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Abstract: Studies on molecular mechanisms of the persist infection of hepatitis B virus  

have been hampered by a lack of a robust animal model. We successfully established  

a simple, versatile, and reproducible HBV persist infection model in vitro and in vivo with 

the circularized HBV DNA. The cells and mice were transfected or injected with circularized 

HBV DNA and pAAV/HBV1.2, respectively. At the indicated time, the cells, supernatants, 

serum samples, and liver tissues were collected for virological and serological detection. 

Both in vitro and in vivo, the circularized HBV DNA and pAAV/HBV1.2 could replicate 

and transcribe efficiently, but the infection effect of the former was superior to the latter  

(p < 0.05). The injection of circularized HBV genome DNA into the mice robustly 

supported HBV infection and approximately 80% of HBV infected mice established 

persistent infection for at least 10 weeks. This study demonstrated that the infection 

efficiency and replication ability of the circularized structure of HBV DNA overmatched 

that of the expression plasmid containing the linear structure of HBV DNA in vitro and  

in vivo. Meanwhile, this research results could provide useful tools and methodology for 
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further study of pathogenic mechanisms and potential antiviral treatments of human 

chronic HBV infection in vitro and in vivo. 

Keywords: hepatitis B virus (HBV); circularized HBV DNA; covalently closed circular 

DNA (cccDNA); hepatocellular carcinoma (HCC); persistent infection; viral replication 

 

1. Introduction 

Hepatitis B virus (HBV) is a small (3.2-kb), relaxed circular, partially double-stranded enveloped 

DNA virus that infects the hepatocytes of humans and other quadrumana [1], which is a major 

worldwide health problem with more than two billion infected people and 400 million chronic carriers, 

who are at high risk for developing acute and chronic hepatitis, liver cirrhosis, and hepatocellular 

carcinoma (HCC), which leads to more than one million deaths annually [2–4]. However, due to lack 

of a small, reproducible, and convenient HBV animal model, the study of the pathogenic mechanisms 

of HBV infection and the efficiency of antiviraltherapy are still incompletely resolved. The HBV 

transgenic mice is by far the most commonly used animal model, but this animal model integrates  

the HBV genome into the mouse chromosome, which inherently increases tolerance to transgenic 

products [5]. This model does not lead to liver inflammation and forms covalently closed circular DNA 

(cccDNA) [6]. Scholars have attempted to establish a non-transgenic mice model of HBV, however up 

until now, these models only caused acute hepatitis [7]. Therefore, scientists are constantly trying to 

establish animal models of HBV persistent infection. Although the HBV hydrodynamic model has gained 

unprecedented development, it is difficult to master the plasmid building technology of the hydrodynamic 

method; thus, it is difficult to establish persistent infection in this model completely [8,9]. The animal 

model of persistent HBV infection has become the bottleneck of HBV research. The HBV cccDNA 

mainly exists in hepatocytes; it is the template of HBV mRNA and pgRNA, which plays an important 

role in the process of HBV replication and relates to HBV persistent infection closely [10]. So far,  

the study of HBV commonly used in vitro and in vivo models with linear HBV additions of 1.1 times 

or 1.2 times the DNA, which was inserted into the eukaryotic expression vector, then transfected or 

injected to the liver cancer cell line or mice, which could build relatively stable cell lines or animal 

models to study [11–16], however, the infection efficiency and replication ability of the linear HBV 

DNA in vitro, and especially in vivo, was relatively insufficient. 

It is reported that blood is a much more accessible source of the HBV genome than the liver in 

hepatitis B patients. The virion-associated HBV DNA is composed of a full-length minus strand and  

a plus strand of variable length, and it has a relaxed circular configuration. Some scientists have 

developed a method to amplify the full-length HBV genome using a primer pair targeting the highly 

conserved precore region, which happens to be present at both the 5' and 3' ends of the minus-strand 

DNA [17]. Ten years ago, Parekh and colleagues slightly modified the PCR (Polymerase Chain Reaction) 

primers such that the unique restriction sites incorporated into the sense and antisense primers permit  

the directional cloning of the PCR product [18]. 

In this study, the circularized HBV DNA could highly simulate the HBV cccDNA biological 

behavior in hepatocytes to a certain extent [19], which could better reflect the biological changes of 
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HBV infection in hepatocytes. In this research, we extracted HBV DNA from the patient serum and 

use the complete primer for PCR amplification and then cyclize to cccDNA. Then we successfully 

established animal models of persistent HBV infection in immunodeficient and immunocompetent 

mice by hydrodynamic injection in the mouse tail vein [20]; the hydrodynamic injection of the 

circularized HBV DNA, which has the self-replicating ability, could lead to HBV persistence for  

10 weeks. This animal model expressed HBV DNA, HBcAg, HBeAg and HBsAg, both in hepatocytes 

and serum, but the serum alanine aminotransferase (ALT) was normal and the inflammation in the 

liver was slight. The key features of this animal model for HBV persistence are similar to chronic 

HBV patients [21,22]. Through our research, the circularized HBV DNA could replicate and transcribe 

efficiently both in vitro and in vivo. The results could provide useful tools and methodology for further 

study of pathogenic mechanisms and potential antiviral treatments of human chronic HBV infection. 

