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Mammalian cell membranes are decorated by the glycocalyx, which offer versatile means
of generating biochemical signals. By manipulating the set of glycans displayed on cell
surface, it is vital for gaining insight into the cellular behavior modulation and medical and
biotechnological adhibition. Although genetic engineering is proven to be an effective
approach for cell surface modification, the technique is only suitable for natural and
genetically encoded molecules. To circumvent these limitations, non-genetic approaches
are developed for modifying cell surfaces with unnatural but functional groups. Here, we
review latest development of metabolic glycoengineering (MGE), which enriches the
chemical functions of the cell surface and is becoming an intriguing new tool for
regenerative medicine and tissue engineering. Particular emphasis of this review is
placed on discussing current applications and perspectives of MGE.
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INTRODUCTION

The cell surfaces are dominated by multiple functional molecules, which play essential roles in
regulating intercellular communications, molecules selective transportation and intracellular
associated signaling pathways (Abbina et al., 2018). Understanding and manipulating the cell
surface have aroused crucial topics in fundamental researches on cell behaviors, novel biotechnical
applications and therapeutic exploitation (Nischan and Kohler, 2016). Compared with other
molecules on cell surface, glycans signify the function of a cell and specify how it interacts with
its surroundings (Du and Yarema, 2010). Although there are abundant chemical groups on the cell
surface, only a handful of functional groups can be used for direct covalent bond formation reactions
under suitable conditions. Since cell membrane modification can be exploited to rapidly provide
additional cell functionality, therefore, it is critical for endowing or improving cellular biological
behaviors, including immuno-evasion, adhesion and homing.

Redecorating cell surfaces with genes encoding peptides or proteins using conventional genetic
engineering is a well-established strategy, which has been extensively applied in basic research and
translational medicine (Rao et al., 2020). For example, previous reports have shown that using
surface-displayed genetically engineered chimeric antigen receptor (CAR) T cells to recognize cancer
antigens for the treatment of acute lymphoblastic leukemia (Kuehn, 2017). Although quite practical,
such traditional genetic manipulation approaches are limited to displaying natural genetic encoded
molecules on cellular surface, but cannot display non-genetically encoded molecules, such as
cytotoxic drugs, fluorophores, spectroscopic probes, affinity tags, and vaccine adjuvants (Plumet
et al., 2021). In addition, viral vectors are associated with high risks of genetic integration which may
cause tumorigenesis and stimulate immunogenic responses (Lee et al., 2018).

Edited by:
Ayano Satoh,

Okayama University, Japan

Reviewed by:
Hideaki Mabashi-Asazuma,

Ochanomizu University, Japan
Ryo Okamoto,

Osaka University, Japan

*Correspondence:
Qingguo Zhang

zhangqg@enzemed.com
Zhenghua Hong

0001hzh@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cellular Biochemistry,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 21 December 2021
Accepted: 28 January 2022

Published: 17 February 2022

Citation:
Ying L, Xu J, Han D, Zhang Q and
Hong Z (2022) The Applications of

Metabolic Glycoengineering.
Front. Cell Dev. Biol. 10:840831.
doi: 10.3389/fcell.2022.840831

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8408311

REVIEW
published: 17 February 2022

doi: 10.3389/fcell.2022.840831

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.840831&domain=pdf&date_stamp=2022-02-17
https://www.frontiersin.org/articles/10.3389/fcell.2022.840831/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.840831/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhangqg@enzemed.com
mailto:0001hzh@163.com
https://doi.org/10.3389/fcell.2022.840831
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.840831


