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Abstract

Background: The donepezil-memantine combination is a US Food and Drug Administration 

(FDA)–approved medication to treat Alzheimer’s disease (AD). Galantamine is superior to 

donepezil because it is a positive allosteric modulator of the alpha-7 nicotinic acetylcholine 

receptor (α7nAChR). Although galantamine and memantine are both FDA approved for the 

treatment of AD, the combination is still underutilized in clinical practice.

Aim: The objective of this review was to critically examine the mechanisms by which the 

galantamine-memantine combination may be superior to the donepezil-memantine combination in 

AD by targeting the cholinergic-nicotinic and glutamatergic systems concurrently.

Method: PubMed and Google Scholar were searched using the keywords Alzheimer’s disease, 

cholinergic, glutamatergic, α7nAChR, N-methyl-D-aspartate (NMDA) receptors, donepezil, 

galantamine, memantine, clinical trials, and biomarkers.

Results: AD is associated with several biomarkers such as kynurenine pathway (KP) metabolites, 

mismatch negativity (MMN), brain-derived neurotrophic factor (BDNF), and oxidative stress. In 
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several preclinical studies, cognitive impairments significantly improved with the galantamine-

memantine combination compared to either medication alone. Synergistic benefits were also seen 

with the combination. In a randomized controlled trial (RCT) in prodrome AD, cognition 

significantly improved with the galantamine-memantine combination compared to galantamine 

alone; cognition declined after galantamine was discontinued. However, in an RCT in AD, 

cognition did not significantly improve with the galantamine-memantine combination compared to 

galantamine alone. In a retrospective study in AD, the galantamine-memantine combination 

significantly improved cognition compared to the donepezil-memantine combination. Galantamine 

and memantine via the α7nACh and NMDA receptors can counteract the effects of kynurenic acid 

and enhance MMN and BDNF.

Conclusion: Future studies with the galantamine-memantine combination with KP metabolites, 

MMN, and BDNF as biomarkers are warranted. Positive RCTs in AD may lead to FDA approval 

of the combination, resulting in greater utilization in clinical practice. In the meantime, clinicians 

may continue to use the galantamine-memantine combination to treat patients with AD.
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Introduction

Currently, acetylcholinesterase inhibitors (AChEIs), such as galantamine, rivastigmine, and 

donepezil,1 the N-methyl-D-aspartate (NMDA) receptor antagonist memantine,2 and the 

donepezil-memantine combination are the only US Food and Drug Administration (FDA)–

approved drugs for the treatment of Alzheimer’s disease (AD). Research in the development 

of new therapeutic interventions is promising. However, the current treatment paradigm 

remains unchanged: AChEI monotherapy (donepezil, galantamine, or rivastigmine) in the 

earlier stages of AD1 and memantine2 in the moderate or severe stages. The galantamine-

memantine combination targets α-7 nicotinic acetylcholine receptors (α7nAChR) and 

NMDA receptors concurrently, leading to a synergistic effect.

The aim of this review was to critically examine the mechanisms by which the galantamine-

memantine combination may be superior to the donepezil-memantine combination in AD by 

targeting cholinergic and glutamatergic systems and counteracting the effects of kynurenic 

acid (KYNA). PubMed and Google Scholar were searched using the keywords Alzheimer’s 
disease, cholinergic, glutamatergic, nicotinic receptors, NMDA receptors, donepezil, 
rivastigmine, galantamine, memantine, clinical trials, and biomarkers. Relevant preclinical 

and clinical evidence is discussed in the article.

Neurotransmitter systems in Alzheimer’s disease

Dysregulation of multiple neurotransmitters complicates the understanding of control and 

modulation of neuronal activities in AD. Currently, cholinergic and glutamatergic systems 

are the most-studied neurotransmitters in AD.3,4

Koola et al. Page 2

J Geriatr Care Res. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Role of the cholinergic-nicotinic system

The cholinergic pathway in the brain has been shown to be involved in information 

processing and online holding of information, facilitating the switch from online attentive 

process to off-line memory consolidation and preventing interference from previously stored 

memories. Decline in central nervous system (CNS) cholinergic function contributes to 

cognitive decline associated with AD.3,5 Patients with advanced AD have severe loss of 

cholinergic cells in the nucleus basalis that affects the cerebral cortex, especially the 

temporal lobe wherein cholinergic axon loss can be up to 80%.6 Cholinergic depletion may 

increase the production of β-amyloid and increase its neurotoxicity, including acetylcholine 

synthesis and signal transduction of cholinergic transmission.6 Cholinergic depletion may 

also lead to tau phosphorylation, which is important in the formation of neurofibrillary 

tangles in AD.

