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Background: This study aimed to assess brain oxygenation status and cerebral

autoregulation function in subjects with cognitive dysfunction.

Methods: The Montreal Cognitive Assessment (MoCA) was applied to divide the

subjects into three groups: cognitive impairment (Group CI, 72.50 ± 10.93 y), mild

cognitive impairment (Group MCI, 72.02 ± 9.90 y), and normal cognition (Group

NC, 70.72 ± 7.66 y). Near-infrared spectroscopy technology and a non-invasive

blood pressure device were used to simultaneously measure changes in cerebral

tissue oxygenation signals in the bilateral prefrontal lobes (LPFC/RPFC) and arterial

blood pressure (ABP) signals from subjects in the resting state (15min). The coupling

between ABP and cerebral oxyhemoglobin concentrations (1 [O2Hb]) was calculated

in very-low-frequency (VLF, 0.02–0.07Hz) and low-frequency (LF, 0.07–0.2Hz) bands

based on the dynamical Bayesian inference approach. Pearson correlation analyses were

used to study the relationships between MoCA scores, tissue oxygenation index, and

strength of coupling function.

Results: In the interval VLF, Group CI (p = 0.001) and Group MCI (p = 0.013) exhibited

significantly higher coupling strength from ABP to 1 [O2Hb] in the LPFC than Group NC.

In the interval LF, coupling strength from ABP to 1 [O2Hb] in the LPFC was significantly

higher in Group CI than in Group NC (p = 0.001). Pearson correlation results showed

that MoCA scores had a significant positive correlation with the tissue oxygenation

index and a significant negative correlation with the coupling strength from ABP

to 1 [O2Hb].

Conclusion: The significantly increased coupling strength may be evidence of impaired

cerebral autoregulation function in subjects with cognitive dysfunction. The Pearson

correlation results suggest that indicators of brain oxygenation status and cerebral
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autoregulation function can reflect cognitive function. This study provides insights into

the mechanisms underlying the pathophysiology of cognitive impairment and provides

objective indicators for screening cognitive impairment in the elderly population.

Keywords: cognitive dysfunction, coupling function, near-infrared spectroscopy, arterial blood pressure, tissue

oxygenation index

INTRODUCTION

As the population ages, dementia has become a global public
health concern (Kisa et al., 2018). It is estimated that 115
million people will be living with dementia by 2050, which is
a great challenge affecting families, communities, and health
care systems around the world (Prince et al., 2015). Mild
cognitive impairment is thought to lie on a functional continuum
between normal cognitive aging and the earliest signs of
dementia (Rombouts et al., 2005). Studies have indicated that
early interventions in the early stages of dementia (i.e., mild
cognitive impairment) present an opportunity to improve or
maintain cognitive function to slow the trajectory of cognitive
decline (Livingston et al., 2017). Without an intervention, the
neurodegenerative process will cause irreversible atrophy (Raz
et al., 2016). Accurate identification of cognitive dysfunction
is a prerequisite to receiving these interventions. Therefore,
the establishment of boundaries between normal aging and
dementias using reliable, sensitive, quantitative, and objective
criteria is essential for improved clinical outcomes.

Cerebral autoregulation is a protective mechanism that
maintains cerebral blood flow at a relatively constant level despite
fluctuations of cerebral perfusion pressure (Beek et al., 2008).
Cerebral autoregulation is a frequency-dependent phenomenon
that allows rapid ABP changes (<0.2Hz) to be transmitted
to cerebral blood flow, whereas slow ABP changes are filtered
(Numan et al., 2014; Claassen et al., 2016). Impaired cerebral
autoregulation leads to a greater dependence of cerebral blood
flow on blood pressure, leaving brain tissue unprotected against
the potentially harmful effects of blood pressure fluctuations
(den Abeelen et al., 2014). It has been evidenced that cerebral
autoregulation function is altered or impaired in patients with
a variety of conditions such as diabetes (Hu et al., 2008),
Parkinson’s disease (Vokatch et al., 2007), and stroke (Xiong et al.,
2017). Recent research suggested an interrelationship between
Alzheimer’s disease pathology, radiographic markers of cerebral
hypoperfusion, and cerebral autoregulation (Brickman et al.,
2015; Zhou et al., 2019). Therefore, it can be hypothesized that
cerebral perfusion and cerebral autoregulation are altered in
subjects with cognitive dysfunction.