Metabolic glycoengineering (MGE) - a technique where
monosaccharide analogs are introduced into the metabolic
pathways of a cell and are biosynthetically incorporated into
the glycocalyx on cell membrane - has been shown to be
precious for engineering cellular surface properties to allow
manipulation of cellular behaviour and function using
natural or unnatural functional groups (Du et al., 2009;
Nagasundaram et al., 2020). Over the last 2 decades, more
than 20 unnatural mannosamines that are suitable for MGE,
have been introduced. These N-acetyl D-mannosamine
(ManNAc) analogs can be divided into two groups, namely
aliphatic and bioorthogonal analogues (Wratil et al., 2016).
MGE can equip cell surfaces with various unnatural
functional groups, such as ketone-, azide-, thiol-, or
alkyne-modified glycans, which can then be combined with
abundant ligands via bioorthogonal chemoselective ligation
reactions, thereby extremely boosting versatility of this
strategy. Specifically, MGE has various advantages, they
are: 1) stable under physiologic conditions; 2) applicable to
all cell types; 3) innocuous to the modified cell; and 4)
reversible upon administration of a controlled precursor
(Csizmar et al., 2018). Currently, cell membrane
glycoengineering is a powerful tool that has been widely
applied across the following fields: 1) endowment of cells
with new abilities (Wang et al., 2020); 2) glycoengineered
membrane self-assembly servers as vehicles to coat
nanoparticles (Rao et al., 2020); 3) in vivo cell tracking
(Lim et al., 2019); 4) metabolic glycan labelling (Hu et al.,
2018b; Lim et al., 2019; Costa et al., 2020; Wang and Mooney,
2020); 5) cell and drug delivery (Lee et al., 2018; Xia et al.,
2020); and 6) single cell encapsulation (Kim et al., 2018; Oh
et al., 2020).

Currently, metabolic glycoengineering has numerous
applications. If divided according to the cell structure, the
applications can be divided into the following three broad
types, namely the applications of intact cells, cell components
and cell-derived matrices (Scheme 1). This review systematically
summarizes current approaches and applications for cell surface
glycoengineering, both in vitro and in vivo. We highlight key
examples of MGE in each section, and provide perspectives and
future trends of this rapidly growing field.

Applications of Intact Modified Cells
Modulation of Cell Biological Behaviors
Previous evidences have shown that most cellular glycans on the
outer surface of membrane mediate or modulate cell-cell, cell-
molecule, and cell-matrix interactions, which are essential for the
development and functioning of cells (Du and Yarema, 2010).
Pretreatment of peracetylated N-thiolglycolyl-D-mannosamine
(Ac5ManNTGc) resulted in expression of thiol on cell surface,
which stimulated cell adhesion to complementary gold or
maleimide-derivatized substrates (Sampathkumar et al., 2006).
In addition, treatment of HL60-cells with
N-propanoylmannosamine (ManNProp) increased cell
adhesion to fibronectin by activating β1-integrin
(Villavicencio-Lorini et al., 2002). Findings from other
research have revealed significant improvement in adhesion
ability of leukocytes, Jurkat cells, neural cells, mesenchymal
stem cells (MSCs) and A549 cells after treatment with
ManNAc analogs (Du et al., 2009; Du et al., 2011; Koo et al.,
2015; Koo et al., 2016; Lo et al., 2016). However, Nagasundaram
et al.(Nagasundaram et al., 2020) found a marked reduction in
adhesion of MCF7 breast cancer cells to laminin upon treatment
with different ManNAc analogs. In addition, they found that
application of all non-natural sialic acid precursors
downregulated N-acetylneuraminic acid (Neu5Ac) and
polysialic acids (polySia), and further suppressed adhesion and
migration.

MGE can also change the differentiation ability of cells. For
example, supplement of human stem cells with Ac5ManNTGc
was found to improve their differentiation towards a neural
lineage (Sampathkumar et al., 2006). ManNProp reportedly
promoted monocytic differentiation of HL60-cells (Horstkorte
et al., 2004). Both Ac5ManNTProp and Ac5ManNTBut, which
display thiol groups on the cell surface, were found to suppress
adipogenic differentiation in hADSCs, but they did not interfere
with differentiation to a glial lineage (Du et al., 2021). Moreover,
both osteogenic and adipogenic differentiation were inhibited,
when MSCs were pre- or continuous treated with 3F-Neu5Ac
(Templeton et al., 2021).