2. Results 

2.1. Assessment of the Optimal Amount of Circularized HBV DNA and pAAV/HBV1.2 in Vitro and  

in Vivo 

The expression and replication of circularized HBV DNA and pAAV/HBV1.2 has been proved  

in vitro and in vivo in early trials. In vivo, the HBV1.2 supergenomic DNA could express and replicate 

in mice hepatocytes [23]. In vitro, the concentration gradient of circularized HBV DNA and 

pAAV/HBV1.2 were 1 × 108, 1 × 109, 1 × 1010, 1 × 1011, 1 × 1012 viral genome/well (six-well plates), 

respectively. In vivo, mice were divided into five groups (five in each group) and injected by  

various amount of circularized HBV DNA (1 × 1010, 1 × 1011, 1 × 1012, 1 × 1013 and 1 × 1014 viral 

genome/2 mL/mouse) and pAAV/HBV1.2 (1 × 1010, 1 × 1011, 1 × 1012, 1 × 1013 and 1 × 1014 viral 

genome/2 mL/mouse), respectively. The HBV DNA in vitro and in vivo (the serum samples were 

collected via the tail vein after seven days after injection) was detected by real-time fluorescent 

quantitative PCR. The results of three independent trials showed that the optimal amount of circularized 

HBV DNA and pAAV/HBV1.2 in vitro were both 1 × 1010 viral genome/well. The optimal amount of 

circularized HBV DNA and pAAV/HBV1.2 in vivo were 1 × 1012 viral genome/2 mL/mouse (Figure 1). 

 

Figure 1. Cont. 
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Figure 1. The expression and replication of circularized HBV DNA and pAAV/HBV1.2 

were detected in vitro and in vivo by qPCR (quantitative Polymerase Chain Reaction).  

(A) The expression of circularized HBV DNA in vitro (qPCR); (B) the expression of 

pAAV/HBV1.2 in vitro (qPCR); (C) the expression of circularized HBV DNA in vivo (qPCR); 

and (D) the expression of pAAV/HBV1.2 in vivo (qPCR). Values present the mean ± standard 

deviation of three independent experiments. * p < 0.05, vs. PBS (Phosphate Buffer Solution). 

2.2. Transfection and Hydrodynamic Injection of Circularized HBV DNA and pAAV/HBV1.2 Could 

Lead to Viral Gene Replication and Expression in Vitro and in Vivo 

The HBV gene expression and replication was tested by real-time fluorescent quantitative PCR and 

Southern blot (the total DNA was extracted from the cells, sera and livers of mice). As shown by the 

real-time fluorescent quantitative PCR assay and Southern blot analysis (Figure 2). In vivo, the HBV 

DNA could be detected on day 1 in all mice except the blank group, the sera HBV DNA of all mice 

except the blank group rose rapidly within the first week and reached the peak, and then began to 

decline promptly within a certain range. Most of the HBV inside the liver were cleared, especially the 

C57BL/6J mice; 100% of the injected circularized HBV DNA mice (nude), 80% of the injected 

circularized HBV DNA mice (C57BL/6J), 60% of the injected pAAV/HBV1.2 mice (nude) and  

40% of the injected pAAV/HBV1.2 mice (C57BL/6J) could persist to express the HBV DNA for  

10 weeks. The levels of HBV DNA in sera of the injected circularized HBV DNA mice were much 

higher than the injected pAAV/HBV1.2 mice (p < 0.05), which means that the replication level of 

circularized HBV DNA optimized the pAAV/HBV1.2 in mice, the infection efficiency of HBV in the 

immunocompetent mice was lower than in the immunodeficient (p < 0.05) (Figure 2A). Meanwhile, 

the study showed that in the transfected Huh7 and SMMC7721 cells, the cyclization of HBV DNA 

could replicate and transcribe efficiently, and the efficiency and replication ability of the circularized 

HBV DNA optimized the pAAV/HBV1.2 (Figure 2B). The level of HBV DNA in sera was much 

lower than in the liver for the same mice (Figure 2C). The HBV replication intermediates (relaxed 

circularized DNA, double stranded DNA, single stranded DNA) could be detected in vitro (Figure 2D) 

and in vivo (Figure 2E), the infection efficiency and replication ability of the circularized structure of 

HBV DNA overmatched that of the expression plasmid containing the linear structure of HBV DNA  

in vitro and in vivo, which was also confirmed by Southern blot analysis (p < 0.05). To further detect 

the levels of HBV RNA, the levels of HBV pgRNA were measured by RT-PCR using primers targeting 
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the 3.5 kb mRNA of the viral genome. The level of HBV pgRNA in the experimental group (circularized 

HBV DNA) was superior to the positive control group (pAAV/HBV1.2) in vitro and in vivo (Figure 2F,G). 