Cerebral autoregulation assessment requires accurate
and continuous measurements of cerebral blood flow (Lam
et al., 2019). Near-infrared spectroscopy (NIRS) is a non-
invasive neuroimaging technique that allows the continuous
measurement of tissue oxygenation and hemodynamic
parameters in the cerebral (Kozlová, 2018). The attributes
of NIRS such as portability, tolerance of motion artifacts,
and use in patients with pacemakers and metal implants have
made this technique particularly suitable for the analysis of

cerebral autoregulation in the elderly population (Addison,
2015). Kainerstorfer et al. (2015) demonstrated the reliability
of non-invasive measurement of cerebral autoregulation
in microvascular systems using NIRS. Currently, NIRS has
been used to observe cerebral autoregulation in patients with
subarachnoid hemorrhage (Budohoski et al., 2016), acute
neurological injury (Rivera et al., 2017), and sepsis patients
(Eleveld et al., 2021). Therefore, in the present study, NIRS
was employed to investigate cerebral autoregulation function in
subjects with cognitive dysfunction.

In past decades, various methods have been adopted for
the non-invasive assessment of cerebral autoregulation in the
resting state based on spontaneous fluctuations in blood pressure
and cerebral blood flow. Of all the available methods to do
this, transfer function analysis is the most frequent method
reported in the literature to quantify cerebral autoregulation
(Meel-van den Abeelen et al., 2014). Nevertheless, the cerebral
autoregulation parameters calculated by transfer function
analysis do not seem to differentiate between subjects with
cognitive dysfunction (Gommer et al., 2012; Tarumi et al.,
2014). Close attention has recently been dedicated to the study
of coupling functions based on dynamical Bayesian inference,
which has been used in the assessment of cerebral autoregulation
function in patients with stroke and hypertension (Su et al., 2018;
Li et al., 2021). A great advantage of the Bayesian method is
its ability to simultaneously detect time-varying synchronization,
the directionality of coupling, and time-evolving coupling
functions, even in the presence of noise (Stankovski et al.,
2014). This study aimed to investigate the potential of the
coupling function method based on dynamic Bayesian inference
for the assessment of cerebral autoregulation in subjects with
cognitive dysfunction.

In this study, NIRS and non-invasive blood pressure devices
were used to simultaneously measure cerebral oxygenation
signals in the prefrontal cortex (PFC) and arterial blood pressure
(ABP) signals from subjects in the resting state. Coupling
function between the ABP and cerebral oxygenation signals was
established based on dynamical Bayesian inference. Very-low-
frequency (VLF, 0.02–0.07Hz) and low-frequency (LF, 0.07–
0.20Hz) oscillation of oxyhemoglobin has shown to be robust
parameter for evaluating cerebral autoregulation (Kainerstorfer
et al., 2015; Eleveld et al., 2021). Spontaneous oscillations in
the VLF interval are mainly associated with hemodynamic
fluctuations that originate from spontaneous cortical neural
activity, and the spontaneous oscillations in the LF interval are
believed to reflect vasomotor and sympathetic activity (Vermeij
et al., 2014). In the present study, cerebral autoregulation
function in elderly subjects with cognitive dysfunction was
assessed by coupling functions in the VLF and LF bands
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and compared with those in healthy elderly controls. Pearson
correlation analysis was used to study the relationships between
montreal cognitive assessment (MoCA) scores and indicators of
cerebral autoregulation function. In addition, we investigated the
relationship betweenMoCA scores and brain oxygenation status.
This study provides insights into the mechanisms underlying
the pathophysiology of cognitive impairment and provides
objective indicators for screening cognitive impairment in the
elderly population.

METHODS

Participants
This study was performed in senior centers and the Rehabilitation
Hospital, National Research Center for Rehabilitation Technical
Aids. The trial was registered with the Chinese Clinical
Trial Registry (registration no. ChiCTR2100053043). Written
informed consent was obtained from the participants before
the study. When the subject had difficulties understanding the
informed consent due to cognitive dysfunction, their family
provided content. All procedures performed in this study
involving human participants were in accordance with the
Declaration of Helsinki (as revised in 2013).

