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Evaluation of ADMA-DDAH-NOS axis in
specific brain areas following nitroglycerin
administration: study in an animal model of
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Abstract

Background: Nitric oxide (NO) is known to play a key role in migraine pathogenesis, but modulation of NO synthesis
has failed so far to show efficacy in migraine treatment. Asymmetric dimethylarginine (ADMA) is a NO synthase (NOS)
inhibitor, whose levels are regulated by dimethylarginine dimethylaminohydrolase (DDAH). Systemic administration of
nitroglycerin (or glyceryl trinitrate, GTN) is a NO donor that consistently induces spontaneous-like headache attacks in
migraneurs. GTN administration induces an increase in neuronal NOS (nNOS) that is simultaneous with a hyperalgesic
condition. GTN administration has been used for years as an experimental animal model of migraine. In order to gain
further insights in the precise mechanisms involved in the relationships between NO synthesis and migraine, we
analyzed changes induced by GTN administration in ADMA levels, DDHA-1 mRNA expression and the expression
of neuronal and endothelial NOS (nNOS and eNOS) in the brain. We also evaluated ADMA levels in the serum.

Methods: Male Sprague–Dawley rats were injected with GTN (10 mg/kg, i.p.) or vehicle and sacrificed 4 h later.
Brain areas known to be activated by GTN administration were dissected out and utilized for the evaluation of
nNOS and eNOS expression by means of western blotting. Cerebral and serum ADMA levels were measured by
means of ELISA immunoassay. Cerebral DDAH-1 mRNA expression was measured by means of RT-PCR. Comparisons
between experimental groups were performed using the Mann Whitney test.

Results: ADMA levels and nNOS expression increased in the hypothalamus and medulla following GTN administration.
Conversely, a significant decrease in DDAH-1 mRNA expression was observed in the same areas. By contrast, no
significant change was reported in eNOS expression. GTN administration did not induce any significant change
in serum levels of ADMA.

Conclusion: The present data suggest that ADMA accumulates in the brain after GTN administration via the
inhibition of DDAH-1. This latter may represent a compensatory response to the excessive local availability of NO,
released directly by GTN or synthetized by nNOS. These findings prompt an additional mediator (ADMA) in the
modulation of NO axis following GTN administration and offer new insights in the pathophysiology of migraine.
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Background
Nitric oxide (NO) may function as a signaling molecule
in controlling neuronal activity and plays an important
role in governing sensory inputs during migraine [1].
Endogenous NO is produced by the constitutive iso-
forms of NO synthase, endothelial nitric oxide synthase
(eNOS) and neuronal nitric oxide synthase (nNOS).
Asymmetric dimethylarginine (ADMA), a major en-
dogenous inhibitor of NOS, inhibits NO production
in vivo and in vitro [2, 3]. Besides ADMA, two other
forms of methylated arginine — which can be consid-
ered arginine analogues — have been identified in eu-
karyotes: NG-monomethyl-l-arginine (l-NMMA), and
ω-NG,N′G-symmetric dimethylarginine (SDMA) [4].
All three methylated arginines (ADMA, l-NMMA and
SDMA) are inhibitors of arginine transport at super-
physiological concentrations, while the physiological
relevance of this inhibition remains unclear [5, 6]. Cir-
culating ADMA is present at higher concentrations
than l-NMMA and is often considered to be the princi-
pal inhibitor of NOS activity [2]. Most of ADMA is
degraded by dimethylarginine dimethylaminohydrolase
(DDAH), which hydrolyzes ADMA to L-citrulline and
dimethylamine [7]. Therefore, this enzymatic pathway
is a potential endogenous mechanism for the regulation
of NO production by competitive inhibition. ADMA
has been associated to cardiovascular risk [7, 8] as it
seems involved in the development and progression of
cardiovascular disease, via the inhibition of eNOS activ-
ity and increased production of superoxides [9]. How-
ever, high levels of ADMA and increased DDAH-1
expression have been detected in the brain, and spinal
cord, thus suggesting a possible role for the ADMA-
DDAH pathway in the modulation of neuronal activity
[10–12]. This hypothesis seems even more compelling
when considering that DDAH-1 co-localizes with nNOS
[11]. Increased ADMA levels seem to induce endothelial
dysfunction and oxidative stress [9, 12], two potential fac-
tors involved in migraine pathogenesis [13, 14]. Available
data on ADMA plasma levels and migraine have yielded
inconclusive findings so far [15–17] and there is no in-
formation on ADMA/DDAH pathway in animal models
of migraine.
Exogenous NO, released by nitroglycerin (or glyceryl

