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Nucleotide addition cycle (NAC) is a fundamental process utilized by nucleic acid
polymerases when carrying out nucleic acid biosynthesis. An induced-fit mechanism is
usually taken by these polymerases upon NTP/dNTP substrate binding, leading to active
site closure and formation of a phosphodiester bond. In viral RNA-dependent RNA
polymerases, the post-chemistry translocation is stringently controlled by a structurally
conserved motif, resulting in asymmetric movement of the template-product duplex. This
perspective focuses on viral RdRP NAC and related mechanisms that have not been
structurally clarified to date. Firstly, RdRP movement along the template strand in the
absence of catalytic events may be relevant to catalytic complex dissociation or
proofreading. Secondly, pyrophosphate or non-cognate NTP-mediated cleavage of the
product strand 3′-nucleotide can also play a role in reactivating paused or arrested
catalytic complexes. Furthermore, non-cognate NTP substrates, including NTP analog
inhibitors, can not only alter NAC when being misincorporated, but also impact on
subsequent NACs. Complications and challenges related to these topics are also
discussed.
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INTRODUCTION

RNA viruses are a large collection of diverse, rapidly evolving viruses with a wide host range covering
bacteria and eukaryotes (Krupovic et al., 2018). In recent years, emerging and re-remerging RNA
viruses causing human and animal diseases have posed a great impact to our daily life.
Understanding the fundamental features of RNA viruses has become an attractive and rapid
growing research area ever since the emergence of severe and acute syndrome coronavirus 2
(SARS-CoV-2) causing the coronavirus disease 2019 (COVID-19) (Zhou et al., 2020). Effective
antivirals and vaccines are in urgent need for prevention and control of known and future RNA virus
pathogens. One unique feature of RNA viruses is that their genome replication and transcription
processes are DNA-independent, thus requiring a virally-encoded RNA-dependent RNA polymerase
(RdRP) to carry out these essential processes of the virus life cycle (Wolf et al., 2018). Due to their
essentialness and highest conservation level, RdRPs have become attractive targets to develop
antivirals with high potency and/or broad-spectrum potential. Although being considered the most
conserved protein of RNA viruses, RdRPs are still quite diverse with respect to their global structure
organization (Lesburg et al., 1999; Thompson and Peersen, 2004; Lu and Gong, 2013; Pflug et al.,
2014; Liang et al., 2015; Jia and Gong, 2019; Kirchdoerfer and Ward, 2019), initiation mechanisms
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(Butcher et al., 2001; Reich et al., 2014; Appleby et al., 2015;
Zhang et al., 2021), and regulation by host and viral factors
(Kidmose et al., 2010; Liu et al., 2018; Chen et al., 2020; Yan et al.,
2021a). Nucleotide addition cycle (NAC), a process shared by all
nucleic acid polymerases carrying out NTP/dNTP-driven
phosphodiester bond formation (Huang et al., 1998; Li et al.,
1998; Yin and Steitz, 2004; Kornberg, 2007; Gong and Peersen,
2010), may thus be the most conservative part of viral RdRP
working mechanisms. Understandings of common features in
RdRP NAC can help describe the viral genome replication and
transcription processes that are composed of thousands of NACs
and can benefit development of nucleot(s)ide analog drugs
targeting viral RdRPs (Gong, 2021; Johnson and Dangerfield,
2021).

NAC of nucleic acid polymerase typically contain four
microsteps: NTP/dNTP binding, active site closure, phosphoryl

transfer reaction (chemistry), and translocation, while four
structural reference states (S1-S4) are usually used to help
depict these microsteps (Figure 1A, central part with pink
background). Critical conformational changes have been found
accompanying active site closure (S2 to S3) and translocation (S4
to S1) (Temiakov et al., 2004; Yin and Steitz, 2004; Wang et al.,
2006). In viral RdRPs, a unique palm-domain-based
conformational change takes place upon active site closure
(Zamyatkin et al., 2008; Gong and Peersen, 2010; Appleby
et al., 2015). By contrast, A-family polymerases represented by
bacteriophage T7 RNA polymerase and Thermus aquaticus (Taq)
DNA polymerase close the active site through a large-scale
conformational change of their fingers domain (Li et al., 1998;
Yin and Steitz, 2004). S3 and S4 structures that both have a closed
active site have been solved in multiple polymerase systems, and
consistently demonstrate the critical role of two divalent metal