MSCs incubated with ManNProp significantly upregulates
sialyl Lewis X (sLeX) (Natunen et al., 2013), an epitope that
promotes osteotropism (Dykstra et al., 2016; Sánchez-Martínez
et al., 2021), augments neurotropism (Merzaban et al., 2015) and
improves ischemia-reperfusion by increased homing efficacy
towards porcine heart (Lo et al., 2016). In another study,
Byeongtaek et al. (Oh et al., 2020) coated each neural
progenitor cell (NPC) with a layer of polymer, via click-
chemistry and glycoengineering. The cells enhanced trophic

SCHEME 1 | Overview of the applications of MGE in cells.
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factor release by optimizing stiffness of the polymer coating,
which reduced the required number of cells through augmenting
the efficacy of each NPC. On the other hand, supplementation
with 3F-Neu5Ac was found to improve adhesion and elevate the
rate of migration of MSCs, thereby promoting their survival in an
in vitro ischemia model (Templeton et al., 2021). In summary,
MGE can effectively modulate cell biological behaviors (Table 1).
Also, we conclude that the effects of MGE on cellular activities are
dependent on cell types and different kinds of ManNAc analogs.

Imaging and Tracking
Various targetable chemical groups, such as azides (N3-),
alkynes, thiols, and ketones can be successfully generated
into cell glycans via MGE (Du et al., 2009). Imaging
molecules, like fluorescence dyes or imaging agents, are then
labeled with the generated chemical groups by click chemistry.
Notably, N3-containing artificial chemical precursors are the
most widely used, owing to the fact that these metabolites (N3-
groups) can be specifically conjugated with various

TABLE 1 | The modulation of cell biological behaviors by MGE.

Cell
biological
behaviors

Cell type Precursors Groups on
cell surface

Promotion (+)
suppression (-)

References

Adhesion human embryoid
body–derived stem cells
(hEBD)

Ac5ManNTGc Thiols Gold or maleimide + Sampathkumar et al. (2006)

HL60-cells ManNProp N-propanoyl Fibronectin + (Villavicencio-Lorini et al., 2002;
Horstkorte et al., 2004)

human Jurkat T-lymphoma
derived cells (Jurkat cells)

Ac5ManNTGc Thiols Gold or maleimide + Du et al. (2011)

HL60 cells, HeLa and Jurkat
cells

Ac5SiaC5F5 trifluorobutanoyl Fibronectin - Dafik et al. (2008)

MCF7 breast cancer cells ManNProp, ManNBut N-propanoyl,
N-butanoyl

Laminin - Nagasundaram et al. (2020)

MSCs ManNPent, ManNHex N-pentanoyl,
N-hexanoyl

12-well plate + tumor cells + Templeton et al. (2021)

Macrophages 3F-Neu5Ac sgc8-SH — Tetrazine and
transcyclooctene
conjugation

Sugimoto and Iwasaki, (2018)

Jurkat cells and A569 cells Ac4ManNAz Thiols — (Koo et al., 2015; Koo et al., 2016)
NT2 neurons ManNBut Azide Integrin-mediated + Mahal et al. (2001)
SW1990 pancreatic cancer
cell

1,3,4-O-Bu3ManNAc N-butanoyl sLeX Almaraz et al. (2012)

Differentiation hEBD Ac5ManNTGc Thiols neuronal + Sampathkumar et al. (2006)
ManNProp N-propanoyl monocytic + Horstkorte et al. (2004)

HL60-cells hADSCs Ac5ManNTProp and
Ac5ManNTBut

Thiols adipogenesis – Du et al. (2021)

MSCs 3F-Neu5Ac — glial lineage +– Templeton et al. (2021)
PC12 cerebellar neurons ManNProp N-propanoyl osteogenesis and

adipogenesis –

Kontou et al. (2008)

hMSC ManNProp N-propanoyl neuronal + Schmidt et al. (1998)
Ac4ManNAz Azide oligodendroglial + Altmann et al. (2021)

osteogenic and
adipogenic +

Migration MSCs 3F-Neu5Ac N-propanoyl,
N-butanoyl

— Templeton et al. (2021)

MCF7 breast cancer cells ManNProp, ManNBut,
ManNPent, ManNHex

N-pentanoyl,
N-hexanoyl

- Nagasundaram et al. (2020)