In a 24-week study of patients with AD treated with galantamine who did not respond to 

previous treatment with donepezil, apathy, irritability, aberrant motor symptoms, and 

executive function improved significantly.7 In another study of 89 patients with AD, 86 had 

significant improvement in cognitive scores when they were switched from donepezil to 

galantamine.8

In 28 healthy subjects, mecamylamine (a selective non-competitive nAChR antagonist) 

administration induced widespread electroencephalogram (EEG) changes, affecting both the 

spectral content and temporal dynamics of neuronal oscillations; these EEG changes were 

reversed by galantamine.9 In another study with 33 healthy participants, a single oral dose of 

mecamylamine 30 mg induced significant cognitive impairments and produced a decrease in 

posterior α and β power in the EEG. These effects were partially reversed by the 

coadministration of galantamine.10 Finally, in 42 healthy participants, a decrease in beta 

oscillations rebound was seen with galantamine compared to placebo.11

Role of the glutamatergic system

Glutamatergic receptors are more prominent in the cortex and hippocampus, which are 

important for developmental synaptic plasticity, long-term potentiation (LTP), memory 

formation, and learning.12 Glutamate stimulates metabotropic and ionotropic membrane–

based receptors. There are three types of ionotropic receptors: NMDA, α-amino-3-

hydroxy-5-methyl-4-isoxazol-propionate (AMPA), and kainate. NMDA receptors allow the 

influx of Na+ and Ca+ ions,13 which serve as the gating switch for synaptic plasticity 

modification and play an important role in learning and consolidation of short-term memory 

into long-term memory.14 The synaptic stimulation via NMDA receptors plays an important 

role in learning and memory. However, overstimulation of NMDA, AMPA, and kainate 

receptors by excess glutamate can cause excitotoxicity, which, in turn, can damage or kill 

the neurons and cause neurodegeneration.15 Therefore, glutamate stimulation with no 

excitotoxicity is required for the optimal treatment of AD.

Persistent activation of CNS NMDA receptors by the excitatory amino acid glutamate has 

been hypothesized to contribute to the symptomatology of AD (package insert). Memantine 
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is postulated to exert a therapeutic effect through its action as a low to moderate affinity 

noncompetitive (open-channel) NMDA receptor antagonist that binds preferentially to the 

NMDA receptor–operated cation channels (package insert). There is no evidence that 

memantine prevents or slows neurodegeneration in patients with AD (package insert). 

Unfortunately, definitive data on glutamatergic transmission involvement in AD are still 

incomplete.16

Advantages of combining galantamine and memantine

Memantine is a noncompetitive antagonist with low to moderate affinity for NMDA 

receptors.17,18 Instead of binding to the agonist site, memantine blocks the open channels 

and prevents the activation of NMDA receptors. Memantine inhibits the NMDA receptors in 

a voltage-dependent manner, which enhances the signal-to-noise ratio of the cortical neuron 

and reduces the excitotoxicity caused by excess glutamate release.18,19 On the other hand, 

galantamine increases glutamate release.20 Thus, at first glance, the two drugs appear to act 

in an opposing manner. However, a closer examination of the effects of both medications on 

the cholinergic and glutamatergic systems reveals that these medications may work 

synergistically to provide a more normal neurophysiological response and improve cognitive 

impairments in AD.21,22 When combined, memantine prevents cell damage due to 

electrophysiological noise, whereas galantamine increases synaptic activities and long-term 

potential. Galantamine improves cholinergic response by two different mechanisms of 

action: it causes allosteric modulation of α7nAChR that increases its sensitivity to 

acetylcholine and reduces the loss of neurodegeneration-induced cholinergic stimulation. 