A total of 166 volunteers were initially enrolled in this
study (Figure 1). The target group was right-handed elderly
individuals aged > 50 years. The exclusion criteria during the
initial enrollment were neurological illness and traumatic brain
injury with any known cognitive consequences. The subjects were
grouped according to the MoCA scores, which was administered
by trained personnel. The subjects withMoCA scores 26 or above
were categorized as normal cognition (Group NC); those with
scores between 15 and 25 were categorized as mild cognitive
impairment (Group MCI); and those with scores of 14 or less
were categorized as cognitive impairment (Group CI).

Data Collection
After recording basic information and MoCA scores, cerebral
oxygenation and ABP signals were simultaneously collected. All
measurements were non-invasive and safe for the subjects. After
5min of rest, 15min recordings were made for (1) ABP that were
continuously measured with finger-pulse photoplethysmography
at a sampling rate of 1,000Hz (CNAPTM Monitor 500,
CNSystems Medizintechnik AG, Graz, Austria); (2) cerebral
oxygenation data that were measured via NIRS (ECO-N17-
C25L, Enginmed Bio-Medical Electronics, Suzhou, China) at
a sampling rate of 20Hz. Each sensor of the ECO-N17-C25L
consisted of a light-emitting diode and two PIN diodes. The
light-emitting diode component worked with three-wavelengths
(760, 810, and 840 nm) and served as the source of emitted
light, whereas the PIN diodes served as the detectors. The
distances between the light source and the two detectors were
30 and 40mm. The differential spacing of the receiving detectors
provided spatial resolution to distinguish signals from cerebral
and extracerebral tissue. The probes were positioned over the
PFC area (LPFC/RPFC) and then wrapped around the forehead
with an elastic bandage to block ambient light.

Signals and Preprocessing
The ECO-N17-C25L used a spatially resolved spectroscopy
algorithm to calculate the concentration changes in oxygenated
and deoxygenated hemoglobin concentrations (1 [O2Hb] and
1 [HHb], respectively) compared with their original values in
human tissue. It has been shown that this algorithm is little
influenced by either background absorption or overlying tissues
(Teng et al., 2006; Han and Zhang, 2016). The tissue oxygenation
index (TOI) is an indicator that characterizes the brain
oxygenation status, which directly reflect the dynamic balance
between oxygen supply and consumption in regional tissue (Jin
et al., 2021). The TOI value can be derived from the ratio of tissue
oxygenated hemoglobin concentrations to total hemoglobin
concentration in blood flow within venous, arterial, and cerebral
cortical tissue, where the total hemoglobin concentration is the
sum of the [O2Hb] and [HHb] concentrations (Naulaers et al.,
2007). Mathematically, TOI (%) can be expressed as follows:

TOI =
O2Hb

O2Hb +HHb
× 100% (1)

Moving average and cubic spline interpolation methods were
used to eliminate noise-like abrupt spikes and motion artifacts
in the NIRS signal, respectively (Scholkmann et al., 2010). The
window width of the moving average method was 5 s. To achieve
a uniform time basis, the raw ABP signal was downsampled to
20 Hz.

Data Analysis
In the present study, the cerebral autoregulation function was
assessed by investigating interactions between cardiac oscillations
and slow oscillations in the cerebral. An overview of themodeling
of the interaction between brain activity and ABP is shown in
Figure 2. In the first step, the phase time series of NIRS and ABP
signals were extracted by continuous wavelet transform. In the
second step, the interactions between extracted components were
studied by a coupled-phase-oscillator model based on dynamical
Bayesian inference. Finally, the coupling direction and coupling
strength were calculated to quantify the coupled systems. All
these methods were explained below.