Secretion neural progenitor cell Ac4ManNAz sgc8-SH azide + Oh et al. (2020)
macrophages Thiols + Sugimoto and Iwasaki, (2018)
PC12 ManNProp N-propanoyl + Horstkorte et al. (2010)

Homing MSCs 3F-Neu5Ac /sLeX + Templeton et al. (2021)
SW1990 pancreatic cancer
cell

1,3,4-O-Bu3ManNAc + (Almaraz et al., 2012; Agatemor
et al., 2019)

Survival MSCs 3F-Neu5Ac — Ischemia + Templeton et al. (2021)
Macrophages Ac4ManNAz Azide + Mao et al. (2020)
Jurkat cells Ac5ManNTGc Thiols Gold or maleimide + Du et al. (2011)

The cell biological behaviors were modulated by providing metabolic precursors. The migration of fluorescent labeled cells is introduced in Imaging and Tracking. Abbreviated: 2,4,7,8,9-
pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-Neu5Ac), N-butanoyl-D-mannosamine (ManNBut), N-pentanoyl mannosamine (ManNPent), N-hexanoyl mannosamine (ManNHex), thiol-
terminated nucleic acid aptamers (sgc8-SH), N-azidoacetylmannosamine (Ac4ManNAz) and N-alkyneacetylmannosamine (Ac4ManNAl). Other abbreviations were not described in detail
in the original text.
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bioorthogonal agents, such as dibenzylcyclooctyne (DBCO) and
bicyclo [6.1.0], nonyne (BCN) via bioorthogonal copper-free
click chemistry under both in vitro and in vivo conditions. In
addition, their inherent properties, including nontoxicity, high
stability, and rapid reaction time under physiological
conditions, make them highly suitable for labeling of live
cells (Lim et al., 2019). To date, two ways of cell imaging or
tracking in vivo have been described. The first involves direct
injection of glycoengineered cells labeled with fluorescent dye
(Seungho Lim et al., 2021), while the second entails intravenous
(Lim et al., 2019), peritoneal (Prescher et al., 2004), or
intratumoral (Koo et al., 2012) injection of precursors. After
injection, the generated azide groups are able to bind DBCO/
BCN group-modified nanoparticles in vivo. These nanoparticles
can comprise fluorescence dyes, superparamagnetic iron oxide
and so on. Apart from fluorescence, magnetic resonance
imaging and computed tomography can also be used for cell
imaging. Besides imaging tumors in living animals, cancer
diagnosis is also the promising outlook for MGE, where it

can be used for identification of biomarkers based on the
capture and analysis of bioorthogonally modified
glycoconjugates (Badr et al., 2017). Interestingly, Laughlin
et al. (2008) achieved three-dimensional spatiotemporal
imaging by treating zebrafish embryos with
N-azidoacetylgalactosamine (Ac4GalNAz). The azide groups
could only be generated on embryo surface that was newly
grown and then conjugated different color of Alexa Fluor, which
could be used to study embryo development in zebrafish.
Overall, this indicates that unnatural groups generated
exogenously can be used as target molecules, and can then be
applied for imaging of live cells in vivo (Table 2).

Cell-Based Therapy
Cell-based therapy plays a tremendous role in cancer
immunotherapy, drug delivery, and tissue regeneration.
Modification of cells, coupled with manipulation of their
functions based on purposive therapeutic designs have
generated numerous scientific interests in biomedical research.

TABLE 2 | Applications of MGE for cellular imaging and tracking.

Methods Cell type Precursors Groups
on
cell

surface

Ligands Location References

Injection of modified cells chondrocytes Ac4ManNAz Azide DBCO-Cy650 hip joint Yoon et al. (2016)
ADSCs Ac4ManNAz Azide DBCO-Cy5 inner thigh muscle Lee et al. (2016)
MSCs Ac4ManNAz Azide BCN-Cy5.5 +

Fe3O4
brain Lim et al. (2019)

MSCs Ac4ManNAz Azide BCN-CNP-Cy5.5/
IRON/GOLD

dorsal
subcutaneous
region

Lee et al. (2017b)

cytotoxic T-cells Ac4ManNAz Azide DBCO-Cy5.5 tumor Kim et al. (2020)
hEPCs Ac4ManNAz Azide DBCO-Cy5 gracilis muscle Seungho Lim et al.

