementary Information II). After removing models with
high VIF and uninformative landscape variables, five models
contributed to 99% of the AICc weight (Table 1; Supple-
mentary Information III). Variables included in these models
were spruce–fir land cover, elevation, developed land cover,
roads, and slope. The SF+Dev+ Slope model had the
greatest explanatory power (T= 4.6; Table 1), but spruce–fir
land cover had nonsignificant rs. The Dev+ Slope model
(T= 4.2) was selected to create the resistance surface.

In the northern New England (NHME) subregion, most
landscape variables had an optimal Rmax of 2, with the
exception of developed land cover (Rmax= 10) and slope
(Rmax= 10, Supplementary Information II). After removing
models with high VIF or uninformative landscape variables,

Table 1 Top-ranking landscape
resistance models in each study
site ranked by AICc and ΔAICc.

Study site Model AICc ΔAICc AICc W AICc Wc R2 p T

Regional

NE *For+ Elev+Dev+ Slope 3530.24 0.000 0.407 0.407 – – 17.9

SF+Dev+ Slope 3530.57 0.334 0.344 0.750 – – 10.6

For+ Temp+Dev+ Slope 3533.12 2.890 0.096 0.846 – – 16.9

Elev+Dev+ Slope 3533.38 3.141 0.085 0.931 – – 11.0

For+ Elev+Dev 3535.13 4.895 0.035 0.966 – – 16.8

Elev+Dev 3535.99 5.750 0.023 0.989 – – 9.9

SF+Dev 3538.14 7.902 0.008 0.997 – – 9.6

Subregional

NY *Dev+ Slope 607.53 0.000 0.335 0.335 – – 4.2

SF+Dev+ Slope 607.65 0.115 0.316 0.651 – – 4.6†

Elev+Dev+ Slope 608.03 0.503 0.261 0.912 – – 4.3†

Elev+ Roads+ Slope 611.14 3.611 0.055 0.967 – – 3.5

SF+ Roads+ Slope 612.28 4.743 0.031 0.998 – – 4.4†

NHME SF+ Roads+ Slope 1158.67 0.000 0.690 0.690 – – 5.7

SF+Dev+ Slope 1162.94 4.271 0.082 0.772 – – 5.7

For+ Elev+Dev+ Slope 1163.37 4.705 0.066 0.837 – – 10.2†

Dev+ Slope 1163.50 4.836 0.061 0.899 – – 1.1

SF+ Slope 1163.56 4.896 0.060 0.958 – – 5.4

*Elev+Dev+ Slope 1165.91 7.244 0.018 0.977 – – 6.6

Temp+ Slope 1167.22 8.557 0.010 0.986 – – 3.3

Elev+ Slope 1168.46 9.788 0.005 0.992 – – 6.2

Local

NY-W *Dev+ Slope 235.04 0.000 0.998 0.998 0.117 0.030 10.0

NH Temp+ Roads 440.32 0.000 0.899 0.899 0.065 <0.001 5.3

*Temp+ Slope 444.94 4.614 0.090 0.988 0.060 <0.001 8.0

Temp 449.14 8.817 0.011 0.999 0.053 <0.001 5.2

Top models are those whose AICc weight (AICc W) contributes to 99% of the cumulative AICc weight
(AICc Wc) in the model set. For local study areas, R2 and p values from MRDM are reported. Covariates
include forest land cover (For), spruce–fir land cover (SF), winter temperature (Temp), elevation (Elev),
developed land cover (Dev), road density (Roads), and slope (Slope). Asterisk indicates the model from each
study site that was chosen to create a resistance surface for downstream analyses, based on commonality
analysis assessments of variables’ contribution to the total variance in genetic distance (T). Models that had
the greatest T in the study area, but contained variables whose structure coefficient (rs) did not differ from
zero, have T estimates marked by a cross (†).
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eight models contributed to 99% of the AICc weight (Table 1;
Supplementary Information III). All landscape variables tes-
ted were included in this set of models (Table 1). The For+
Elev+Dev+ Slope model had the greatest explanatory
power (T= 10.2) but forest had nonsignificant rs. The Elev+
Dev+ Slope model was the second-most explanatory (T=
6.6) and was used to create the resistance surface.