FIGURE 1 | Viral RdRP NAC and possibly related processes. (A) RdRP NAC and its relationship with nucleotide addition-free translocation events and intrinsic
product cleavage activities. (a–d): four reference states of NAC; e–g: states derived fromRdRP forward translocation; (h–j): states derived from polymerase backtracking;
d to k: PPi mediated product cleavage; d to l: non-cognate NTP-mediated cleavage. The gray “pacman” represents a virally encoded exonuclease. (B) NAC intervention
by incorporation of non-cognate NTP or NTP analogs. Gray and pink ovals represent RdRP and its active site, respectively. Wherever necessary, double slashes
were used to indicate continuation of an RNA strand.
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ions in forming the transition state of the phosphoryl transfer
reaction (Steitz and Steitz, 1993). Two types of RdRP
translocation intermediate structures both highlight an
asymmetric movement of the template-product RNA strands
and stringent control of the template RNA movement by the
RdRP-specific template-interacting motif G (Shu and Gong,
2016; Wang et al., 2020a). Similar intermediates have been
observed with transcriptional pausing-related multi-subunit
DNA-dependent RNA polymerases (DdRPs) (Guo et al., 2018;
Kang et al., 2018), suggesting that this phenomenon may be
shared even by structurally unrelated polymerase families.

Although numerous NAC-state-related structures from
various viral RdRPs have provided a relatively complete
structural view of the cognate NTP-driven NAC, several
aspects directly or indirectly related to NAC have rarely been
addressed structurally in RdRPs including nucleotide addition-
free translocation, intrinsic product cleavage activities, and
perturbation of NAC by non-cognate NTPs and NTP analogs.
As discussed below, these events are possibly related to important
events including but not limited to RdRP catalytic complex
dissociation, proofreading, reactivation, fidelity control, and
effective intervention. In the following sections, a synoptic
introduction of these events and structural challenges to
approach them are discussed.

RDRP TRANSLOCATION BEYOND NAC

S1 and S4 represent the post- and pre-translocation states,
respectively. In a classic NAC, a post-translocation S1 complex
directs the binding of the incoming NTP, while the polymerase in
the pre-translocation S4 complex needs to translocate to the next
register and reopen its active site for the next NAC (Figure 1A,
central panel with pink background). By contrast, “forward”
movement from the post-translocation S1 and “backward”
movement from the pre-translocation S4 of the polymerase
can move the polymerase out of an NAC. The former, if
occurs successively, makes the 3′-end of the product RNA
move toward the upstream. The template-product duplex in
contact with the polymerase thus shortens and may lead to
dissociation of the complex (Figure 1Aa,e–g). These forward-
translocated states occur in DdRPs during intrinsic transcription
termination or in halted transcription elongation complexes, both
resulting in dissociation of the polymerase complex (Yarnell and
Roberts, 1999; Zhou et al., 2007). Similar situations may also be
induced by other nucleic acid binding proteins or nucleic acid
elements such as bacterial translocase Rho, bacterial
transcription-repair coupling factor Mfd, or the class I
transcription termination signal in T7 RNA polymerase
transcription (Kassavetis and Chamberlin, 1981; Macdonald
et al., 1994; Deaconescu et al., 2006; Murphy et al., 2009;
Roberts, 2019). However, dissociation routes unrelated to
RdRP forward translocation cannot be ruled out. Furthermore,
a Brownian ratchet model applied to DdRPs suggests that
polymerase can slide along the nucleic acid template driven by
thermal motion with the binding of incoming NTP serving as the
“ratchet” to favor the forward-translocated state (Guajardo and

Sousa, 1997; Vassylyev and Artsimovitch, 2005). Therefore, RdRP
may forward translocate simply through “diffusing” along the
template even without cis-acting elements or trans-acting factors.