Dynamic Phase Extraction for Coupling Function

Analysis
In the present study, the continuous wavelet transform was used
to extract spontaneous oscillations of NIRS and ABP signals in
various characteristic frequency bands. The continuous wavelet
transform is a time–frequency analysis method, which uses the
logarithmic scale for the frequency, thus low frequencies have
higher resolutions. The continuous wavelet transform is given by
the equation:

W (s, t) =
1
√
s

∫ ∞

0
ψ

(

u − t

s

)

g (u) du (2)

where W(s, t) is the wavelet coefficient, g(u) is the time
series, and ψ is the mother wavelet, scaled by the factor s and
translated in time by t. The complex Morlet wavelet ψ (u) =
1
4√π e

−i2πµe−µ
2/2 (with i the imaginary unit) was chosen to be the
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FIGURE 1 | Flow chart of participant inclusion.

mother wavelet because it maximizes joint time-localization and
frequency resolution (Stefanovska et al., 1999).

The phases of 1 [O2Hb] signal (φ1[O2Hb]) was extracted in
the VLF (0.02–0.07Hz) and LF (0.07–0.2Hz) range. The phase
extraction of the heart activity from the ABP signal (φABP)
was 0.6–2Hz (Stefanovska, 2007). The signals extracted from
these intervals are periodic, enabling the underlying oscillatory
processes and their interactions to be studied effectively through
phase dynamics, and leading to extraction of phase-to-phase
cross-frequency couplings (Stankovski et al., 2017a).

Coupling Functions Using Dynamical Bayesian

Inference
The interactions were modeled with cross-frequency coupling
based on dynamical Bayesian inference. Coupling functions
prescribe the physical rule specifying how the inter-oscillator
interactions occur. To learn about influence of each oscillator on
the others, the system was decomposed into a group of phase
oscillators which interact. Their decomposition can describe the
functional contribution from each separate subsystem within

a single coupling relationship (Stankovski et al., 2016). This
system can be defined by two differential stochastic equations
(Stankovski et al., 2017b):

φ̇m (t) = wm (t)+ qm (φn,φm, t)+ δm (t) (3)

with m = 1, n = 2. where wm and φm are the natural frequency
and phase of oscillator m, δm (t) is Gaussian white noise, and
qm (φn,φn, t) is the coupling function describing the influence of
oscillator n on the phase of oscillatorm.

The theorem of dynamical Bayesian inference is summarized
in Stankovski et al. (2012):

pχ (M|X ) =
ℓ (X |M) pprior (M)

∫

ℓ (X |M)pprior (M) dM
(4)

where pχ (M|X ) is the conditional probability of observing the
data X given the hypothesized parameters M. pprior (M) is
the probability of M before observing the data X . pχ (M|X )
is known as the posterior probability–the probability that the
hypothesized parameters are correct given X and the prior
probability pprior (M).
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FIGURE 2 | Overview of modeling of interaction between NIRS and ABP signals.

Quantitative Measures
To simplify quantitative comparisons obtained results, the
coupling strength and coupling direction are calculated. The
coupling strength gives a quantitative measure of the information
flow between the coupled systems and is an important
indicator to characterize the magnitude and the extent of
the coupling relationship (Stankovski et al., 2017b). A higher
coupling strength value indicates that the fluctuations in
one oscillation are more direct in transferring amplitude
changes to the other. The coupling direction represents
the predominant direction of the coupling function. The
strength CSm,n of the coupling from the oscillator m to n is
defined as:

CSm,n =
√

∑K

k = − K

(

c
(m : n)
k

)2
(5)

The directionality index CD represents the
predominant direction of the coupling function,
which is defined as (Stankovski et al.,
2012):

CD (t) =
CSn,m − CSm,n

CSn,m + CSm,n
(6)

If CD ∈ [−1, 0] (CD ∈ [0, 1]), the n (m) drives
the m (n). The result of the CD value calculated
from Equation (6) is >0. Therefore, only the coupling
functions in the direction from ABP to 1 [O2Hb]
in the VLF and LF interval were discussed in the
present study.

Statistical Analysis
Age, body mass index, sex, blood pressure, and MoCA scores
are expressed as the means and standard deviation. The
Kolmogorov–Smirnov and Levene tests were applied to test

variance normality and homogeneity of the data at the group
level. Significant intergroup differences in TOI and coupling
strength were assessed by one-way ANOVA. Bonferroni’s t-
test was used for the intergroup pairwise comparisons. Three
comparisons between the groups were designed (Group NC
vs. Group MCI, Group NC vs. Group CI, and Group MCI
vs. Group CI). Therefore, the corrected statistical significance
was defined as p < 0.0167 (p < poriginal/3). The associations
between MoCA scores, TOI, and coupling strength were
assessed by Pearson’s correlation analysis. A difference of p <
0.05 was considered statistically significant. Receiver–operator
characteristic analysis with Youden’s J statistic was used to
test the sensitivity and specificity and determine the optimal
threshold value for the TOI and cerebral autoregulation indices to
differentiate subjects with mild cognitive impairment from those
with normal cognition.