Local

Each local analysis included the same set of 65 univariate and
55 multivariate models fitted in the regional and subregional
analyses. In NY-W, optimal Rmax= 500 for all landscape
variables except forest land cover (Rmax= 2), spruce–fir land
cover (Rmax= 2), and developed land cover (Rmax= 50;
Supplementary Information II). After removing models with
high VIF or uninformative landscape variables, one model
(Dev+ Slope) contributed to 99% of the AICc weight (Table
1; Supplementary Information III). CA revealed developed
land cover and slope as meaningful predictors, and the Dev+
Slope model (T= 10.0) was used to create the resistance
surface.

In NH, the optimal Rmax was 2 for all landscape variables,
except developed land cover (Rmax= 5), forest land cover
(Rmax= 200), and road density (Rmax= 500; Supplementary
Information II). After removing models with high VIF or
uninformative landscape variables, three models contributed
to 99% of the AICc weight (Table 1; Supplementary Infor-
mation III). Landscape variables in these models included
winter temperature, road density, and slope (Table 1). The
Temp+ Slope model had the greatest explanatory power
(T= 8.0) and was used to create the resistance surface.

In NY-E and ME, all models included uninformative
landscape variables. These sites had the smallest sample
sizes (n= 16 for NY-E and n= 18 for ME), which may be
responsible for low statistical power in the study areas.

Corridors

At the regional scale, the resistance surface included the effects
of forest land cover (U= 0.4) and elevation (U= 1.2), both
negatively correlated with landscape resistance, and developed
land cover (U= 1.2) and slope (U= 0.1), both positively
correlated with landscape resistance (Table 2). Corridors con-
nected core populations via relatively straight paths with
notable avoidance of developed land cover (Fig. 2).

In the NY subregion, the resistance surface included the
effects of developed land cover (positive, U= 2.1) and slope
(Table 2). Current density (proxy for probability of gene flow)
was relatively high throughout the study area, with notable
small patches of low current density in developed areas (Fig.
3b). In the NHME subregion, the resistance surface included
the effects of elevation (negative, U= 0.7), developed land

cover (positive, U= 0.6), and slope (Table 2). A complex
mosaic of current densities occurred throughout NHME (Fig.
4b). In general, current densities were highest in the northern
parts of the study site.

In the NY-W local site, the resistance surface included the
effects of developed land cover (positive, U= 7.7) and slope
(Table 2). High current densities occurred in the steep rid-
gelines in the south and east parts of the site (Fig. 3a). In the
NH local site, the resistance surface included the effects of
winter temperature (positive; U= 3.3) and slope (Table 2).
High current densities occurred in the highlands in the north
and northwest of the study area, while low current densities
occurred on steep slopes and in the warmer lowlands in the
center of the study site (Fig. 4a).

Discussion

Regional scale

The resistance surface at the regional scale included effects
from all four categories of landscape variables examined
(forest characteristics, climate variables, anthropogenic land
cover, and slope). Corridors were relatively nonspecific
with the exception of movement barriers where developed
land cover occurred. Contrary to previous corridor estimates
based on occupancy (Aylward et al. 2018), the central and
northern Green Mountains of Vermont were not considered
an important corridor between populations in VT-S, NH,
and NY. Martens are considered extraordinarily successful

Fig. 2 Regional corridors displayed over a raster map of developed
land cover in the study area. Gray polygons show the location of
focal areas, which were the five fine-scale genetic clusters identified
based on microsatellite data in a previous study (Aylward et al. 2019).
Within corridors, hot colors (red) indicate higher corridor quality and
cool colors (blues) indicate lower quality corridors. Corridors are cut
off at resistance cost of 10 cost-weighted kilometers. Apparent holes
within corridors occur where small patches of developed land create
high landscape resistance and are completely avoided.
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dispersers, exhibiting low levels of genetic distance per
geographic distance compared with other mammals of
similar or larger body size (Kyle and Strobeck 2003). The

misalignment of corridors identified from occupancy-based
and landscape genetics analyses may be due to greater
flexibility in habitat use during dispersal than residency, as

Fig. 3 Current density
estimates based on landscape
genetics models in subregional
and local sites in New York.
Current density estimated across
the NY-W local site (a) and NY
subregion (b) using
Circuitscape, based on resistance
surfaces parameterized by
landscape genetics models. Dark
shading on the inset indicates the
extent of the NY-W local site
and intermediate shading
indicates the extent of the NY
subregion. Current density
serves as a proxy for probability
of gene flow such that high
current density areas are more
likely to be used as corridors for
movement. In both sites,
landscape resistance was
predicted by developed land
cover (positively correlated with
landscape resistance) and slope
(negative).