(2021)
Intratissue injection of metabolic
precursor or glycoengineed cells

A549 tumor cells Ac4ManNAz Azide DBCO-Cy5 tumor Koo et al. (2012)
4T1 cells AzAcSA Azide BCN-TPET-TEG tumor Hu et al. (2018a)
A549 cells Ac4ManNAz Azide DBCO-Cy5 mouse liver Kang et al. (2014)
MCF-7 cells Ac4ManNAz Azide DBCO-Cy5 tumor Qiao et al. (2020)

Intravenous injection of metabolic
precursor

tumor cells Ac3ManNAz-
PAMAM [G4]

Azide ADIBO-Cy5.5 tumor Lee et al. (2017a)

MDA-MB-231 human
breast cancer cells

cRGD−S-
Ac3ManNAz

Azide TPEBAI tumor Hu et al. (2018b)

tumor cells RR-S-c3ManNAz Azide DBCO-Cy5.5 tumor Shim et al. (2016)
MCF-7 cancer cells Ac4ManNAz Azide DBCO-AIE dots tumor Zhang et al. (2019)
— LP-9AzSia Azide Mouse brain Xie et al. (2016)
tumor cells Ac4ManNAz Azide DBCO-Cy5 tumor Yujia Zhao et al.

(2021)
tumor cells and solid
tumors

Ac4ManNAz-LP Azide DBCO-ZnPc-LP tumor Du et al. (2017)

MCF-7 cancer cells ZIF-8-Ac4GalNAz Azide DBCO-Cy5 tumor Zhengwei Liu et al.
(2021)

other zebrafish embryo Ac4GalNAz Azide DIFO–Alexa Fluor zebrafish embryo Laughlin et al.
(2008)

The surface of cells could be labeled with bioorthogonal chemical groups by MGE, which can be further conjugated with fluorescence dyes or nanoparticles with imaging probes by click
chemistry, in vitro and in vivo. Abbreviated: human embryonic stem cells-derived endothelial progenitor cells (hEPCs); a cathepsin B-specific cleavable peptide moiety (Lys-Gly-Arg-Arg,
KGRR), a spacer linker of p-aminobenzyloxycarbonyl (S), and the metabolic precursor of triacetylated N-azidoacetyl-D-mannosamine (Ac3ManNAz), resulting in RR-S-Ac3ManNAz; the
alkyne-functionalized water-soluble bioorthogonal turn-on probe (TPEBAI), T PEBAI with good water solubility and yield low fluorescence in aqueous media; azide-modified acetyl sialic
acid (AzAcSA); nanomicelle of Ac4ManNAz (Ac4ManNAz-LP); aggregation-induced emission (AIE).
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Cell-based therapy that alters cell biological activity via MGE has
been discussed above (Modulation of Cell Biological Behaviors).
This section discusses application of metabolic glycoengineered
cells in cancer therapy.

Immunotherapy for cancer treatment is mainly
constrained by lack of tumor specific antigens and immune
tolerance. Manual introduction of chemical receptors onto the
cell surface can well solve these drawbacks. Use of metabolic
glycoengineered cells in the field of tumor therapy has been
documented. Generally, target non-natural molecules on
tumor cell membrane are generated using two approaches,
namely intravenous administration (Lee et al., 2017a) and
intratumoral injection (Koo et al., 2012) of metabolic
precursors. In addition, several methods, such as generating
a neoantigen (Yujia Zhao et al., 2021), chemo-photothermal
therapy (Du et al., 2017), drug therapy (Layek et al., 2016) and
synergistic therapy (Qiao et al., 2020), among others, are
applied for tumor treatment.