trinitrate, GTN), induces migraine-like headache in
predisposed subjects and it has been used as a human
[18, 19] and animal model for the study of migraine
[20–22]. GTN also activates the NO synthetic pathway
in humans and rats [23, 24].
In order to gain new insights in ADMA-DDAH-NO axis

in migraine pain, in this study we investigated changes in
brain and serum ADMA levels, together with nNOS and
eNOS expression and DDHA-1 expression in discrete
areas of the rat brain following GTN administration.
Methods
Male Sprague–Dawley rats were injected with GTN
(10 mg/kg, i.p.) or vehicle and sacrificed 4 h after the
injection. The principles of the Helsinki declaration and
IASP’s guidelines for pain research in animal were
rigorously applied [25]. Animals were housed in plastic
boxes in groups of 2 with water and food available ad
libitum and kept on a 12:12 h light–dark cycle. A total
of 28 animals were used for the experiments and all
procedures were in accordance with the European Con-
vention for Care and Use of Laboratory Animals and
were approved by the local animal ethic committee of
the University of Pavia (Document n. 2, 2012). GTN
[Bioindustria L.I.M. Novi Ligure (AL), Italy] was pre-
pared from a stock solution of 5.0 mg/1.5 mL dissolved
in 27 % alcohol and 73 % propylene glycol. For the in-
jections, GTN was further diluted in saline (0.9 %
NaCl) to reach the final concentration of propylene gly-
col (PG) 16 % and alcohol 6 % and administered at a
dose of 10 mg/kg. A solution of saline (0.9 % NaCl), PG
16 % and alcohol 6 % was used as vehicle (CT group).
On the basis of the distribution of the nuclei that are

known to be activated by GTN and involved in mi-
graine pain, the following discrete brain areas were dis-
sected out 4 h after GTN or vehicle administration and
used for analysis: medulla-pons, containing nucleus tri-
geminalis caudalis (NTC), nucleus tractus solitarius and
area postrema; mesencephalon, containing ventrolateral
column of the periaqueductal grey and parabrachial
nucleus, and hypothalamus, containing the paraven-
tricular and supraoptic nuclei of the hypothalamus.

Western blotting
Rats (N = 6 per experimental group) were perfused
transcardially with 250 ml cold saline, 4 h after GTN or
vehicle administration. Brains were immediately re-
moved and chopped into parts; brain areas of interest
were dissected out and used for the preparation of total
extracts. The samples were homogenized on ice with a
homogenizer in at least 5 volumes of modified RIPA buf-
fer (Tris 50 mM, pH 7.4, NaCl 150 mM, EDTA 1 mM,
SDS 0,2 %) supplemented with cocktail inhibitors prote-
ase. Then, they were incubated on ice for 20 min. The
tissue lysate was centrifuged at 10,000 × g for 45 min at
4 °C and supernatants stored at −80 °C. Protein assay was
performed by bicinchoninic acid (BCA) method. A 20 μg
of protein were submitted to SDS-poliacrylamide gels
10 % and transferred onto a PVDF membrane (Amersham
Biosciences). After blocking with 5 % dry milk, the blots
were probed overnight at 4 C° with rabbit polyclonal anti-
nNOS serum (1:1000; Cayman Chemical) or anti-eNOS
serum (1:1000; Santa Cruz Bioctenology) and then probed
for 1 h with an anti-rabbit horseradish peroxidase coupled
secondary antibody (1:10000; Amersham Biosciences). An
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enhanced chemiluminescence system (ECL Advance;
Amersham Biosciences) was used for visualization. Mem-
branes were also probed with a rabbit polyclonal anti-β
actin antibody (1:1000; Santa Cruz Biotechnology) as a
housekeeping protein.
For semiquantitative analysis, a Bio-Rad GS800 densi-

tometer was used. NOS expression was evaluated in each
sample by dividing the optical density of the NOS band by
the intensity of the optical density of the band corre-
sponding to the housekeeping protein. The specificity of
the antibodies was confirmed by immunoprecipitation
with a specific blocking peptide.
Fig. 1 nNOS expression in homogenates of hypothalamus (a), mesencepha
vehicle (CT). The histograms illustrate the densitometric analysis representin
(39 kDa). The latter protein was used as a housekeeping protein on the sam
evaluated after 4 h of GTN or vehicle injection. In the right of each panel a
expressed as mean ± SD. Mann Whitney test, *p < 0.05 vs vehicle (CT)
Enzyme-linked immunosorbant assays (ELISA)
Rats (N = 8 per experimental group) were injected with
GTN (10 mg/kg i.p.) or vehicle and then killed with a le-
thal dose of anaesthetic 4 h after treatment. Their brains
were immediately chopped into parts; brain areas of
interest were dissected out and frozen at −80 °C until
further processing.
Blood was drawn from the vena cava and centrifuged