2.3. Expression of HBcAg in Vitro and in Vivo 

The expression of core protein was detected by IHC and Western blot analysis, as shown in  

Figures 3 and 4. The HBcAg-positive hepatic cells (both nuclear and cytoplasmic) were randomly 

interspersed throughout the hepatic lobule with a trend for localization in the central lobule (Figure 3). 

The HBcAg-positive hepatocytes of nude mice that were injected circularized HBV DNA were the 

highest (24% ± 8% of hepatocytes were positive; Figure 3A). The HBcAg-positive hepatocytes of 

C57BL/6J mice that were injected circularized HBV DNA were 13% ± 5% (Figure 3B). The 

HBcAg-positive hepatocytes of nude mice that were injected pAAV/HBV1.2 was 8% ± 4%  

(Figure 3C). The HBcAg-positive hepatocytes of C57BL/6J mice that were injected pAAV/HBV1.2 

was 5% ± 3% (Figure 3D). The expression of HBcAg in hepatocytes of the injected circularized HBV 

DNA mice were much higher than the injected pAAV/HBV1.2 mice, which means that the replication 

level of circularized HBV DNA optimized the pAAV/HBV1.2 in mice (p < 0.05). The infection 

efficiency of HBV in the immunocompetent mice was lower than in the immunodeficient (p < 0.05). 

The HBcAg-positive hepatocytes were surrounded by the inflammatory cells (except the nude mice) 

and presented partial apoptosis features. The HBcAg could be detected in vitro (Figure 4A) and in vivo 

(Figure 4B) by Western blot analysis. The results showed that the levels of HBcAg of the circularized 

HBV DNA were superior to that of the pAAV/HBV1.2 in vitro and in vivo, which was also confirmed 

by Western blot analysis (p < 0.05). 

 

Figure 2. Cont. 
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Figure 2. The expression of HBV DNA and HBV pgRNA were detected in vitro and  

in vivo by qPCR, Southern blotting (SB) and RT-PCR. (A) The levels of HBV DNA in 

sera (qPCR); (B) The levels of HBV DNA in the Huh7 and SMMC7721 cells (qPCR);  

(C) The levels of HBV DNA in hepatic tissue of mice (qPCR); (D) The levels of HBV 

replication intermediates in the Huh7 and SMMC7721 cells (SB); (E) The levels of HBV 

replication intermediates in livers (SB); (F) The levels of HBV pgRNA in the Huh7 and 

SMMC7721 cells; (G) The levels of HBV pgRNA in hepatic tissue of mice. Values present 

the mean ± standard deviation of three independent experiments. * p < 0.05, vs. control.  

bp, base pairs; rc DNA, relaxed circularized DNA; ds DNA, double-stranded DNA; ss DNA, 

single-stranded DNA. RT-PCR, Reverse Transcription-Polymerase Chain Reaction. 

 

Figure 3. Detection of HBcAg (Hepatitis B Core Antigen) in hepatic tissue of mice at 70 dpi 

by immunohistochemistry assay (IHC) (Original magnification: ×400). (A,C,E) IHC for 

HBcAg in liver of nude mice injected with circularized HBV DNA, pAAV/HBV1.2 and 

PBS, respectively; (B,D,F) IHC for HBcAg in liver of C57BL/6J mice injected with 

circularized HBV DNA, pAAV/HBV1.2 and PBS, respectively. 



Int. J. Mol. Sci. 2015, 16 5147 

 

 

 

Figure 4. Detection of HBcAg in vitro (A) and in vivo (B) by Western blot assay.  

(A) Western blotting results of HBcAg in Huh7 and SMMC7721 cells, which were transfected 

for five days; and (B) Western blotting results of HBcAg in hepatic tissue of mice which 

were infected for 70 days. β-Actin served as a loading control. 

2.4. Expression of ALT, HBsAg and HBeAg in Vitro and in Vivo 

The level of ALT, HBsAg and HBeAg in serum was detected in a predetermined time by ELISA 

and RIA, respectively (Figure 5). In this study, the level of the supernants and serum alanine 

aminotransferase (ALT ranging from 18 to 32 U/L) were not significantly changed (which were not 

shown). In vitro, the HBsAg (Figure 5A) and HBeAg (Figure 5B) could be detected on day 5, except 

in the PBS group; and the HBsAg and HBeAg expression of the circularized HBV DNA group were 

higher than the pAAV/HBV1.2 group (p < 0.05), both in Huh7 and SMMC7721 cells. In vivo,  

the HBsAg (Figure 5C) and HBeAg (Figure 5D) could be detected on day 1 in all mice, except the 

blank group; the HBsAg and HBeAg of all mice except the blank group rose rapidly within the first 

week and reached the peak; and then began to decline promptly within a certain range. The HBsAg 

and HBeAg expression of nude mice, which were injected circularized HBV DNA was the highest  