Unlike donepezil and rivastigmine, which may decrease postsynaptic nicotinic receptor 

desensitization, galantamine causes modest inhibition of AChEI. Galantamine improves the 

AMPA-mediated signaling, which could be neuroprotective and may improve memory 

coding,21 and potentiates the neuroprotective effect of memantine against NMDA-induced 

excitotoxicity.23,24 The use of galantamine and memantine in combination is also supported 

by pharmacodynamic and pharmacokinetic studies.21,25,26 Therefore, combined treatment 

with these two medications would not affect the metabolism of either one. Galantamine is 

metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4, which are not affected by 

memantine.27 Based on this evidence, it was argued that modulation of NMDA and nicotinic 

receptors by memantine and galantamine may provide an optimal combination therapy for 

the treatment of AD.21

The kynurenine pathway in Alzheimer’s disease

The KP is a major route of tryptophan metabolism. The metabolism of L-tryptophan is a 

highly regulated physiological process, leading to the generation of several neuroactive 

compounds within the CNS. These compounds include the aminergic neurotransmitter 

serotonin (5-hydroxytryptamine, 5-HT); products of the KP of tryptophan metabolism such 

as KYNA, quinolinic acid (QUIN), 3-hydroxy anthranilic acid (3-HANA), 1-kynurenine 

(KYN), and 3-hydroxy kynurenine (3-HK); the neurohormone melatonin; several 

neuroactive kynuramine metabolites of melatonin; and the trace amine tryptamine. QUIN 

has excitatory properties, while KYNA has inhibitory properties.28 Alterations of KYNA 

and QUIN are associated with the cognitive impairments in AD.29 QUIN has neurotoxic 
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properties, whereas KYNA is considered neuroprotective.30 KYNA is a broad-spectrum 

nonselective glutamate receptor antagonist and was shown to be neuroprotective in a 

neurotoxicity rodent model.31 In KP, tryptophan 2,3-dioxygenase (TDO) and indoleamine 

2,3-dioxygenase (IDO) convert tryptophan into N-formyl-L-kynurenine, which is further 

metabolized to KYN by formamidase (Figure 1). IDO and TDO are rate-limiting enzymes of 

KYN synthesis. KYN is further metabolized into KYNA and QUIN along distinct pathways 

within the brain due to their reliance on the respective kynurenine aminotransferase (KAT) 

and kynurenine 3-hydroxylase enzymes. Astrocytes possess KAT but lack kynurenine 3-

hydroxylase, thereby allowing them to participate only in the conversion of KYN to KYNA. 

Microglias possess kynurenine 3-hydroxylase, allowing them to convert KYN to QUIN. A 

large body of evidence from animal experiments has also implicated these metabolites in the 

pathogenesis of chronic neurodegenerative disorders.32 TDO is highly expressed in the 

brains of AD mice models and in AD patients, suggesting that TDO-mediated activation of 

KP could be involved in neurofibrillary tangle formation and is associated with senile 

plaque.33 The metabolism of KYNA is also altered in AD. KYNA concentration is increased 

in the striatum and hippocampus34 and decreased in the blood35 and cerebrospinal fluid.36 In 

patients with AD, increased tryptophan degradation and simultaneous altered KYN 

concentration were found in the plasma.29 Increased brain KYNA concentration was found 

in 11 postmortem AD subjects compared to 13 healthy controls who had no such increase.34 

The production of QUIN is increased by human macrophages and microglia in AD and may 

be one of the factors involved in the pathogenesis of neuronal damage in the disease.37 In 

addition, the activity of the IDO enzyme involved in the KP is increased in serum, which 

correlates with neopterin levels and reduced cognitive functions.38 KYNA blocks α7nAChR 

non-competitively and can increase the expression of non-α7nAChR.39,40 Agonism of 