Metabolic precursors accumulate in tumors usually through
tumor-specific enhanced permeability and retention (EPR)
effect after i. v. injection (Qiao et al., 2020). Although this
method can easily introduce functional groups on the cell
surface, it is still a great challenge to selectively label
interested cell types in vitro and in vivo. Wang et al. (2017)
took advantages of cancer-overexpressed enzymes to selectively
cleave caged ether bonds converted by anomeric acetyl groups
in tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) and
found azide groups were introduced on the surface of cancer
cells. On the other hand, Hu et al. (2018b) utilized over-
expressed αvβ3 integrin on tumor cell membranes and
developed a dual-responsive metabolic precursor, termed
cRGD-S-Ac3ManNAz. Functionally, cRGD can be specifically
recognized by αvβ3 integrin, while the disulfide group is
responsive to intracellular glutathione. Both of the above
methods can selectively generate unnatural glycans on cell
membranes.

Apart from modifying tumor cells via MGE, glycoengineered
immunocytes can also be used in tumor treatment. Particularly,
T cells treated with Ac4GalNAz can introduce N3 on cell surface,
thereby specific tumor targeting was initiated through a bio-
orthogonal click reaction between N3 and BCN. This artificial
targeting strategy has been shown to remarkably promote
recognition and migration of T cells to tumor cells, thereby
elevating cytotoxicity of T cells against different types of
tumor cells by 2–4 times (Li et al., 2019). CAR T-cells neither
express sLeX nor bind E-selectin. Results from a previous study
showed that fucosylated human CAR-T cells upregulated sLeX
expression upon exposure to type 2 sialylLacNAc, a precursor of
sLeX. In fact, these fucosylated cells infiltrate the marrow at an
efficiency that is 10-fold than that in unfucosylated cells (Mondal
et al., 2019). Dendritic cell (DC) modification for enhancement of
antigen presentation has emerged as a highly successful strategy
in tumor immune therapy. Previous studies demonstrated that
synthetic glycopolymer modified on the DC surface through
facilitating DC interaction with T cells markedly elevated
T cell activation and results in higher tumor toxicity (Yu
et al., 2020).

Natural killer (NK) cells are cytotoxic cells with important
functions in antitumor immunity, proposed as a promising
alternative approaches to extend T cell-based therapy (Mehta and
Rezvani, 2018). However, NK cells do not possess inherent targeting
abilities towards cancer cells, and are also known to adversely affect
endogenous gene uptake, a phenomenon that causes low transgene
expression (Matosevic, 2018). CD22, a sialic acid binding protein, is
lowly expressed on B cells. Previous studies showed that although
antibody-based agents targeting CD22 on B lymphoma and
leukemia cells were clinically efficacious against these
malignancies, they also attacked normal B cells resulting in
immune deficiency (Müller and Nitschke, 2014; Hong et al.,
2020). Whereas, the abilities of glycoengineered of NK cells to
bind and kill CD22 + lymphoma cells were significantly
improved when cells were modified with 9-O modified sialic
acid-based CD22 ligands (Haso et al., 2013; Ereño-Orbea et al.,
2017). For example, NK cells were found to uptake metabolic
precursors MPB-sia one and BPC-sia two and transform them
into CD22 ligands through the cellular glycosylation machinery
(Wang et al., 2020). Overall, these evidences (Table 3) indicate that
cancer immunotherapy was potentiated by providing a simple and
general metabolic glycoengineering-based cell therapy.

Applications of Modified Cell Components
Cell component modification is recently applied; thus, this
approach is not as common as that of intact cells. In this
section, we highlight the modification of cell components in
two parts for the first time: extracellular vehicles (EVs) and cell
membrane. EVs, endogenously secreted by cells, have bioactive
components that correspond to unique biological functions
(van den Boorn et al., 2013). Unfortunately, most of bare
EVs are excreted by the reticuloendothelial system via the
liver and spleen, when they are systemically administered
(Smyth et al., 2015). Therefore, understanding biodistribution
of EVs in vivo, coupled with their therapeutic efficacy and
potential toxicity are imperative to their therapeutic
application. Previous studies have shown that glycosylation
of EVs can effectively solve the biodistribution of EVs
(Williams et al., 2018). For example, Lim et al. decorated
EV-secreting donor cells with an azide group via MGE using
Ac4ManNAz and prepared DBCO-terminated PEGylated
hyaluronic acid (DBCO-PHA) to specifically label the N3

group generated exogenously on the cells. PHA not only
prolongs blood circulation, but also exhibits specific binding
affinity to CD44 (Choi et al., 2011). Consequently, PHA-
decorated EVs were found to accumulate in CD44-abundant
tissues, such as rheumatoid arthritis and tumor (Gyeong Taek
Lim et al., 2021). In addition, You et al. (2021) reported the fine
surface editing of EVs by the MGE of ADSCs to target activated
macrophages and promote M1-M2 polarization.