The “backward” movement of the polymerase, better known
as backtracking in DdRP transcription, results in unraveling of
the template-product duplex downstream of the +1 site (the
position where incoming NTP binds during NAC). In DdRPs,
there is a channel to accommodate the single-stranded 3′-portion
of the product RNA and transcription factors such as bacterial
GreA/GreB and eukaryotic TFIIS can facilitate intrinsic
endonuclease activity of DdRP to reactivate transcription
(Abdelkareem et al., 2019; Bradley et al., 2019; Wang et al.,
2009). Proofreading activities in viral RdRPs have been found
in CoVs, with the virally encoded nsp14 protein utilizing its
exonuclease module to excise the 3′-nucleotide(s) of the product
RNA (Subissi et al., 2014) (Figure 1Ad,h–j). Backtracking-related
proofreading models were proposed in SARS-CoV-2 RdRP
studies, in which the viral helicase hypothetically facilitates
RdRP backtracking upon misincorporation and the 3′-end of
the product therefore is delivered to the exonuclease active site for
cleavage after multiple rounds of translocation events (Chen et al.,
2020; Yan et al., 2021b).

Except for recently reported backtracked SARS-CoV-2 RdRP
structures obtained using RNA scaffolds with designed
mismatches at the 3′-portion of the product RNA (Malone
et al., 2021), structures with the 3′-end of the product strand
poise upstream of position −1 (the position of the priming
nucleotide of the product strand) or downstream of position
+1 have rarely been captured in viral RdRPs. Nevertheless, these
nucleotide-addition-free translocation events likely occurs and
may indeed play important roles under certain circumstances. On
one hand, assembling an RdRP-RNA complex with other factors
may help visualize the forward translocated or backtracked states.
On the other hand, RdRP variants (i.e., from different viruses or
virus strains) or mutants with altered nature in controlling the
movement of either the template or the product strand may have
different odds in capturing these states by structural biology
approaches.

RDRP INTRINSIC CLEAVAGE ACTIVITIES
AND THEIR RELEVANCE TO
REACTIVATION
Pyrophosphate (PPi) is the byproduct of the NTP/dNTP-driven
phosphoryl transfer reaction in NAC. Under certain
circumstances (e.g., high PPi concentration in polymerase
assays), PPi can reverse the reaction through
pyrophosphorolysis (Figure 1Ac,d–k). Pyrophosphorolysis can
not only participate in proofreading by excising the non-cognate
nucleotide, but also play regulatory roles by modulating the
overall progress of nucleic acid synthesis (Imashimizu et al.,
2019). While PPi can be observed in pre-translocation
polymerase complex structures (Yin and Steitz, 2004; Gong
and Peersen, 2010), it has not been observed in polymerase
structures that has completed translocation, suggesting that
PPi release and translocation likely coincide in timing. Starting
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from a post-translocation S1 complex crystal, an interesting
reverse translocation intermediate structure was captured in an
enterovirus RdRP with PPi present in the soaking solution (Wang
et al., 2020a). In such a structure, the 3′-nucleotide of the product
moved from position −1 to almost position +1. Although
pyrophosphorolysis did not occur in the crystal, solution trials
mimicking the crystal soaking condition led to observation of
PPi-mediated cleavage (Wang et al., 2020a) (Figure 1Ad–k),
suggesting reverse translocation as a prerequisite of the
cleavage of a post-translocation complex. Another interesting
observation in this structure is the “slippage” between the
template-product RNA, resulting in a duplex only partially
matched. Completion of this reverse translocation thus
requires realigning of the two strands. Such a slippage-and-
realigning process was not observed in regular forward
translocation, in which basepairing interactions between the
two strands were maintained (Shu and Gong, 2016; Peersen,
2017; Wang et al., 2020a). Hence, the reverse translocation is
relatively energetically-unfavorable.