Fig. 4 Current density estimates based on landscape genetics
models in subregional and local sites in northern New England.
Current density estimated across the NH local site (a) and NHME
subregion (b) in Circuitscape, based on resistance surfaces para-
meterized by landscape genetics models. Dark shading on the inset
indicates the extent of the NH local site and intermediate shading
indicates the extent of the NHME subregion. Current density serves as

a proxy for probability of gene flow such that high current density
areas are more likely to be used as corridors for movement. In the
NHME subregional site, landscape resistance was predicted by ele-
vation (negatively correlated with landscape resistance), developed
land cover (positive), and slope (positive). In the NH local site,
landscape resistance was predicted by winter temperature (positive)
and slope (positive).
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has been observed in other carnivore species (Palomares
et al. 2000).

Subregional scale

Both subregional sites included developed land cover and
slope as effects in their resistance surfaces. In NY these
were the only two variables in the resistance surface. In
NHME, elevation was also included. Landscape resistance
was associated with low elevations in NHME and high
developed land cover in both sites. Interestingly, the cor-
relation between landscape resistance and slope was posi-
tive in NHME and negative in NY. This pattern was
observed across all top models that included slope in both
NHME and NY subregions (data not shown). Slope may
facilitate gene flow due to spatial correlation with elevation
or low temperatures in NY. However, including elevation or
temperature in NY models (i.e., Elev+Dev+ Slope or
Temp+Dev+ Slope models) did not change the sign or
significance of the effect of slope in the NY subregion. In
other species, steep slopes can be positively correlated with
genetic distance due to increased energetic cost of travel
(Funk et al. 2005, Spear et al. 2005) or negatively correlated
with genetic distance due to “escape habitat” from larger
predators or better opportunities for vigilance (Epps et al.
2007; Portanier et al. 2018). The site-dependent reversal of
the relationship between slope and genetic distance in our
study shows that sampling site selection can significantly
alter landscape-genetic inferences.

Local scale

The NY-W resistance surface included the same landscape
effects (Dev+ Slope) as the NY subregion. Steep areas in the
south of NY-W were identified as having the highest current
density, in agreement with results from the subregional scale.
Winter temperature and slope were included in the NH
resistance surface. Similar to the subregional results, slope
was positively associated with landscape resistance in NH
despite having a negative relationship in NY-W. At the local
level, the suite of landscape variables in top-performing
landscape genetics models was site dependent. This result
underscores that results obtained from landscape genetics
modeling may not apply outside the specific study area (Short
Bull et al. 2011; Castillo et al. 2016).

Scale dependence of landscape-genetic
relationships

Developed land cover negatively affected gene flow in all
sites at all scales. Forest land cover was present in the
regional resistance surface but was absent from resistance
surfaces at smaller scales. The smaller study areas are

constrained to areas where martens occur, thus contain
comparatively little unforested land (<12% for all local
study areas, 20% in the regional study area; Supplementary
Information IV). The lack of an observed effect of forest
characteristics on gene flow at finer scales is probably not
biological, and may be a product of the lack of variance in
forest cover at finer-scale sites. This is an important con-
sideration for future landscape genetics studies, as the lack
of an observed statistical effect may be more related to
sampling decisions than to biological relationships between
landscape conditions and gene flow.

We expected the effect of climate variables to be the
strongest in NY sites, which experience higher temperatures
that would be more likely to constrain marten habitat use
and gene flow (mean winter temperature [°C]: NY= 0.085,
NHME=−1.22, Supplementary Information IV). How-
ever, NY and NY-W were the only sites in which a climate
variable (elevation/temperature) did not play a role in the
resistance surface. The NY sites have relatively low var-
iance in elevation and winter temperature (Supplementary
Information IV). Consequently, the lack of an observed
effect of climate on gene flow in NY may be nonbiological;
these sites may simply lack adequate spatial heterogeneity
in temperature and elevation to produce a detectable effect.