(281.75 and 37.45 ng/mL). In 100% of nude mice that were injected circularized HBV DNA, the 

HBsAg and HBeAg persisted for 10 weeks. In 80% of C57BL/6J mice that were injected circularized 

HBV DNA, the HBsAg and HBeAg also persisted for 10 weeks. In 60% of nude mice that were injected 

pAAV/HBV1.2, the HBsAg and HBeAg persisted for 10 weeks. In 40% of C57BL/6J mice that were 

injected pAAV/HBV1.2, the HBsAg and HBeAg persisted for 10 weeks. The expression of HBsAg  

and HBeAg in sera of the injected circularized HBV DNA mice were much higher than the injected 

pAAV/HBV1.2 mice, which means that the replication level of circularized HBV DNA optimized the 

pAAV/HBV1.2 in mice (p < 0.05), the infection efficiency of HBV in the immunocompetent mice was 

lower than in the immunodeficient (p < 0.05). The expression of HBsAg in hepatic tissue of mice at  

70 dpi by IHC showed that the infection efficiency of circularized HBV DNA optimized the 

pAAV/HBV1.2 in vivo. The HBsAg-positive hepatocytes were surrounded by the inflammatory cells 

(except the nude mice) and presented partial apoptosis features (Figure 6). 
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Figure 5. The levels of HBsAg and HBeAg in supernatants and sera were detected by RIA. 

(A) The levels of HBsAg in supernatants at 5 dpi after transfection; (B) the levels of  

HBeAg in supernatants at 5 dpi after transfection; (C) the levels of HBsAg in sera after 

hydrodynamic injection; and (D) the levels of HBeAg in sera after injection. HBsAg, 

Hepatitis B Surface Antigen; HBeAg, Hepatitis B e Antigen; RIA, Radio Immunity Assay; 

PBS, Phosphate Buffer Solution. 
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Figure 6. Detection of HBsAg in hepatic tissue of mice at 70 dpi by IHC assay (Original 

magnification: ×400). (A,C,E) IHC for HBsAg in liver of nude mice injected with 

circularized HBV DNA, pAAV/HBV1.2 and PBS, respectively; and (B,D,F) IHC for 

HBsAg in liver of C57BL/6J mice injected with circularized HBV DNA, pAAV/HBV1.2 

and PBS, respectively. IHC: Immunohistochemistry. 

2.5. Hepatic Histopathological Changes in Mouse Liver 

We further examined whether the HBV clearance in the injected C57BL/6J mice was associated 

with stronger immune responses compared with those of the nude mice. The livers of C57BL/6J and 

nude mice at 70 dpi were stained with hematoxylin and eosin. The livers of C57BL/6J mice (except the 

blank group) at 70 dpi showed multiple foci of mononuclear cell infiltration, but the livers of nude 

mice (except the blank group) showed slight inflammatory reaction. The HBV plasmid could provoke 

the obvious immune response to the immunocompetent mice not the immunodeficient mice. 

Long-term expression of HBV in these carrier mice did not cause severe liver damage, as also 

evidenced by normal serum alanine aminotransferase levels (ranging from 18 to 32 U/L). The liver 

tissue of the C57BL/6J and nude mice (except the blank group) exhibited clearly visible lesions.  

A large number of hepatocytes showed fat degeneration or vacuoles degeneration. The structure of the 

hepatic lobule and hepatic cord was fuzzy. It was shown that the persistent HBV infection could cause 

scattered chronic inflammatory cell infiltrates, and the arteries were thickened and surrounded by the 

inflammatory cells and presented partial apoptosis features (except the blank group) (Figure 7).  

In addition, we have detected the expression of TNF-α and IL-6 in vivo by RT-PCR (Figure 8).  

The expression of TNF-α and IL-6 in the circularized HBV DNA group and pAAV/HBV1.2 were  

both higher than the blank group in vivo. But there were significant statistically significant differences 

only in the control group vs. the blank group (only in the immunocompetent mice not the 

immunodeficient mice). 
  



Int. J. Mol. Sci. 2015, 16 5150 

 

 

 

Figure 7. Detection of hepatic histopathological changes in hepatic tissue at 70 dpi by HE 

assay (Original magnification: ×400). (A,C,E) HE assay for hepatic histopathological 

changes in liver of nude mice injected with circularized HBV DNA, pAAV/HBV1.2 and 

PBS, respectively; (B,D,F) HE assay for hepatic histopathological changes in liver of 

C57BL/6J mice injected with circularized HBV DNA, pAAV/HBV1.2 and PBS, respectively. 

HE, Hematoxylin-Eosin; PBS, Phosphate Buffer Solution. 

 

Figure 8. The expression of TNF-α and IL-6 were detected in vivo by RT-PCR. (A) The 

levels of TNF-α in the liver; and (B) the levels of IL-6 in the liver. Values represent the 

mean ± standard deviation of three independent experiments. * p < 0.05, vs. PBS. TNF, 

Tumor Necrosis Factor; IL, Interleukins. 