Another known polymerase activity cleaving the 3′-nucleotide
of the product strand is mediated by non-cognate NTPs. First
reported in human immunodeficiency virus 1 (HIV-1) reverse
transcriptase (RT), a non-cognate NTP can induce the cleavage of
the product strand 3′-nucleotide, forming a dinucleotide with a
5–5′ poly-phosphate (tetra- or tri-phosphate) linkage when the
incoming cognate dNTP is not available (Meyer et al., 1998).
Similar activities were subsequently observed in hepatitis C virus
(HCV) RdRP (Jin et al., 2013a). In both systems, a chain
terminating nucleotide can be cleaved by this NTP-mediated
activity to yield an extendable 3′-end, and thus implying its
potential role in proofreading.

Unlike CoVs, many other RNA viruses do not encode an
exonulease and thus sometimes are considered error-prone.
However, PPi- and NTP-mediated cleavage activities by RdRP
itself may play key roles in maintaining viral genome stability and
keeping the virus away from the error-catastrophe threshold
(Crotty et al., 2001). Furthermore, RdRP pausing or arrest
caused by RNA elements or regulatory proteins can in
principle also be resolved by these activities. As polymerases
can pause at either pre- or post-translocation NAC states
(Figures 1Aa,d) but both cleavage activities likely occur at
pre-translocation state (Figure 1Ad–l), polymerase
backtracking to the pre-translocational position for cleavage
may increase the opportunity of rescuing the complex from a
“trapped” status. To date, the structural basis of the NTP-
mediated cleavage has remained elusive, while structural
understandings of pyrophosphorolysis can be readily achieved
through its reverse steps of nucleotide addition and the preceding
reverse translocation.

RDRP NAC REGULATION BY
NON-COGNATE NTP OR NTP ANALOGS

As the major source of nucleotide mutations, misincorporation
by nucleic acid polymerases and its mechanisms are of great
interest in understanding evolution of species.

Misincorporations, often considering basepairing mismatch
derived events, occur at a rate of 10−3–10−5 if not considering
proofreading (Drake and Holland, 1999; Chen et al., 2000;
Johnson et al., 2000; Zhang et al., 2000). Therefore, it is
generally difficult to capture misincorporation-related
polymerase structural states. A classic work in this aspect is
from a systematic study in Bacillus stearothermophilus DNA
polymerase I fragment (BF), a high-fidelity DNA polymerase
(Johnson and Beese, 2004). By attempting every possible
mismatched base pair combination, multiple mismatch-
containing crystal structures were solved at atomic resolution,
depicting various types of mismatches and their direct impact on
NAC. By solving a set of structures with extension of a G:T
mismatch in successive NACs, distortion of a mismatch up to six
register from the 3′-end of the product was found to have an
impact on the active site through long-range transmission. By
contrast, systematic structure determination of mismatch-
containing RdRP catalytic complexes is lacking.