Occupancy probability was not a strong predictor of
genetic connectivity at any scale compared with multi-
variate models parameterized by genetic distance. Habitat
suitability or occupancy models are often used as a proxy
for landscape permeability (O’Brien et al. 2006; Stevenson-
Holt et al. 2014; Spear et al. 2015; Aylward et al. 2018).
Our results caution that occupancy does not necessarily
predict genetic connectivity in a landscape genetics frame-
work, perhaps due to animals exhibiting greater flexibility
in habitat use while transient than when selecting home
ranges (Mateo-Sanchez et al. 2015). Occupancy-based
predictions of genetic connectivity may be more suitable
for species with highly restrictive habitat use or low
mobility (Wang et al. 2008).

Context

Genetic connectivity of marten populations in the interior of
their range is better predicted by IBD than additional
landscape effects (Kyle et al. 2000; Kyle and Strobeck
2003; Broquet et al. 2006; Koen et al. 2012). In our study
area at the southern periphery of marten range, connectivity
was better described by models that included landscape
covariates (Supplementary Information V). In particular, at
least one site at each scale examined included a climate-
related variable and developed land cover in the top-
performing model. Martens are considered deep-wood
specialists (Buskirk and Powell 1994), and thus the strong
negative effect of developed land cover on genetic
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connectivity is expected. In addition, previous studies have
highlighted the effect of elevation on gene flow in moun-
tainous regions of Pacific marten (M. caurina) distribution
(Wasserman et al. 2010).

Genetic drift may represent another major influence on
observed genetic distances in our study area. The observed
subpopulations are believed to have become isolated during
the late nineteenth or early twentieth centuries, and likely
persisted for several generations in isolated relicts with low
population sizes (Aylward et al. 2019). Random loss of
alleles in isolated relicts is believed to have occurred, which
may heterogeneously inflate the observed genetic distance
between local populations in our study area (Richardson
et al. 2016). Indeed, the effects of genetic drift in sub-
populations have been estimated to contribute up to 41% of
the variance in genetic distance (T) in empirical data sets
(Prunier et al. 2017a).

Landscape connectivity during population declines in the
1800s may explain some variance in genetic distance that is
unexplained by current landscape conditions. Historical
landscape data are not available at the appropriate scale and
resolution to investigate these effects. Based on estimates of
T in this study, landscape predictors in our models con-
tributed up to 17.9% of the total variance in genetic distance
(range= 4.2–17.9; Table 1). These numbers are within the
typical range of previously published landscape genetics
studies using CA with microsatellite data (Renner et al.

2016; Prunier et al. 2017b); however, the majority of var-
iance in genetic distance remains unexplained (Table 2).

Management implications

Although vegetation conditions in the region are improving
for forest carnivores such as martens (Foster et al. 2002),
climate conditions and increasing development may allow
larger carnivores such as red fox (Vulpes vulpes), coyote
(Canis latrans), and fisher (Pekania pennanti), to out-
compete martens (Carroll 2007; Sirén et al. 2017). Climate
change is predicted to decrease demographic potential and
contract the range of martens in the northeastern US (Car-
roll 2007). Our results show that a warming climate could
also decrease gene flow, a pattern also observed in Canada
lynx (Lynx canadensis) at their southern periphery (Koen
et al. 2014b). Furthermore, the regional corridor map indi-
cated complete avoidance of developed areas (Fig. 2).
Future expansion of urban and residential areas would
likely have adverse effects on genetic connectivity of mar-
ten populations in the northeastern US.

Replication in landscape genetics

Landscape genetics is a developing field with a broad array
of methodological approaches and study design considera-
tions (Richardson et al. 2016). Previous studies have shown

Table 2 Parameter values and
95% confidence intervals for
predictor landscape variables in
resistance surfaces for each
study area.