at 3000 g for 10 min at 4 °C.
ADMA levels (ng/mg proteins or nmol/ml) were quan-

tified by ELISA kit (Antibodies Online) according to the
manufacturer’s instructions.
lon (b) and medulla (c) of rats injected with glyceryl trinitrate (GTN) or
g expression levels of nNOS (155KDa), evaluated as the ratio vs β-actin
e membrane previously incubated with nNOS. nNOS expression was
re illustrated representative western blots of nNOS protein. Data are
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Real-time polymerase chain reaction
Rats (N = 6 per experimental group) were injected with
GTN (10 mg/kg i.p.) or vehicle and then killed with a
lethal dose of anaesthetic 4 h after treatment. Their
brains were immediately chopped into parts and frozen
at −80 °C until further processing.
DDAH-1 mRNA expression was analyzed by a real-time

polymerase chain reaction (RT-PCR) and total RNA was
isolated from the cerebral samples with Trizol reagent in
accordance with the method of Chomczynski and Mackey
[26]. RNA was quantified by measuring the absorbance at
Fig. 2 eNOS expression in homogenates of hypothalamus (a), mesencepha
vehicle (CT). The histograms illustrate the densitometric analysis representin
latter protein was used as a housekeeping protein on the same membrane p
representative western blots of eNOS protein. eNOS expression was evaluated
Mann Whitney test, *p < 0.05 vs vehicle (CT)
260/280 nm. cDNA was generated using the iScript cDNA
Synthesis kit (Bio-Rad) following the supplier's instruc-
tions. Gene expression was analyzed using the Fast Eva
Green supermix (Bio-Rad). As regards housekeeping,
gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used. The expression of the housekeeping gene
remained constant in all the experimental groups consid-
ered. The amplification was performed through two-step
cycling (95–60 °C) for 45 cycles in a light Cycler 480
Instrument RT-PCR Detection System (Roche) following
the supplier's instructions. All samples were assayed in
lon (b) and medulla (c) of rats injected with glyceryl trinitrate (GTN) or
g expression levels of eNOS (130KDa) as ratio vs β-actin (39 kDa). The
reviously incubated with eNOS. In the right of each panel are illustrated
after 4 h of GTN or vehicle injection. Data are expressed as mean ± SD.



Fig. 3 Cerebral levels of ADMA in rats injected with glyceryl trinitrate
(GTN) or vehicle (CT). ADMA levels were evaluated after 4 h of GTN or
vehicle injection. Data are expressed as mean ± SD, Mann Whitney test,
*p <0.05 vs vehicle (CT)
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triplicate. Gene expression was calculated using the ΔCt
method.

Statistical evaluation
Data are expressed as mean ± SD. Comparisons between
groups (GTN and CT) were performed using the Mann
Whitney test. The minimum level of statistical signifi-
cance was set at p < 0.05.

Results
nNOS and eNOS expression
Western blotting analyses using the anti-nNOS antibody
revealed the presence of one band at 155 KDa. In the
GTN Group, the intensity of this band was significantly
increased in the hypothalamus and medulla, when com-
pared to the control group (Fig. 1). By contrast, no change
in eNOS expression (135KDa) was detected in any of the
cerebral areas under evaluation after GTN administration
(Fig. 2).

AMDA levels
ADMA levels were significantly increased in the hypothal-
amus and medulla of GTN treated rats, when compared
to CT group. Conversely, we did not detect any significant
differences in mesencephalon (Fig. 3). No significant dif-
ference was observed in serum ADMA concentrations be-
tween GTN and CT groups (Fig. 4).

DDAH-1mRNA expression
DDAH-1 mRNA expression was significantly decreased
in the hypothalamus and in the medulla of rats treated
with GTN when compared to CT group. No significant
difference in DDAH-1 mRNA expression was found in
the mesencephalon of rats treated with GTN when com-
pared to CT group (Fig. 5).