3. Discussion 

HBV infection is a major public health problem. HBV can be transmitted sexually, percutaneously 

and perinatally. Approximately 90% of HBV infection in adults can be cleared, whereas 90% of HBV 

persistent infection in neonates are acquired perinatally [24]. The viral genetic structure and biological 
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function have been studied fully; nevertheless, HBV infection seriously threatens human health as  

new infections continue to occur. HBV is non-cytopathic, which could lead to cytotoxicity mainly by 

immune mediation; HBV causes T8 cell subset cytotropism; and HBV intruding into immunological 

cells is an important reason of cellular immune dysfunction, both in patients and mice [25]. 

HBV is a hepadnavirus, which is strongly addicted to hepatocytes of humans; the study of HBV 

pathogenic mechanisms and the new therapies have been hampered by the lack of useful and convenient 

animal models. Mouse models of HBV infection have significantly aided to our comprehension of the 

HBV lifecycle and pathogenesis, however the efficiency and stability of HBV infection is very low. 

HBV transgenic mice were already very mature, but this model will not lead to liver inflammation and 

formation cccDNA, which is distinct from the process of human infection [26,27]. 

Due to the high species and tissue specificity of HBV [28], so far, the study of HBV is commonly 

used in mouse models with linear HBV 1.2 or 1.3 times the DNA, which is inserted into the eukaryotic 

expression vector, then injected to mice via the tail vein, and acute or chronic HBV infection could be 

achieved [8,9,29]. However, the efficiency of infection and stability were unsatisfactory. The most 

important step in HBV DNA replication of hepatocytes is the conversion of the viral rcDNA genome 

into cccDNA, which is the template for the transcription of viral mRNAs and indicates a successful 

initiation of infection. Therefore, in this study, the circularized HBV was used to develop stable mouse 

models of HBV persistent infection. This means that the cyclization of HBV DNA could simulate the 

actual infection process of HBV, which could lead to acute or chronic HBV infection of humans. In the 

hepatocytes of humans, the HBV DNA could form cccDNA by covalent ligation of both DNA strands, 

which was the actual pathological mechanism of chronic HBV infection [19]. There may be 1–50 cccDNA 

molecules in each infected hepatocyte, which means that the HBV cccDNA is a decisive factor for the 

persistence of HBV infection; the HBV cccDNA, which only accumulates in the nucleus, serves as a 

template for the transcription of all the viral mRNAs that indicates a successful initiation of infection [30]. 

In this experimental system, the PCR product was cloned before transfection, which could enable 

the unlimited supply of each HBV genome for repeated experiments or further mutagenesis. The 

circularized HBV DNA (which was circularized by the BspQI-linearized HBV genome with T4 DNA 

ligase) could greatly improve the replication and expression of core protein. Alternatively, a cryptic 

polyadenylation signal elsewhere in the HBV genome or in pUC18 vector was used. The transfection 

of the uncut full-length PCR clones could permit the very efficient expression of viral envelope 

proteins. As mentioned previously, this increased sensitivity was useful to study immune escape 

mutants, which harbor amino acid substitutions in the S protein that abolish or diminish its detection 

by antibodies raised against wild-type protein [31–33]. In addition, occult HBV infection also has been 

attributed to infection by such immune escape mutants [34,35]. 

Recently, the widely used mouse models with HBV infection were based on hydrodynamic injection 

of HBV replication-competent plasmids (pAAV/HBV1.2), which produce monomeric linear HBV 

genome DNA in mouse model [36,37]. In this study, we made some modifications of circularized  

HBV DNA procedures as mentioned by Qin et al. [38] and developed a convenient and efficient animal  

model for HBV infection, with comparable infection efficiency and replication ability as well as 

pAAV/HBV1.2. Previous studies have demonstrated that virological properties of HBV isolates were 

implicated in antiviral response and particular clinical outcomes [39,40]. In comparison to the HBV 

replication-competent plasmids, circularized HBV DNA were derived from clinical isolates, thus it will 
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be more valuable for evaluating the functional properties of clinical HBV isolates and predicting the 

response to antiviral drugs. Furthermore, without any foreign sequence and resultant immune response, 

circularized HBV DNA mimics the natural course of HBV infection and this system provides a valuable 

tool for the study of HBV virological properties and for selection of antiviral drugs. Taken together,  

the current HBV mouse model based on circularized HBV DNA helps researchers to determine the 

impact of host and viral factors on viral replication, expression and pathogenesis, and then assess the 

antiviral potential of pharmacological agents and physiological processes. 