Study area Variable Rmax β rs U T

Regional

NE For 10 0.067 (0.028, 0.106) 0.860 (0.816, 0.897) 0.4 (0.2, 0.9) 6.8

Elev 10 0.023 (0.015, 0.031) 0.840 (0.791, 0.881) 1.2 (0.7, 1.8) 6.5

Dev 500 0.188 (0.145, 0.229) 0.616 (0.536, 0.688) 1.2 (0.7, 1.8) 3.5

Slope 2 0.461 (0.142, 0.751) 0.335 (0.238, 0.427) 0.1 (0.0, 0.3) 1.1

Subregional

NY Dev 500 0.279 (0.184, 0.371) 0.562 (0.225, 0.799) 2.1 (0.5, 4.8) 1.6

Slope 10 −0.241 (−0.321, −0.160) −0.740 (−0.925, −0.485) 2.9 (0.8, 5.4) 2.7

NHME Elev 2 0.108 (0.002, 0.230) 0.850 (0.744, 0.906) 0.7 (0.1, 1.5) 5.5

Dev 10 0.335 (0.078, 0.580) 0.201 (0.034, 0.329) 0.6 (0.1, 1.6) 0.3

Slope 10 0.206 (0.127, 0.276) 0.317 (0.164, 0.435) 0.4 (0.1, 1.0) 0.8

Local

NY-W Dev 50 0.850 (0.521, 1.179) 0.714 (0.487, 0.892) 7.7 (3.6, 12.0) 6.0

Slope 500 −0.005 (−0.007, −0.003) −0.583 (−0.794, −0.275) 5.6 (2.3, 12.2) 4.0

NH Temp 2 0.848 (0.534, 1.162) 0.925 (0.804, 0.990) 3.3 (1.3, 6.2) 5.4

Slope 2 0.960 (0.204, 1.716) 0.670 (0.444, 0.811) 0.7 (0.0, 1.7) 2.8

Covariates tested in landscape genetics models were forest land cover (For), spruce–fir land cover (SF),
winter temperature (Temp), elevation (Elev), developed land cover (Dev), road density (Roads), and slope
(Slope). Landscape genetics models were parameterized by maximum-likelihood population effects (MLPE;
regional and subregional study areas) or multiple regression of distance matrices (MRDM; local study areas).
β values are the coefficients of independent variables parameterized by MLPE or MRDM. rs values are
structure coefficients estimated by CA. U values are the unique contribution (%) of each predictor to the total
variance in genetic distance. T values are the estimated total contribution of predictors to the variance in
genetic distance (i.e., the sum of unique and shared contributions).
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that results from different portions of species’ ranges do not
necessarily align (Short Bull et al. 2011; Castillo et al.
2016). Our study further demonstrates that the choice of
study location, spatial scale, and modeling technique can
yield different results across subsets of a study system. We
also showed that replicating study sites across multiple
scales can help elucidate where potential sampling biases
are affecting landscape-genetic inferences. These are
important results to highlight from a practical perspective,
as conclusions drawn from just one of the sites in our study
area could potentially encourage management strategies that
appear counterproductive in other sites within the region.
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p8cz8w9kr.

Acknowledgements Tissue samples for genetic analyses were pro-
vided by Paul Jensen (New York Department of Environmental
Conservation), Chris Bernier and Kim Royar (Vermont Department of
Fish and Wildlife), Alexej Sirén and Jill Kilborn (New Hampshire
Department of Fish and Game), Cory Mosby (Maine Department of
Inland Fisheries and Wildlife), and volunteer trappers from Maine. We
thank Liz Kierepka for helpful technical advice on methods and ana-
lysis. We also thank Jeremy Larroque for a constructive review. We
thank the Vermont Department of Fish and Wildlife for funding
genetic analyses and the University of Vermont for publishing funds.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

Aylward CM, Murdoch JD, Donovan TM, Kilpatrick CW, Bernier C,
Katz J (2018) Estimating distribution and connectivity of reco-
lonizing American marten in the northeastern United States using
expert elicitation techniques. Anim Conserv 21:483–495

Aylward CM, Murdoch JD, Kilpatrick CW (2019) Genetic legacies of
translocation and relictual populations of American marten at the
southeastern margin of their distribution. Conserv Genet
20:275–286

Bates D, Machler M, Bolker B, Walker S (2015) Fitting linear mixed-
effects models using lme4. J Stat Softw 67:51

Beier P, Noss RF (1998) Do habitat corridors provide connectivity?
Conserv Biol 12:1241–1252

Broquet T, Johnson CA, Petit E, Thompson I, Burel F, Fryxell JM
(2006) Dispersal and genetic structure in the American marten,
Martes americana. Mol Ecol 15:1689–1697

Bowman JC, Robitaille JF (1997) Winter habitat use of American
martens Martes americana within second-growth forest in
Ontario, Canada. Wildl Biol 3:97–105