α7nAChR facilitates learning and memory process in animal models and patients with AD,
41,42 whereas blockade of NMDA-R and α7nAChR by KYNA may be responsible for the 

cognitive problems in AD. Although glutamate blockade of receptors by KYNA may cause 

cognitive deficits, same blocking action can be protective against the excitotoxic effect of 

abnormally high glutamate receptor activations. This protective effect may be enhanced by 

KYNA, which may lead to increased expression of nerve growth factor (NGF) in glial cells.
43

Activation of NMDA receptors appears to be important in the establishment of LTP.44 

Overstimulation of these receptors may cause a breakdown of nerve cells likely involved in 

the pathogenesis of chronic neurodegenerative disorders including AD.28 KYNA is an 

endogenous antagonist of NMDA receptors, which is shown to be neuroprotective. The 

NMDA receptors are widely distributed in the hippocampus and striatum.45 The 

hippocampus, pallidum, and striatum were more sensitive to QUIN toxicity compared to the 

cerebellum, substantia nigra, amygdala, medial septum, and hypothalamus.46 The pyramidal 

cells in the hippocampus are more sensitive than other neuronal cell types in the brain,46 

with cholinergic neuronal death in the striatum following QUIN injection.47 Memantine 

significantly attenuated QUIN-mediated poly (ADP-ribose) polymerase activation, 

nicotinamide adenine dinucleotide depletion, and lactate dehydrogenase release in both 

neurons and astrocytes.48 Galantamine and memantine can target not only the cholinergic 

and glutamatergic systems but also KYNA through the α7nACh and NMDA receptors, 
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which are downregulated by increased (decreased in several studies) KYNA concentration in 

AD. This inhibitory effect of KYNA on these two receptors may be responsible for the 

cognitive problems in AD in addition to other pathophysiological mechanisms. Galantamine 

and memantine cross the blood-brain barrier and acting via α7nACh and NMDA receptors 

may counteract the effects of KYNA.49–52 Also, kynurenine 3-monooxygenase (Figure 1) 

inhibition53 may have effects similar to the galantamine-memantine combination. For all the 

above-mentioned reasons, the KP may be a valuable target for future therapeutic discovery 

in the treatment of neurodegenerative diseases.54

Preclinical evidence for the AChEI and memantine combination

Several preclinical studies have investigated whether a combination therapy with memantine 

and an AChEI would provide a more effective treatment for memory impairments than either 

drug alone. In an amyloid precursor protein transgenic mouse (APP23) model of AD, the 

donepezil and memantine combination was synergistically more effective in alleviating 

spatial learning and retrieval impairments than either medication alone.55 Moreover, co-

administration of memantine and galantamine synergistically rescued scopolamine-induced 

amnesia in mice.56 Use of the galantamine-memantine combination led to beneficial effects 

on cognitive performance in aged Rhesus macaques.57 The efficacy of ARN14140, a 

memantine-galantamine–based multi-target compound, was assessed in an AD model based 

on central administration of β-amyloid (25–35) peptide (Aβ25-35) to mice. ARN14140 

prevented Aβ25-35–induced cognitive impairment and alteration of the major markers of 

neurodegeneration and cell death.58 Cognitive enhancement was also demonstrated with the 

galantamine-memantine combination in rats; the combination was synergistically better than 

either medication alone.59 Interestingly, pro-cognitive effects were blocked by the α7nAChR 

antagonist methyllycaconitine, suggesting that the observed cognitive enhancement is 

α7nAChR dependent.59 Finally, in rats, the memory-enhancing strategy via α7nAChR was 

apparently less effective when glutamate/NMDA receptor action was directly impaired by 

MK-801/dizocilpine treatment.60

Only one study simultaneously did two experiments on the efficacy of the galantamine-

memantine and donepezil-memantine combinations.61 This study was conducted in older 

rabbits with delay eyeblink classical conditioning, a form of associative learning that is 

severely impaired in AD, and demonstrated that administration of memantine with 

galantamine significantly improved learning compared to vehicle, but the addition of 

memantine did not improve learning compared to galantamine alone. However, older rabbits 

treated with donepezil or a combination of memantine and donepezil had no significant 

improvements in learning compared to rabbits treated with vehicle. This finding suggests 

that cholinesterase inhibition alone is insufficient to improve learning in this model, and 

beneficial effects are provided through galantamine’s allosteric activation of nAChRs. These 

data indicate that stimulation of α7nAChRs may underlie the beneficial effects of 

galantamine. Hence, it can be hypothesized that the efficacy of the galantamine-memantine 

combination is due to the synergistic action of the α7nACh and NMDA receptors.59
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Clinical evidence for the AChEI and memantine combination