In this study, the HBV persistent infected animal models were built successfully by the hydrodynamic 

injection of circularized HBV DNA, which was superior to the pAAV/HBV1.2. The specific 

mechanism may be that the circulating volume in mice has increased dramatically within a very short 

time-frame, which exceeded the heart load to a great extent. The blood, which included a large number 

of HBV plasmid accumulated in the hepatic sinusoids, could not backflow, which prolonged the 

residence time of plasmid DNA in the hepatic sinusoids. Under the conditions of high pressure and 

large blood loads, the plasmid DNA could be absorbed by the hepatocytes [41]. It could be concluded 

that the persistent infection of HBV is determined not only by the plasmid backbone but also the 

mouse genetic background; the infection efficiency of HBV in the immunocompetent mice was lower 

than in the immunodeficient and the replication level of circularized HBV DNA optimized the 

plasmids containing linear HBV DNA in vivo, the mouse models could help researchers to determine 

the impact of host and viral factors on HBV pathogenesis, expression and replication, and to assess  

the antiviral potential of pharmacological agents and physiological processes, including the immune 

response. There are also some studies that have shown that infection of immune-competent mice with 

low doses of an adenoviral vector resulted in persistent HBV infection; the mice neither underwent 

seroconversion production of antibodies against HBV nor developed a strong HBV-specific effector 

T-cell response [42]. We will explore the specific pathogenic mechanisms and radical treatment for 

HBV infection. The next plan will be to test different infective doses and routes of HBV DNA, which 

will be packed in adenovirus, to see if they can stimulate green fluorescent. The plasmid will be 

microinjected via the hepatic portal vein or tail vein of mice, which may increase the infection 

efficiency and stability. The real-time dynamic observation of HBV infection could be fulfilled by the 

green fluorescent in this model. We hope to find the optimal infective dose and route for persistent 

HBV infection, which could further clarify the pathogenesis of chronic HBV infection and novel 

antiviral treatment and thoroughly solve this serious threat to human health. 

4. Experimental Section 

4.1. Primers 

The upstream and downstream of the full-length HBV DNA primers were designed by the Primer 

5.0 software; both contained the BspQI endonuclease site [43]. The HBV complete forward primer: 

5'-TTATGCTCTTCTTTTTCACCTCTGCCTARTCATC-3', the HBV complete reverse primer: 

5'-TCATGCTCTTCAAAAAGTTGCATGGTGCTGGTG-3'. The primers for detection and amplification 

of the HBV DNA fragments were designed specifically for the conserved region of the HBV  

gene by the Primer 5.0 software and the sequences were as follows: forward primer (F402): 
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5'-CCTCTTCATCCTGCTGCT-3'; and reverse primer (R718): 5'-AACTGAAAGCCAAACAGTG-3'. 

All the primers were synthesized by Invitrogen Bio-Tech Co., Ltd. (Shanghai, China). 

4.2. Cells 

The Huh7 and SMMC7721 cells were provided by the Laboratory of Molecular Biology on 

Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China. All the 

cells were kept as monolayer cultures with Dulbecco’s Modified Eagle’s Medium containing 10% fetal 

bovine serum, 100 U/mL streptomycin and 100 mg/mL penicillin, which were all provided by the 

same company (DMEM; Hyclone, Shanghai, China). All the cells were cultured in a humidified 

incubator with 5% CO2 at 37 °C. 

4.3. Animals 

Male nude and C57BL/6J mice (6–8 weeks old, 18–24 g, SPF level) were provided by the Laboratory 

Animal Center of Chongqing Medical University. The Chongqing Medical University Medical Research 

of Ethics Committee approved all animal experiments (The Ethics Committee of Chongqing Medical 

University: 2014015, 5 March 2014). All animals ate rat chow and drank sterile water ad libitum, and 

were kept at a 12 h light–dark cycle at a constant humidity and temperature. 

4.4. The Preparation of Circularized HBV DNA and pAAV/HBV1.2 

To establish circularized HBV DNA, the primers for fragment and full-length amplification 

containing BspQI restrictive enzyme cutting site were designed and HBV DNA from patients (subtype 

adw) was used as a template. The full-length HBV was acquired by nested PCR combined with 

sectional amplification. The full-length HBV DNA was cloned into pMD19-T vector. The circularized 

HBV DNA could be obtained by the restrictive enzyme digestion and T4 DNA ligase ligation.  

The establishment of pAAV/HBV1.2 was that the HBV1.2 full-length DNA was subcloned from the 

plasmid pHBV-48, which contains 1.2 copies of the HBV genome (subtype adw) to a rAAV vector, 

pAAV-GFP [44]. Two fragments (which were digested by EcoRI/BglII and BamHI/EcoRI, respectively) 

of pHBV-48 were cloned into a BglII site of the AAV-GFP vector. The consequent pAAV/HBV1.2 

incorporates the HBV fragment crossing nucleotides 1400~3182/1~1987, which were flanked by the 

inverted terminal repeats of the AAV. The HBV gene expression cassette, which was located inside 

the two inverted terminal repeats, was resected by the SmaI digestion of the pAAV/HBV1.2 [16] 

(Figure 9). The pAAV/HBV1.2 was kindly provided by Prof. Chen PJ (Graduate Institute of Clinical 