RESULTS

Demographic and Cognitive Test Results
The demographic characteristics and cognitive test results for
each group are shown in Table 1. The demographics of Groups
NC, MCI, and CI, including age, sex, body mass index,
and blood pressure were not significantly different among
the three groups. The groups did have significantly different
MoCA scores.

Group-Dependent Variation in TOI
The TOI in the left and right PFC (LTOI/RTOI) of each subject
was calculated by averaging the TOI values in the time domain
over the acquisition period (15min). The averaged TOI of the
bilateral PFC was expressed as Mean TOI. An example of the
typical curves of original NIRS data and TOI was shown in
Supplementary Material. Figure 3 shows the comparison of the
TOI values among the three groups. The result shows that the
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FIGURE 3 | Box-plots picturing the distributions of (A) LTOI, (B) RTOI, and (C) mean TOI. In each boxplot, the NC group (NC) is indicated by red rectangles, the MCI

group (MCI) by blue rectangles, and the CI group (CI) by yellow rectangles. The line connectors on the tops of individual panels indicate cases where the difference

between two boxplot distributions was statistically significant. p < 0.05 are marked with *, p < 0.0167 are marked with **.

TABLE 1 | Basic information of the participants.

Characteristic Group NC Group MCI Group CI p-value

(NC vs. MCI)

p-value (NC

vs. CI)

p-value

(MCI vs. CI)

Age (year) 70.72 ± 7.66 72.02 ± 9.90 72.50 ± 10.93 0.535 0.484 0.829

Gender (male/female) 9/23 31/32 13/13 0.051 0.096 0.945

Body mass index 22.00 ± 1.92 22.89 ± 3.00 22.52 ± 2.33 0.123 0.456 0.550

MoCA score 26.94 ± 1.54 20.60 ± 3.42 10.62 ± 3.16 <0.001* <0.001* <0.001*

Systolic blood pressure (mm

Hg)

120.55 ±17.18 124.60 ± 19.92 129.14 ± 24.60 0.361 0.113 0.341

Diastolic blood pressure

(mm Hg)

70.41 ± 8.60 69.93 ± 12.70 68.20 ± 15.79 0.860 0.506 0.555

Values are presented as means and standard deviations. *Indicates p < 0.05.

RTOI and mean TOI values were significantly lower in Group CI
than in Group NC.

Coupling Strength
The phase-to-phase coupling functions between ABP and 1

[O2Hb] were reconstructed, quantified, and compared. Figure 4
presents the specific-frequency coupling function between
ABP and 1 [O2Hb] in each group and the corresponding
coupling strength. In the VLF interval, Group CI exhibited
significantly higher coupling from ABP to 1 [O2Hb] (CSA,O)
in the LPFC and RPFC than Group NC. In the VLF
interval, the CSA,O was significantly higher in Group MCI
than in Group NC in LPFC. In the LF interval, the CSA,O
in the LPFC was significantly higher in Group CI than in
Group NC.

Correlation Analysis
Scatterplots of TOI vs. MoCA scores and coupling strength
vs. MoCA scores are presented in Figure 5. The correction
between the MoCA scores, TOI, and CSA,O in the bilateral PFC is
presented in Table 2. MoCA scores show a statistically significant
positive correlation with LTOI and RTOI. MoCA scores are
significantly negatively correlated with CSA,O in the LPFC and
RPFC interval VLF and LF.