Cell membrane-coating has emerged as a promising nano-
delivery system for drugs, owing to various ideal characteristics
that include small size, safety, biocompatibility, biorecognition,
high stability and target specificity (Zhu et al., 2016; Zhen et al.,
2019). Consequently, previous reports have documented the
wide application of genetically engineered cell-membrane-
coated nanoparticles in cancer immunotherapy and drug
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delivery (Rao et al., 2020; Xia et al., 2020). Notably, a specific
artificial targeting strategy in vitro and in vivo based on MGE-
click chemistry was developed with the aim of addressing
limitations associated with endogenous protein receptors
dependent. For example, Hao Wang et al. (2021)
encapsulated photosensitizer IR-780 into the N3-labeled cell
membrane, by incubating cells with Ac4ManNAz, and endowed
cells in psoriatic lesions with DBCO groups via subcutaneous
injection with Ac4ManN-DBCO. The bioorthogonal click
chemistry between the N3 and DBCO groups allowed
efficient accumulation of IR-780 in lesion skin, thereby
promoting photodynamic and photothermal therapy. On the
other hand, Xiao et al. (2021) coated an N3-labeled DC
membrane on imiquimod-loaded polymeric nanoparticles,
and sequentially modified anti-CD3ε antibody via click

chemistry. The nanoscale artificial antigen-presenting cells
exhibited improved distribution in lymph nodes, and also
stimulated T cells and resident antigen-presenting cells.

Applications of Modified Cell-Derived
Matrices
In recent years, the application of cell-derived matrices (CDMs)
as biomaterials evolves rapidly. CDMs contains complex
biomolecules, resulting in its highly bioactivity and
biocompatibility. However, the scarcity of specific addressable
functional groups greatly hinders its biological application (Ruff
et al., 2017). In 2017, Ruff et al. developed a novel method, for the
first time, for overcoming this limitation, by specifically using
MGE to incorporate azide groups into the cellular

TABLE 3 | Metabolic glycoengineered cells for cancer treatment.

Methods Cell type Precursors Groups on
cell surface

Ligands Functions References

The application of
tumor cells

tumor cell Ac4ManNAz Azide DBCO-Pam3CSK4 evoked both the humoral and the
T-cell-dependent antitumor immune
responses

Yujia Zhao et al.
(2021)

MCF-7 breast
cancer cells

Ac4ManNAz Azide DLQ/DZ drug delivery and cancer treatment Qiao et al. (2020)

tumor cell DCL-AAM Azide DBCO–DOX drug delivery and cancer treatment Wang et al.
(2017)

MDA-MB-231
human breast
cancer cells

cRGD−S-
Ac3ManNAz

Azide TPEBAI selective cancer cell ablation Hu et al. (2018b)

HeLa and B16F10
cells

Ac4ManNAz Azide DBCO-RNase A cleave RNA to kill cancer cells Ziyin Zhao et al.
(2021)

pancreatic cancer
cells

1,3,4-O-
Bu3ManNAz

Azide EGFR-targeting TKI
drugs

restore sensitivity to erlotinib and
gefitinib

Mathew et al.
(2015)

HepG2 cancer cell GalAz Azide DBCO-DOX cancer treatment Wang et al.
(2019)

KB, HEK-293, and
MCF7

Ac3ManNAz Azide DBCO--rhamnose (Rha) recruit anti-Rha antibodies, leading to
the destruction of target cells

Li et al. (2018)

4T1 cells Ac4ManNAz Azide Hf-AIE-PEG-DBCO Radiodynamic therapy and
radiotherapy under X-ray irradiation

Jingjing Liu et al.
(2021)

A549 and MCF-7 cell
lines

Ac4ManNAz Azide GON-DBCO-DOX drug delivery and cancer treatment Meghani et al.
(2018)