Medicine, College of Medicine, National Taiwan University). 
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Figure 9. Generation of replication-competent HBV forms (circularized HBV DNA) from 

full-length PCR product. Primers targeting the precore region permit the amplification of 

the full-length HBV genome from virion-associated DNA. The replication of the HBV 

genome requires the transcription of the 3.5-kb terminally redundant pg RNA under the 

core promoter (shown in a black oval), which is feasible from the cccDNA template,  

but not from a single copy of the HBV genome cloned to a vector. One approach is to 

release the HBV insert by digestion with BspQI, followed by the construction of an EcoRI 

dimer through an intermediate of the precore dimer. A much simpler approach is to use the 

BspQI digest, which is converted to a circular form by a cellular ligase or, more efficiently, 

by T4 DNA ligase in vitro and in vivo. 

4.5. The Transfection of Circularized HBV DNA and pAAV/HBV1.2 to Cells 

The Huh7 (1 × 105 cells/well) and SMMC7721 (1 × 105 cells/well) cells were seeded in the six-well 

plates and cultured overnight at 37 °C with 5% CO2. On the following day, the circularized HBV DNA 

(1 × 1010 viral genome/well) and pAAV/HBV1.2 (1 × 1010 viral genome/well) were added to the 

culture medium (the blank group added PBS). When the cell density reached 70%, it was followed by 

3 days incubation in the same culture medium and were placed in a humidified incubator with 5% CO2 

at 37 °C. On the fifth day, the supernatants and cells were collected and counted. 

4.6. The Hydrodynamic Injection of Circularized HBV DNA and pAAV/HBV1.2 to Mice 

Sixty nude mice and sixty C57BL/6J mice were randomly divided into 3 groups (20 mice in each 

group). The experimental group was injected with circularized HBV DNA (1 × 1012 viral genome/ 

2 mL/mouse), the control group was injected with pAAV/HBV1.2 (1 × 1012 viral genome/2 mL/mouse), 

and the blank group was injected with PBS (2 mL). Mice were injected with circularized HBV DNA 

and pAAV/HBV1.2 (dissolved in 2 mL PBS) via the tail vein within 5–8 s [20]. The injection rate was 

0.3 mL/s [45]. The serum samples were collected via the tail vein 1 day, 3 days, 1 week, 2 weeks,  
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3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks and 10 weeks after injection. The mice were sacrificed 

after 10 weeks and then the serum and liver tissue were collected. 

4.7. Detection and Quantification of HBV DNA 

In this study, the cells, serum and hepatictissue HBV DNA were detected by real-time fluorescent 

quantitative PCR. The serum (50 μL) and hepatictissue (20 mg) total DNA was extracted by the 

TIANamp Virus DNA/RNA Kit (Tiangen Bio-Tech Co., Ltd., Beijing, China) and Wizard® Genomic 

DNA Purification Kit (Promega, Madison, WI, USA), 2 μg total DNA was used for qPCR. The 

quantification of HBV copies was performed by SYBR-Green assays using FastStart Universal 

SYBR-Green Master mix (Roche Diagnostics GmbH, Mannheim, Germany). Primers for amplification 

of the HBV DNA fragments were designed specifically for the conserved region of the HBV gene by 

Invitrogen Bio-Tech Co., Ltd. (Shanghai, China) and the sequences were as follows: Forward primer 

(F402), 5'-CCTCTTCATCCTGCTGCT-3'; and reverse primer (R718), 5'-AACTGAAAGCCAAACAGTG-3'. 

The standard curve was established by the serum HBV DNA of a hepatitis B patient (as a known titer: 

2 × 103, 2 × 104, 2 × 105, 2 × 106, 2 × 107 and 2 × 108 copies/μL). PCR reaction was programmed as 

follows: 3 min at 95 °C; 40 cycles of 20 s at 94 °C; 30 s at 50 °C (qPCR/Melt data acquisition); and  

32 s at 72 °C. 

4.8. Detection and Quantification of HBV pgRNA 

The total RNA of the cells and hepatic tissue were detected by the DNA-free RNA Mini Extraction 

kit (Watson, Shanghai, China) and 1 μg total RNA was used for cDNA synthesis, which was 

conducted by reverse transcription using the PrimeScript RT reagent kit (Perfect Real Time; Takara 

Bio, Inc., Shiga, Japan). The relative quantification of HBV pgRNA was performed by SYBR Green 

assays, the β-actin mRNA was treated as an endogenous control. The expression values of HBV 

pgRNA were calculated using the 2−ΔΔCt method. 

4.9. Detection and Quantification of ALT, HBsAg and HBeAg 

The supernatant of the culture medium and serum ALT were detected by the Mouse Alanine 

Aminotransferase ELISA kit (Bogoo Bio-Tech Co., Ltd., Shanghai, China). The supernatant of the 

culture medium and serum HBsAg and HBeAg were detected by Diagnostic Kit for Hepatitis  

B s Antigen and Hepatitis B e Antigen (Radioimmunoassay, Beijing North Biotechnology Research 

Institute, Beijing, China). 