Discussion
Strong evidence supports the idea that NO plays a piv-
otal role in the pathogenesis of migraine [27, 28], a dis-
order characterized by pain sensitization associated with
cranial vascular changes [29–31], but mechanisms and
modalities of NO activity are still largely unknown. Sys-
temic GTN activates neuronal groups in selected areas
of the rat brain involved in nociception [21, 32, 33] and
induces spontaneous-like attacks in migraineurs via
multimodal mechanisms that include GTN- induced
vasodilation, peripheral sensitization induced by the in-
creased availability of NO at the trigeminovascular level,
and possibly also central sensitization [34–37].
GTN administration induces an increase in nNOS that

is simultaneous with a hyperalgesic condition and neur-
onal activation in brain areas involved in migraine pain
[38, 39], thus suggesting that NOS inhibition may be a
potential therapeutic target for migraine. Experimental
and clinical studies suggest that NOS inhibition influ-
ences the activation of the trigeminal vascular system
and that nonselective NOS inhibition is associated to
antimigraine activity [40, 41]. Clinical application of non
selelctive NOS inhibition is however hindered by the



Fig. 4 Serum levels of ADMA in rats injected with glyceryl trinitrate
(GTN) or vehicle (CT). ADMA levels in serum were evaluated after 4 h
of GTN or vehicle injection. Data are expressed as mean ± SD

Fig. 5 DDAH-1 mRNA expression in specific brain areas, 4 h after
glyceryl trinitrate (GTN) or vehicle (CT) administration. Data are
expressed as mean ± SD, Mann Whitney test, *p <0.05 vs vehicle (CT)
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cardiovascular effects, i.e., increase of mean arterial pres-
sure and a decrease of heart rate for its pharmacokinetic
profile [41].
ADMA, is a methylated arginine found in plasma, urine

and different tissues [2], which is released when methyl-
ated proteins are degraded into their amino acid compo-
nents during hydrolytic protein turnover [8]. ADMA
blocks NO synthesis and can induce endothelial dysfunc-
tion, both in vivo and in vitro [2, 3], and cause oxidative
stress [42], two potential factors involved in migraine
pathogenesis [13, 14]. DDAH regulates ADMA levels and
NO signalling in vivo and ADMA/DDAH system is con-
sidered as a novel pathway for modulating NO production
[43]. DDAH-1 predominates in tissues that express nNOS,
whereas DDAH-2 predominates in tissues expressing
eNOS [44]. Since large amounts of ADMA and DDAH-1
have been detected in the brain and spinal cord, probably
ADMA/DDAH-1 pathway may have a role also in neur-
onal, inflammatory and other non-cardiovascular patholo-
gies, as migraine pain, where NO has pivotal role [15].
Uzar et al., [15] found elevated plasma levels of ADMA
and NO in migraine patients as compared to control
subjects, suggesting that an increase in ADMA levels in
migraine might represent a compensatory mechanism for
blocking NO production and NO-induced excessive vaso-
dilatation [15]. However, differences in ADMA and NO
levels when comparing ictal and interictal levels in migrai-
neurs yielded inconclusive findings [15–17]. To the best
of our knowledge, no information is available on cerebral
ADMA and DDAH-1 expression in experimental animal
models of migraine.
In this study, we evaluated the simultaneous changes in

ADMA levels and DDAH-1 mRNA expression in brain
areas in an animal model specific for migraine in order to
evaluate whether ADMA-DDAH-pathway may be in-
volved in migraine. We also evaluated nNOS and eNOS
expression in the same brain areas, and ADMA levels
in the venous blood, drawn from the vena cava. Our
findings show that AMDA levels significantly increased
in the hypothalamus and medulla 4 h after GTN ad-
ministration, the timing where we observe neuronal ac-
tivation and hyperlagesia. This increase was associated
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to the inhibition of DDAH-1 expression and to the
increase in nNOS expression in the same areas. eNOS
expression instead was not affected. Taken together,
these results suggest that the increase in brain NO
availability, secondary to GTN exposure [45], may have
interfered with DDAH-1 expression, possibly via
S-nitrosylation of DDAH-1 active site [46, 47]. Indeed,
deletion of DDAH-1 gene, or the inhibition of its tran-
scription, is associated with an increase of ADMA levels
[48]. Alternatively, DDAH-1 expression may have been
inhibited via GTN-induced oxidative stress [49] or GTN-
induced activation of inflammatory pathway [50, 51]. Pre-
vious reports have indeed shown that DDAH activity and
protein expression may be markedly reduced during oxi-
dative stress and/or inflammation [52–54].
Circulating levels of ADMA were not affected by GTN

treatment to suggest that GTN interferes with DDAH-1
expression only at cerebral level, but not at peripheral
level such as the liver, where high net hepatic uptake of
ADMA occurs [55]. In agreement with a selective ‘neur-
onal’ activity of AMDA in this experimental paradigm is
the absence of changes observed in eNOS.

Conclusions
The present data suggest that ADMA accumulates in
the brain after GTN administration via the inhibition
of DDAH-1. This latter may represent a compensatory
response to the excessive local availability of NO, re-
leased directly by GTN or synthetized by nNOS. These
findings prompt an additional mediator (ADMA) in the
modulation of NO axis following GTN administration and
offer new insights in the pathophysiology of migraine.
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