The application of
other type of cells

MSCs Ac4ManNAz Azide DBCO-paclitaxel active tumor homing Layek et al.
(2016)

DC pMAM/pMAG glycopolymers mannose/glucose
receptors on the T cell
surface

promote the T cell activation by
enhancing cell interactions between
DC and T cell

Yu et al. (2020)

NK cells MPB-sia 1 and
BPC-sia 2

CD22 ligands CD22 + lymphoma cell
lines

anticancer Immunotherapy Wang et al.
(2020)

NK92MI cells Ac4ManNAz Azide-DBCO-
7D12

EGFR on tumor cells Promote the interaction between NK
cells and tumor cells

Gong et al.
(2021)

Jurkat T cells Ac4ManNAz Azide-Tri-Adam Azide-Tri-β-CD on A549
cells

the accumulation of Jurkat T cells at
the surface of A549 cells activates NK
cells

Plumet et al.
(2021)

T cells Ac4GalNAz Azide BCN on tumor cells
membrane

enhancing T cell recognition and
cytotoxicity to tumor cell

Li et al. (2019)

NK-92 cells N3-SA Azide alkyne modified
cetuximab

anticancer immune therapy Xianwu Wang
et al. (2021)

Abbreviated: DLQ/DZ, DBCO modified low molecular weight heparin-quercetin co-encapsulate DOX (doxorubicin) and ZnPc (zinc phthalocyanine); DCL-AAM, 1-((4-(2,6-
diacetamidohexanamido)phenyl) (phenyl)methoxy)-3,4,6-triacetyl-N-azidoacetylmannosamine (histone deacetylase (HDAC)/cathepsin L (CTSL)-responsive acetylated
azidomannosamine; gelatin-oleic nanoparticles (GON), synthesized poly-mannose (pMAM); poly-glucose (pMAG); tyrosine kinase inhibitor drugs (TKI); 9-azido N-acetyl neuraminic acid
methyl ester (N3-SA).
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glycoconjugates of CDMs (Ruff et al., 2017). Similarly, Gutmann
et al.(Gutmann et al., 2018; Gutmann et al., 2019) successfully
modified the ECM of NIH3T3 fibroblasts with azide groups using
the glucosamine derivate 2-azidoacetylamino-2-deoxy-(1,3,4,6)-
tetra-O-acetyl-D-glucopyranoside (Ac4GlcNAz). Recently, Keller
et al. (2020) used an azide-modified ECM to create homogeneous,
dense, stable and highly bioactive cell substrates which can be
used for bioconjugation. At present, azide groups are widely used
for CDMs metabolic modification, mainly because of their small
size, ease of incorporation, absence in nature, and ability to
selectively react with alkynes in bioorthogonal 1,3-dipolar
Huisgen cycloadditions.

PROSPECTS

In the near future, we envisage the trend of applications of MGE
are as follows: 1) MGE will be used in other new disease models,
not just in tumor therapy, such as type 1 diabetes (Au et al.,
2021); 2) There will be rapid discovery of new precursors for
MGE. Lu et al. (2015) labeled cell surface GPIs and GPI-
anchored proteins with artificial inositol derivatives, while
Wang et al. (2020) labeled NK cells with CD22 ligands using
MPB-sia one and BPC-sia 2; 3) As mentioned above, azide
groups are wildly used for MGE, the application of other
reporter groups (alkynes, alkenes . . . ) will be explored in the
future; 4) The stability and half-life issue of the functional
molecules on the cell could be ameliorated for certain
applications, due to cell division and protease degradation; 5)
Most of the research in this field has been carried out in cell

culture and also in animals. Translating MGE from the
laboratory into clinical practice is on the way.

CONCLUSION

This safe and reversible MGE strategy endows natural cell membrane
with additional chemical functionalities, thereby offering
unprecedented opportunities for cellular biological functions
modulation and novel therapeutics development. This systematic
review of recent applications of MGE affirms this approach’s
potential in tissue engineering and regenerative medicine. In the
future, new chemical reporter groups and bioorthogonal ligation
reactionswill further expand the development and application ofMGE.
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