4.10. Detection and Quantification of TNF-α and IL-6 in Vivo 

The total RNA of the hepatic tissue were detected by the DNA-free RNA Mini Extraction  

kit (Watson, Shanghai, China) and 1 μg total RNA was used for cDNA synthesis, which was 

conducted by reverse transcription using the PrimeScript RT reagent kit (Perfect Real Time; Takara 

Bio, Inc.). Primers for amplification of the TNF-α and IL-6 were synthesized by Invitrogen Bio-Tech 

Co., Ltd. (Shanghai, China) and the sequences were as follows: forward primer, TNF-α: 

5'-CAGCCGATGGGTTGTACCTT-3', IL-6: 5'-GAGAAAAGAGTTGTGCAATGGC-3'; and reverse 
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primer, TNF-α: 5'-GGCAGCCTTGTCCCTTGA-3', IL-6: 5'-ACTAGGTTTGCCGAGTAGACC-3'. 

The relative quantification of TNF-α and IL-6 was performed by SYBR Green assays, the β-actin 

mRNA was treated as an endogenous control. The expression values of TNF-α and IL-6 were  

calculated using the 2−ΔΔCt method. 

4.11. Hepatic Histopathological and Immunohistochemical Analysis (IHC) 

The hepatic histopathological change could be observed by HE (Htoxylin Eosin) staining. The 

location and expression of virus antigen in liver tissue could be detected by immunohistochemical 

staining [46]. Paraformaldehyde-fixed paraffin-embedded tissue sections (4.5 μm thickness) were 

stained with HE and IHC staining. HBsAg and HBcAg were determined in the liver sections by the 

IHC Staining with mouse anti-HBsAg (ab20402, Abcam, Cambridge, UK) and rabbit anti-HBcAg 

(B0586, DAKO, Glostrup, Denmark). The negative staining contrasts were stained with PBS only. 

4.12. Southern Blot Analysis 

The HBV replicative intermediates were extracted from the Huh7 and SMMC7721 cells [41]. 

Meanwhile, the HBV total DNA has been extracted from the hepatocyte by Wizard® Genomic  

DNA Purification Kit (Promega) and then the DNA were separated by 0.8% agarose gels. The DNA 

samples were shifted to nitrocellulose membranes (Roche Diagnostics GmbH). The membranes  

were ultraviolet crosslinked and prehybridized and then the hybridizations were marked by  

a digoxigenin-labeled HBV-specific probe, which was a Random-Primed DNA Labeling kit (Roche 

Diagnostics GmbH). The signal was probed by the exposure of an X-ray film and scanned by the 

Versa Doc Imaging system (Bio-Rad, Hercules, CA, USA). 

4.13. Western Blot Analysis 

The cellular proteins in the Huh7 and SMMC7721 cells were extracted using radio immunoprecipitation 

buffer supplemented with phenylmethanesulfonyl fluoride. Meanwhile, the fresh liver tissue were fully 

ground by the tissuelyser-24 (Shanghai Jingxing Science and Technology Co., Ltd., Shanghai, China) and 

then 1% RIPA Lysis Buffer (Beyotime Institute of Biotechnology, Shanghai, China) was added until 

the cells were lysed sufficiently. The protein concentration was tested by a bicinchoninic acid assay 

protein concentration determination kit (Beyotime Institute of Biotechnology, Shanghai, China). Equal 

quantities of samples were separated by 10% SDS-PAGE and then transferred to a polyvinyl difluoride 

(PVDF) membrane. The membranes were incubated by polyclonal monoclonal rabbit anti-HBcAg 

(B0586, DAKO, Denmark). The membranes were washed three times in TBST and then incubated by 

a goat anti-rabbit secondary antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). The 

signals were determined by the Enhanced Chemiluminescence Detection system (Pierce Biotechnology, 

Inc., Rockford, IL, USA) and the β-actin was used to normalize the laboratory data [47]. 

4.14. Statistical Analysis 

The data were expressed as mean ± standard deviation (at least three independent experiments). 

Statistical analysis was performed using the independent t-test. The one-way analysis of variance was 
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used to assess the differences between groups and the laboratory data were considered to be 

statistically significant when p < 0.05. All analyses were calculated by the Statistical package of the 

Social sciences statistical software for windows, version 19.0.1 (SPSS, Inc., Chicago, IL, USA). 

5. Conclusions 

In summary, we successfully evaluated the infection efficiency and replication ability between  

the circularized and the linear HBV DNA in vitro and in vivo for the first time. The infection 

efficiency of HBV DNA in the immunocompetent mice was lower than in the immunodeficient.  

The infection efficiency and replication ability of the circularized structure of HBV DNA overmatched 

that of the expression plasmid containing the linear structure of HBV DNA in vitro and in vivo.  

The results could provide useful tools and methodology for further study of pathogenic mechanisms 

and potential antiviral treatments of human chronic HBV infection. 
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