Receiver–Operator Characteristic Analysis
A receiver–operator characteristic analysis with the
corresponding area under the curve was performed on TOI
and coupling strength values to determine the optimal threshold
value for distinguishing subjects with mild cognitive impairment
from those with normal cognition. The discriminant validity
for the detection of mild cognitive disorder of the mean TOI
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FIGURE 4 | The average coupling functions from all subjects within the group between ABP and 1 [O2Hb] in the (A) VLF interval and (B) LF interval. The coupling

between ABP and 1 [O2Hb] in the bilateral PFC is denoted as ABP - LPFC and ABP - RPFC. φABP and φ[O2Hb] represent the dynamical phase information of ABP and

1 [O2Hb] signal, respectively. Each boxplot shows the coupling strength distribution of a specific coupling relationship in the resting state indicated by the NC (Group

NC), MCI (Group MCI), or CI (Group CI). The NC group is indicated by red rectangles, the MCI group by blue rectangles, and the CI group by yellow rectangles. The

line connectors on the tops of individual panels indicate cases where the difference between two boxplot distributions was statistically significant. p < 0.0167 are

marked with *.
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FIGURE 5 | Scatterplots of TOI vs. MoCA scores and coupling strength vs. MoCA scores. (A) MoCA scores vs. TOI, (B) MoCA scores vs. CSA,O in the VLF interval,

and (C) MoCA scores vs. CSA,O in the LF interval.
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TABLE 2 | Correlations between the MoCA scores, TOI, and CSA,O at rest in the

bilateral PFC.

Variables MoCA

r p

TOI LTOI 0.199 0.029*

RTOI 0.282 0.002*

CSA,O ABP → LPFC (VLF) −0.390 <0.001*

ABP → LPFC (LF) −0.378 <0.001*

ABP → RPFC (VLF) −0.328 <0.001*

ABP → RPFC (LF) −0.226 0.014*

p < 0.05 are marked with *.

and coupling strength between the bilateral PFC [receiver–
operator characteristic area under the curve (95% confidence
interval)]: TOI [0.65 (0.54, 0.74)] and coupling strength [0.64
(0.53, 0.74)]. The optimal threshold value of the mean TOI in
the bilateral PFC was 60% (sensitivity = 54.0%, specificity =
84.4%), and the optimal threshold value of the averaged CSA,O
in the bilateral PFC was 0.05 (sensitivity = 77.4%, specificity
= 41.9%). TOI values below the optimal threshold value and
coupling strength values above the optimal threshold value
appeared to be closely associated with the diagnosis of mild
cognitive impairment.

DISCUSSION

In this research, cerebral autoregulation function was assessed
by a coupling function based on dynamical Bayesian inference.
The main findings of this study were as follows: (1) TOI was
significantly reduced on both sides of the PFC in subjects
with cognitive dysfunction; (2) cerebral autoregulation function
was impaired in subjects with cognitive dysfunction. The
main strengths of this study include the application of a
coupling function, which provides insights into the mechanisms
underlying the pathophysiology of cognitive impairment. The
present study describes the potential mechanism and clinical
implications of our findings.

Good oxygenation status is a guarantee for nerve cells to
maintain structural integrity and normal function of the brain.
A large body of evidence indicates that cerebral hypoperfusion
is one of the earliest pathological signs in the development of
cognitive failure (de la Torre, 2004). Meta-analyses demonstrated
clear abnormalities in cerebral hemodynamic and oxygenation
parameters in patients with mild cognitive dysfunction, even
at an early stage of cognitive decline (Beishon et al., 2017).
It is clinically important to monitor the oxygenation status of
cerebral tissue in real-time, detect abnormalities, and initiate
timely intervention measures. TOI is an indicator of the oxygen
saturation in regional tissues, and variations in TOI can reflect
changes in cerebral blood flow to some extent (Jin et al.,
2021). Tarumi et al. (2014) found that TOI was reduced at
rest in subjects with mild cognitive dysfunction compared
with healthy controls. Consistent with the literature, reduced
TOI on both sides of the PFC was observed in participants

in Group MCI and Group CI compared to controls. This
result suggested that cerebral perfusion was reduced in subjects
with cognitive dysfunction compared to healthy elderly adults.
A possible explanation for this result may be the reduction
in brain metabolic demand that parallels cognitive decline.
Another possible explanation for this is that chronic brain
hypoperfusion in elderly individuals leads to neuronal damage
and eventually to neurodegenerative tissue atrophy (de la Torre,
2004, 2008).