Several randomized controlled trials (RCTs) of combined therapy with an AChEI and 

memantine have reported decreased cognitive decline and improved cognition compared to 

AChEI monotherapy in AD.62,63 In addition to cognitive improvements, this combination 

therapy has also been shown to improve functioning and global outcome.64 In data pooled 

from four 6-month RCTs, the donepezil-memantine combination (N=838) was significantly 

better than monotherapy (N=570) in patients with AD.65 In the clinical effectiveness long-

term trajectory study of 383 participants with AD,66 combined treatment with donepezil and 

memantine produced significantly lower mean annualized rates of deterioration in the 

Information-Memory-Concentration subscale of the Blessed Dementia Scale compared to 

AChEI monotherapy (P<0.001, Cohen’s d=0.10–0,34). In 2014, the combination of 

donepezil and memantine (Namzaric as one pill) was approved by the FDA for the treatment 

of AD. Galantamine is an AChEI that has a postulated dual mode of action as a nicotinic 

receptor modulator unlike other AChEIs. Therefore, the combination of galantamine and 

memantine may be superior to the donepezil-memantine combination.

Clinical evidence for the galantamine-memantine combination

In a 53-year-old woman with AD, a combination of donepezil-memantine was ineffective. 

With the galantamine-memantine combination, irritability and violence gradually decreased 

and disappeared.67 To date, three studies comparing the galantamine-memantine 

combination to monotherapy/placebo or donepezil-memantine in cognitive disorders have 

been conducted.68–70 The total sample size in the three studies included in this review was 

581, with a mean ± SD age of 72.9 ± 7.7 years. A detailed description of the three studies is 

provided in Table 1. Two studies were RCTs,68–69 while one was a retrospective cohort 

study.70

In a 2-year RCT with 232 subjects with mild cognitive impairment (MCI), a combination of 

galantamine and memantine (compared to galantamine alone or placebo) showed significant 

improvement in the Alzheimer’s Disease Assessment Scale cognitive subscale score 

(ADAS-cog) in a subgroup (N=39) of amnestic MCI participants with presumed AD 

etiology.68 Another RCT by the same group that enrolled 226 subjects showed no difference 

in the ADAS-cog score between treatment groups; however, they only enrolled subjects with 

mild cognitive disorders.69 In a retrospective cohort study, the galantamine-memantine 

combination (N=53) showed significantly better efficacy for cognitive functions than the 

donepezil-memantine combination (N=61) in AD patients.70 Hence, one can speculate that 

the galantamine-memantine combination may be effective for severe AD only. Since both 

donepezil and galantamine have cholinergic action, while memantine is common to both 

treatment groups, one can hypothesize that the α7nAChR action of galantamine coupled 

with the NMDA-R action of memantine may have a synergistic effect, 56,59 resulting in 

better cognition as in the Matsuzono study.70 Both α7nAChR and NMDA-R target the KP. 

Therefore, the combination of galantamine and memantine using multitargeted directed 

ligands may be particularly beneficial in the treatment of AD.71,72 None of the previously 

mentioned studies measured KP metabolites such as KYNA, KYN, QUIN, anthranilic acid 

(AA), 3-HANA, and 3-HK; KYNA/KYN, KYN A/QUIN, QUIN/KYNA, KYN A/3-HK, 
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and AA/KYN ratios; or picolinic acid.73–81 Indeed, KYNA/KYN, KYN A/QUIN, and KYN 

A/3-HK are ratios used to estimate the balance between the neuroprotective and neurotoxic 

metabolites, which reflect the neurotoxic challenge to the brain.82,83 The advantages of 

combining galantamine and memantine are summarized in Table 2.