Burnham KP, Anderson DR (2002) Model selection and inference—a
practical information-theoretic approach. Springer, New York,
NY, USA

Buskirk SW, Powell RA (1994) Habitat ecology of fishers and mar-
tens. In: Buskirk SW, Harestad AS, Raphael MG, Powell RA
(eds) Martens, sables, and fishers: biology and conservation.
Cornell University Press, Ithaca, New York, USA, 283–296

Carroll C (2007) Interacting effects of climate change, landscape
conversion, and harvest on carnivore populations at the range
margin: marten and lynx in the northern Appalachians. Conserv
Biol 21:1092–1104

Castillo JA, Epps CW, Jeffress MR, Ray C, Rodhouse TJ, Schwalm D
(2016) Replicated landscape genetic and network analyses reveal
wide variation in functional connectivity for American pikas.
Ecol Appl 26:1660–1676

Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for
regression relationships between distance matrices: estimating
gene flow with distance. J Agric Biol Environ Stat 7:361–372

Colella JP, Wilson RE, Talbot SL, Cook JA (2019) Implications of
introgression for wildlife translocations: the case of North
American martens. Conserv Genet 20:153–166

Cushman SA, McKelvey KS, Jayden J, Schwartz MK (2006) Gene
flow in complex landscapes: testing multiple hypotheses with
causal modeling. Am Nat 168:486–499

Dyer RJ (2012) The gstudio package. Virginia Commonwealth Uni-
versity, Richmond, Virginia, USA

Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007)
Optimizing dispersal and corridor models using landscape
genetics. J Appl Ecol 44:714–724

Foster DR, Motzkin G, Bernardos D, Cardoza J (2002) Wildlife
dynamics in the changing New England landscape. J Biogeogr
29:1337–1357

Franckowiak RP, Panasci M, Jarvis KJ, Acuna-Rodriguez IS, Land-
guth EL, Fortin MJ et al. (2017) Model selection with multiple
regression on distance matrices leads to incorrect inferences.
PLoS ONE 12:e175194. https://doi.org/10.1371/journal.pone.
0175194

Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S
et al. (2005) Population structure of Columbia spotted frogs
(Rana luteiventris) is strongly affected by the landscape. Mol
Ecol 14:483–496

Gibilisco CJ (1994) Distributional dynamics of martens and fishers in
North America. In: Buskirk SW, Harestad AS, Raphael MC,
Powell RA (eds) Martens, sables, and fishers: biology and con-
servation. Cornell University Press, Ithaca, New York, NY, USA,
p 59–71

Godbout G, Ouellet JP (2010) Fine-scale habitat selection of American
marten at the southern fringe of the boreal forest. Ecoscience
17:175–185

Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-
based analysis of ecological data. J Stat Softw 22:1–19

Multiscale landscape genetics of American marten at their southern range periphery 559

https://doi.org/10.5061/dryad.p8cz8w9kr
https://doi.org/10.5061/dryad.p8cz8w9kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0175194
https://doi.org/10.1371/journal.pone.0175194


Haddad NM, Bowne DR, Cunningham A, Danielson BJ, Levey DJ,
Sargent S et al. (2003) Corridor use by diverse taxa. Ecology
84:609–615

Hagmeier EM (1956) Distribution of marten and fisher in North
America. Can Field-Nat 70:149–168

Hanski I (1997) Metapopulation dynamics: from concepts and obser-
vations to predictive models. In: Hanski I, Gilpin ME (eds)
Metapopulation biology: ecology, genetics and evolution. Aca-
demic Press, Cambridge, Massachusetts, USA, p 69–92

Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a
perspective on conservation. Ambio 40:248–255

Hapeman P, Latch EK, Fike JA, Rhodes OE, Kilpatrick CW (2011)
Landscape genetics of fishers (Martes pennanti) in the northeast:
dispersal barriers and historical influences. J Heredity 102:251–259

Kelly JR, Fuller TK, Kanter JJ (2009) Records of recovering American
marten in New Hampshire. Can Field-Nat 123:1–6

Koen EL, Bowman J, Garroway CJ, Mills SC, Wilson PJ (2012)
Landscape resistance and American marten gene flow. Landsc
Ecol 27:29–43

Koen EL, Bowman J, Sadowski C, Walpole AA (2014a) Landscape
connectivity for wildlife: development and validation of multi-
species linkage maps. Methods Ecol Evol 5:626–633