A previous study has suggested that sustained mild hypoxia
reduces steady-state cerebral blood flow, and continuously
impairs cerebral autoregulation (Nishimura et al., 2010). Cerebral
autoregulation allows the maintenance of relatively stable
cerebral perfusion and brain tissue oxygenation against changes
in blood pressure through complex myogenic, neurogenic, and
metabolic mechanisms (Addison, 2015). The VLF and LF bands
are in the frequency range where cerebral autoregulation is
considered operative. The current interpretation of the coupling
function metric assumes that pressure fluctuations are more
liable to induce linear and pressure-synchronized cerebral blood
flow fluctuations with greater magnitude in the condition of
disturbed cerebral autoregulation. Therefore, higher values of
CSA,O are considered to reflect greater oscillations of 1 [O2Hb]
in response to changes in ABP, that is, poorer damping of the
effectiveness of cerebral autoregulation, which represents poorer
cerebral autoregulation function, and vice versa. A significantly
higherCSA,O was observed in Groups CI andMCI than in healthy
controls in the VLF and LF intervals. These results indicated that
cerebral autoregulation function was impaired in subjects with
mild-to-severe cognitive dysfunction.

In the present study, the significantly increased CSA,O
in the VLF interval suggested that one of the mechanisms
for impaired cerebral autoregulation in cognitive dysfunction
patients might involve alterations in autonomic nervous
activities. The continuous activity of the autonomous nervous
system serves to maintain the basal level of vessel contraction.
The nerves release substances that affect the activities of smooth
muscles, leading to changes in the vessel radii and resistance
(Shiogai et al., 2010). To maintain flow in the autoregulated
range of blood pressure, cerebral resistance vessels undergo
vasoconstriction during hypertension and vasodilatation during
hypotension. Therefore, failure of vasoconstriction and/or
vasodilatation may result in cerebral autoregulation disruption
rendering the brain more susceptible to fluctuations in blood
pressure (Gommer et al., 2012). In the LF interval, CSA,O was
significantly increased in Group CI. This appears to suggest
that there is impaired myogenic activity regulation in the PFC
in subjects with cognitive dysfunction. This may be related to
parasympathetic depression and sympathetic exacerbation in
participants with cognitive dysfunction (Toledo and Junqueira,
2008). The significant difference in coupling function was mainly
distributed in the LPFC, which may be related to age-related
neurodegeneration preferentially affecting the left hemisphere
(Thompson et al., 2003).

In the present study, the significant correlation between TOI
and MoCA scores indicates the sensitivity of cognitive function
to brain oxygenation in elderly individuals. Pearson correlation

Frontiers in Aging Neuroscience | www.frontiersin.org 9 May 2022 | Volume 14 | Article 904108

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Li et al. Coupling Function Identify Cognitive Impairment

analysis showed significant negative correlations between MoCA
scores and CSA,O in the VLF and LF intervals. This result suggests
that CSA,O could characterize cerebral autoregulation function
changes. The results of receiver–operator characteristic analysis
support the finding that value of TOI and CSA,O can be used
as objective indicators for screening cognitive impairment in the
elderly population.

LIMITATIONS

This study assesses brain oxygenation status and cerebral
autoregulation function in subjects with cognitive dysfunction.
However, the different types of cognitive dysfunction were not
further classified in our study due to the relatively small sample
size. In future research, more indicators and a larger sample size
could be adopted to investigate the relationships between NIRS-
related parameters and different types of cognitive impairment.

CONCLUSION

In this pilot study, the effects of cognitive dysfunction
on cerebral autoregulation function were investigated by a
coupling function based on dynamic Bayesian inference. In
the VLF and LF intervals, increased CSA,O in Group CI
and MCI indicated that cerebral autoregulation function
was impaired in subjects with cognitive dysfunction. The
Pearson correlation results suggested that indicators of cerebral
oxygenation status and cerebral autoregulation function can
reflect cognitive function. This study provides insights into
the mechanisms underlying the pathophysiology of cognitive
impairment. Although the method is not yet ready for large-
scale application, this study provides an objective indicator
for the screening of cognitive impairment in the elderly
population, and with the development of NIRS and ABP
techniques, the method is expected to enable large-scale
community screening and routine clinical monitoring in
the future.
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