Other biomarkers

Accumulating evidence indicates a lack of trophic support in the brains of AD subjects.84 In 

particular, decreases in BDNF levels have been reported in the CNS and blood of AD 

patients.84 BDNF provides neurotrophic support and is a key molecule in the maintenance of 

synaptic plasticity and memory storage.85 Interestingly, both galantamine86 and 

memantine87 have been shown to induce BDNF expression in rodent studies. Hence, the 

galantamine-memantine combination may be more neuroprotective and beneficial over other 

AChEIs and AChEI-memantine combination in the treatment of AD.

Mismatch negativity (MMN) is reduced in AD and may be utilized for early detection of 

AD.88,89 In human studies, encenicline90 (α-7 nicotinic partial agonist) and memantine91 

have enhanced MMN compared to placebo. The underlying pathophysiological mechanism 

of MMN may be the interaction of α7nAChR and NMDA-R;92 hence, the galantamine-

memantine combination may enhance MMN93,94 more than one (nicotinic or NMDA 

receptor) mechanism of action.

Oxidative stress is an integral part of the pathophysiology of AD;95 thus, antioxidants may 

be useful treatments.96 Galantamine prevented the oxidative damage induced by amyloid-

beta peptide in rat cortical neurons.97 Similarly, memantine also has antioxidant properties.
98,99 Glutathione, glutathione reductase, superoxide dismutase (SOD), and other oxidative 

stress and antioxidant biomarkers may be utilized to monitor progress100 with galantamine-

memantine combination treatment. Preclinical evidence is suggestive of potential benefit of 

antioxidant treatment. However, RCTs in AD did not achieve the expected outcomes and 

benefits.101 It has been argued that a “single antioxidant” may be incapable of sufficiently 

counteracting the complex cascade of oxidative stress.102 The galantamine - memantine 

combination as “double antioxidants” is promising. The “double antioxidants” approach was 

corroborated in a study that found the galantamine-memantine combination increased the 

SOD2 immunoreactivity and preserved spatial memory after ischemia-reperfusion injury 

transient global cerebral ischemia in gerbils.103 This finding was not seen with either 

galantamine or memantine alone.103 Finally, KYNA is also an antioxidant.104

Conclusion and future directions

In addition to cholinergic and glutamatergic dysfunction, alteration in the KP appears to 

underlie the symptomatology of AD. Therefore, in addition to targeting cholinergic and 

glutamatergic pathways, modulation of the KP may be a novel treatment strategy. Also, 

targeting the KP metabolites that facilitate KYNA synthesis and reduce the formation of 

QUIN may emerge as a new therapeutic strategy for AD and may offer a valuable strategic 

option for the attenuation of glutamatergic excitotoxicity and neuroprotection. Well-

designed RCTs studying efficacy and tolerability of combined treatment in AD that also 
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measure the relevant KP metabolites, MMN, BDNF, and oxidative stress biomarkers are 

warranted. Although the galantamine-memantine combination is the standard of care for the 

treatment of AD, it is still underutilized. Positive RCTs may lead to FDA approval of the 

combination, which may lead to greater utilization in clinical practice.
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Figure 1: Tryptophan metabolism by the kynurenine pathway
In the kynurenine pathway, tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 

convert tryptophan into N-formyl-L-kynurenine, which is further metabolized to L-

kynurenine by formamidase. L-kynurenine is metabolized into kynurenic acid (KYNA) and 

quinolinic acid along distinct pathways within the brain due to their reliance on the 

respective kynurenine aminotransferase and kynurenine 3-hydroxylase enzymes. KYNA has 

inhibitory action on α7 nicotinic and NMDA receptors. Galantamine and memantine cross 

the blood-brain barrier and would target α7 nicotinic and NMDA receptors, thereby 

counteracting tire effects of KYNA.
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Table 2.

Advantages of galantamine-memantine combination

Galantamine + Memantine

Synergism of cholinergic and glutamatergic systems

Synergism of α7nACh and NMDA receptors

Counteract the effects of kynurenic acid

Enhance mismatch negativity

Enhance brain-derived neurotrophic factor

Double-Hit Antioxidant Treatment
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