Koen EL, Bowman J, Murray DL, Wilson PJ (2014b) Climate change
reduces genetic diversity of Canada lynx at the trailing range
edge. Ecography 37:754–762

Kyle CJ, Davis CS, Strobeck C (2000) Microsatellite analysis of North
American pine marten (Martes americana) populations from the
Yukon and Northwest Territories. Can J Zool 78:1150–1157

Kyle CJ, Strobeck C (2003) Genetic homogeneity of Canadian
mainland marten populations underscores the distinctiveness of
Newfoundland pine martens (Martes americana atrata). Can J
Zool 66:57–66

Legendre P, Lapointe FJ, Casgrain P (1994) Modeling brain evolution
from behavior: a permutational regression approach. Evolution
48:1487–1499

Mateo-Sanchez MC, Balkenhol N, Cushman S, Perez T, Dominguez
A, Saura S (2015) Estimating effective landscape distances and
movement corridors: comparison of habitat and genetic data.
Ecosphere 6:1–16

McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561
McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit

theory to model connectivity in ecology and conservation.
Ecology 10:2712–2724

McRae BH, Kavanagh DM (2011) Linkage Mapper Connectivity
Analysis Software. The Nature Conservancy. Seattle, Washing-
ton, USA. http://www.circuitscape.org/linkagemapper

New Hampshire Department of Fish and Game (2015) New Hamp-
shire Wildlife Action Plan 2015. New Hampshire Department of
Fish and Game, Concord, New Hampshire, USA

Nimon KF, Oswald FL (2013) Understanding the results of multiple
linear regression: beyond standardized regression coefficients.
Organ Res Methods 16:650–674

Nimon KF, Oswald FL, Roberts JK (2013) Interpreting regression
effects. R package version 2.0.0. http://cran.r.project.org/web/pa
ckages/yhat/index.html

O’Brien D, Manseau M, Fall A, Fortin MJ (2006) Testing the
importance of spatial configuration of winter habitat for wood-
land caribou: an application of graph theory. Biol Conserv
130:70–83

O’Brien P, Bernier C, Hapeman P (2018) A new record of an
American marten (Martes americana) population in southern
Vermont. Small Carniv Conserv 56:68–75

Palomares F, Delibes M, Ferreras P, Fedriani JM, Calzada J, Revilla E
(2000) Iberian lynx in a fragmented landscape: predispersal,
dispersal, and postdispersal habitats. Conserv Biol 14:809–818

Parks SA, McKelvey KS, Schwartz MK (2013) Effects of weighting
schemes on the identification of wildlife corridors generated with
least-cost methods. Conserv Biol 27:145–154

Portanier E, Jarroque J, Garel M, Marchand P, Maillard D, Bourgoin
et al. (2018) Landscape genetics matches with behavioral ecology
and brings new insight on the functional connectivity in Medi-
terranean mouflon. Landsc Ecol 33:1069–1085

Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC (2015)
Multicollinearity in spatial genetics: separating the wheat from
the chaff using commonality analyses. Mol Ecol 24:263–283

Prunier JG, Dubut V, Chikhi L, Blanchet S (2017a) Contribution of
spatial heterogeneity in effective population sizes to the variance
in pairwise measures of genetic differentiation. Methods Ecol
Evol 8:1866–1877

Prunier JG, Colyn M, Legendre X, Flamond MC (2017b) Regression
commonality analyses on hierarchical genetic distances. Eco-
graphy 40:1412–1425

Quinn CB, Alden PB, Sacks BN (2019). Noninvasive sampling reveals
short-term genetic rescue in an insular red fox population. J
Heredity. https://doi.org/10.1093/jhered/esz024

R Core Team (2018). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria.