The successful usage (Rubin et al., 2020) of nucleotide/
nucleoside analog (NA) drugs in treating RNA virus related
disease have emphasized the importance of this class of
compounds in prevention and control of existing and future
pathogens (Furuta et al., 2013; Gane et al., 2013; Rubin et al.,
2020). However, multiple factors including but not limited to the
differences among RdRP active sites, differences in optimal
prodrug forms targeting certain cell types, and emergence of
drug-resistant virus strains determine the effectiveness of an NA
on a certain virus and its broad-spectrum potential (Feng and
Ray, 2021; Jia et al., 2021; Seley-Radtke et al., 2021).
Understanding the intervention mechanism of the NTP form
of NA (the effective molecule in vivo) at enzymology and
structural levels is a key not only to identify repurposed NA
drugs, but also to design new NA drugs (Appleby et al., 2015; Xu
et al., 2017). As an example, remdesivir (RDV), a ribose 1′-
substituted adenosine analog, was first developed for Ebola
treatment and was found effective on other viruses including
various CoVs (Cho et al., 2012; Jacobs et al., 2016; Agostini et al.,
2018; Gordon et al., 2020a). A delayed intervention by the NTP
form of RDV (RDV-TP) likely at the third NAC after the first
incorporation was found in CoVs and subsequently in
enterovirus 71 (EV71) (Gordon et al., 2020b; Wu et al., 2021),
demonstrating both uniqueness and diversity of this compound
in RdRP intervention. Further characterizations revealed that
structurally equivalent S861 and S417 in SARS-CoV-2 and EV71
RdRPs are responsible for this delayed intervention likely through
steric hindrance of the RDV 1′-cyano group, and under certain
circumstances the incorporated RDV (i.e., the monophosphate
form of RDV) can overcome this serine roadblock (Tchesnokov
et al., 2020; Kokic et al., 2021; Seifert et al., 2021; Wu et al., 2021).
The non-terminating feature of RDV intervention awaits further
investigation considering the entire replication/transcription
process as well as viral protein translation if RDV-containing
transcripts are utilized to direct protein synthesis. The 1′-
substitutions are therefore endowed with broad-spectrum and
delayed intervention potentials in NA drug development.
Another notable NA type is represented by ribavirin,
favipiravir, and molnupiravir, all with ambiguous basepairing
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capability (Crotty et al., 2000; Jin et al., 2013b; Gordon et al.,
2021). For example, the N4-hydroxyl cytosine of molnupiravir
was structurally captured to direct the incorporation of either a
GMP or an AMP in SARS-CoV-2 RdRP (Kabinger et al., 2021).
Unlike immediate chain-terminating NAs or RDV, these
mutagenic NAs likely generate antiviral effects by driving the
viral population beyond the error-catastrophe threshold.

To date, structures of RdRP-RNA complexes containing non-
cognate NTP-derived mismatches are rarely reported, while
related structures depicting intervention mechanisms of
representative NAs have been emerging with the fast growing
of RNA virus research (Ferrer-Orta et al., 2007; Appleby et al.,
2015; Wang et al., 2020b; Kabinger et al., 2021; Kokic et al., 2021).
NAs with immediate chain terminating features may directly
interfere with the NAC at the +1 or -1 site (Figure 1Aa–d,Bm–n);
those are not immediately terminating can possibly propagate its
impact on NAC from remote sites (Figure 1Bo,p); incorporated
NAs that eventually become part of the full-length product may
affect NAC when reaching the active site and the template-
product binding regions as a template nucleotide
(Figure 1Bq–t). Together with enzymology characterizations,
solving more NA-containing RdRP-RNA structures with
representative modifications and intervention mechanisms will
provide key references for cell- and animal model-based NA
effectiveness assessment and a comprehensive pre-clinical
evaluation of NA drug candidates.

DISCUSSION

Representative NAC-related RdRP-RNA complex structures
have been reported in picornaviruses, HCV, influenza viruses,
bacteriophage ϕ6, and more recently in bunyaviruses and CoVs
(Butcher et al., 2001; Gong and Peersen, 2010; Gong et al., 2013;
Appleby et al., 2015; Arragain et al., 2020; Wang et al., 2020b;
Wandzik et al., 2020). However, a comprehensive structural
understanding of NAC requires much more representative

RdRP systems and determination of RdRP structures at
different phases of its replication and transcription. In most
cases, the replication/transcription complex (RTC) works as a
multi-subunit machinery and its components vary in different
processes and at different stages of a certain process (Reed and
Rice, 2000; Bollati et al., 2010; Smith and Denison, 2013).
Therefore, structures building on RdRP-RNA complex with
other RTC components in the assembly are also highly
valuable and in some cases more functionally relevant.
Continuing progress in cryo electron microscopy (cryo-EM)-
related techniques and deep learning-based structure prediction
of biological macromolecule and its complexes have been
providing a boost in understanding the RTC as well as the
NAC carried out by it (Frank, 2018; Tunyasuvunakool et al.,
2021).
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