Renner SC, Suarez-Rubio M, Wiesner KR, Drogmuller C, Gockel S,
Kalko EKV et al. (2016) Using multiple landscape genetic
approaches to test the validity of genetic clusters in a species
characterized by an isolation-by-distance pattern. Biol J Linn Soc
118:292–303

Richardson JL, Brady SP, Wang IJ, Spear SF (2016) Navigating the
pitfalls and promise of landscape genetics. Mol Ecol 25:849–863

Roffler GH, Schwartz MK, Pilgrim K, Talbot SL, Sage GK, Adams
LG et al. (2016) Identification of landscape features influencing
gene flow: how useful are habitat selection models. Evol Appl
9:805–817

Row JR, Knick ST, Oyler-McCance SJ, Lougheed SC, Fedy BC
(2017) Developing approaches for linear mixed modeling in
landscape genetics through landscape-directed dispersal simula-
tions. Ecol Evol 7:3751–3761

Sawaya MA, Kalinowski ST, Clevenger AP (2014) Genetic con-
nectivity for two bear species at wildlife crossing structures in
Banff National Park. Proc R Soc Biol Sci 281: 20131705

Sirén APK, Pekins PJ, Kilborn JR, Kanter JJ, Sutherland CS (2017)
Potential influence of high-elevation wind farms on carnivore
mobility. J Wildl Manag 81:1505–1512

Shirk AJ, Landguth EL, Cushman SA (2018) A comparison of
regression methods for model selection in individual-based
landscape genetic analysis. Mol Ecol Resour 18:55–67

Short Bull R, Cushman SA, Mace R, Chilton T, Kendall KC, Land-
guth EL et al. (2011) Why replication is important in landscape
genetics: American black bear in the Rocky Mountains. Mol Ecol
20:1092–1107

Smouse PE, Long JC, Sokal RR (1986) Multiple regression and cor-
relation extensions of the mantel test of matrix correspondence.
Syst Zool 4:627–632

Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape
genetics of the blotched tiger salamander (Ambystoma tigrinum
melanostictum). Mol Ecol 14:2553–2564

Spear SF, Cushman SA, McRae BH (2015) Resistance surface mod-
eling in landscape genetics. In: Balkenhol N, Cushman SA,
Storfer AT, Waits LP (eds) Landscape genetics: concepts,
methods, applications. John Wiley & Sons, Hoboken, New Jer-
sey, USA, 129–144

Stevenson-Holt CD, Watts K, Bellamy CC, Nevin OT, Ramsey AD
(2014) Defining landscape resistance values in least-cost connectivity
models for the invasive grey squirrel: a comparison of approaches

560 C. M. Aylward et al.

http://www.circuitscape.org/linkagemapper
http://cran.r.project.org/web/packages/yhat/index.html
http://cran.r.project.org/web/packages/yhat/index.html
https://doi.org/10.1093/jhered/esz024


using expert-opinion and habitat suitability modeling. PLoS ONE 9:
e112119. https://doi.org/10.1371/journal.pone.0112119

Symonds MRE, Moussalli A (2011) A brief guide to model selection,
multimodel inference, and model averaging in behavioral ecology
using Akaike’s information criterion. Behav Ecol Sociobiol
65:13–21

Tischendorf L, Fahrig L (2000) On the usage and measurement of
landscape connectivity. Oikos 90:7–19

Tucker JM, Allendorf FW, Truex RL, Schwartz MK (2017) Sex-
biased dispersal and spatial heterogeneity affect landscape resis-
tance to gene flow in fisher. Ecosphere 8:e01839

Vermont Wildlife Action Plant Team (2015) Vermont Wildlife Action
Plan 2015. Vermont Department of Fish and Wildlife, Mon-
tpelier, Vermont, USA

Wang YH, Yang KC, Bridgman CL, Lin LK (2008) Habitat suitability
modeling to correlate genet flow with landscape connectivity.
Landsc Ecol 23:989–1000

Wasserman TN, Cushman SA, Schwartz KM, Wallin DO (2010)
Spatial scaling and multi-model inference in landscape genetics:
Martes americana in northern Idaho. Landsc Ecol 25:1601–1612

Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic
rescue to the rescue. Trends Ecol Evol 30:42–49

Multiscale landscape genetics of American marten at their southern range periphery 561

https://doi.org/10.1371/journal.pone.0112119

	Multiscale landscape genetics of American marten at their southern range periphery
	Abstract
	Introduction
	Methods
	Study area
	Genetic data
	Landscape data
	Resistance surface parameterization
	Corridor mapping

	Results
	Regional
	Subregional
	Local
	Corridors

	Discussion
	Regional scale
	Subregional scale
	Local scale
	Scale dependence of landscape-genetic relationships
	Context
	Management implications
	Replication in landscape genetics
	Supplementary information
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




