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Abstract: This work demonstrates the introduction of various α-aminophosphonate compounds to
an epoxy resin system, thereby improving flame retardance properties. The α-aminophosphonate
scaffold allows for covalent incorporation (via the secondary amine) of the compounds into the
polymer network. This work explores the synergistic effect of phosphorus and halogens (such as
fluorine) to improve flame retardancy. The compounds were all prepared and isolated in analytical
purity and in good yield (95%). Epoxy samples were prepared, individually incorporating each
compound. Thermogravimetric analysis showed an increased char yield, indicating an improved
thermal resistance (with respect to the control sample). Limiting oxygen index for the control polymer
was 28.0% ± 0.31% and it increased to 34.6% ± 0.33% for the fluorinated derivative.

Keywords: flame retardant; epoxy resin; phosphorus; fluorine; flammability; limiting oxygen index

1. Introduction

The increasing demand of structural resins for potential use in composites across
industrial applications has allowed epoxy resins to find use in areas such as coatings,
adhesives, and laminates. They possess advantageous properties such as mechanical
strength, electrical insulating, and high chemical resistance allowing them to suit a substan-
tial number of applications. However, their high flammability and low thermal stability
are limitations that prevent their use in further applications. The flammability of epoxy
resins is a major limitation of these materials, and improving this property is vital for their
continued future use in industry [1–3].

Phosphorus-based organic compounds are known to be highly effective flame retar-
dants [4–8]. Phosphorus has the ability to promote formation of a char layer and/or a
flame inhibitor. Wang et al. reported the improved flame retardance of epoxy resin system
(bisphenol A diglycidyl ether (DGEBA)/diamino diphenyl methane (DDM)), similar to that
used in this work. In that work, the authors modified the resin system to introduce phos-
phorus, reporting an excellent flame retardancy with UL-94 V0 rating and Limiting Oxygen
Index (LOI) of ~32.8% [9]. When Luo et al. introduced 5,10-dihydro-phenophosphazine-10-
oxide (DPPA) to a DGEBA/DDM system as a co-curing agent at 2.5 wt %, a LOI of 33.6%
was achieved [10].

There are reports in the literature of phosphorus-based flame retardants acting syn-
ergistically with elements such as sulphur, nitrogen, and silicon, to further improve the
thermal resistance of polymeric materials [11–15].

The inclusion of halogenated species (Br, Cl, etc.) to flame retardant material is
nowadays avoided due to the associated toxicity repercussions; however, fluorine has
been recently reported to participate synergistically with phosphorus in flame retardant
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applications [11]. Fluorine-containing epoxy resins have found potential application as
electronic packing material due to superior hydrophobic properties and low dielectric
constant [16].

Flame retardants are introduced as additives [17–20] to the polymeric system or they
can be covalently incorporated [21,22], by which they integrate into the polymer backbone.
Covalent integration into the polymer network is useful to minimize deleterious effects on
the mechanical properties of the material.

Our previous work reported the incorporation of phosphorus-containing compounds
into an epoxy polymer network. The compounds were strategically designed to have a
primary and secondary amine present, which allowed for the reaction and incorporation
into the epoxy resin-based system (Figure 1). Concurrently introducing phosphorus atoms
into the epoxy resin system. [23].
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The work presented here utilizes the same easily accessible, one-pot synthesis, extend-
ing to incorporate a catalogue of analogues [24]. The effects of nitrogen, phosphorus, and
halogenated compounds are used to explore their abilities to act synergistically, exploiting
the efficiency of halogens but at extremely low concentrations.

Herein, we present a significant improvement in the self-extinguishment of epoxy
resin with the incorporation of a catalogue of α-aminophosphonate compounds. An
improvement in flame retardancy has been observed through thermogravimetric analysis
(TGA), indicating a higher char yield for the modified samples and an increase in limiting
oxygen index (LOI). Near infrared spectroscopy (NIR) data confirmed the successful
covalent incorporation of the compounds into the resin system.

2. Materials and Methods

All chemicals, reagents, and solvents were purchased from Sigma–Aldrich (Saint
Louis, MO, USA) and used as received

2.1. Synthesis

The α-aminophosphonate compounds were prepared according to the one-pot pro-
cedure described previously by the authors via the Kabachnik-Fields reaction [24]. The
corresponding amine (1 eq.) was then dissolved in solvate ionic liquid (SIL) [Li(G3)]TFSI
(0.5 mL) with gentle heating. To the resulting mixture, the corresponding benzaldehyde
(1 eq.) was added and stirred at room temperature for 5 min before the addition of diphenyl
phosphite (1.2 eq.), and then, the mixture was stirred for an additional 25 min. At the
conclusion of this time, the mixture was dissolved in diethyl ether (20 mL) and added
to water. The diethyl ether was removed under reduced pressure to afford a suspension
of precipitate in the aqueous phase, which was then filtered and washed with excess
water and petroleum spirits (40–60 ◦C). Dissolution in diethyl ether, addition to water, and
removal of organic solvent were repeated to analytical purity. The solid compound was
collected and analysed by 1H NMR.
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2.2. Sample Preparation

The individual compounds were introduced to the epoxy/amine system as a weight
percentage (20%), in place of the DDM hardener (e.g., the control required 1.2 g of DDM,
and in the modified samples, 0.96 g of DDM and 0.24 g of compounds 5–10 was used.
Therefore, each compound was used in substitution of DDM by 20 wt %.). The compounds
were each weighed out and heated until melted, and then, they were stirred with melted
DDM until dissolved, prior to the addition to warm DGEBA. The mixture was thoroughly
stirred until homogenous, and then, it was poured into required moulds. The curing cycle
involved 2 h at 100 ◦C, 2 h at 120 ◦C, followed by post cure of 4 h at 175 ◦C, consistent with
the prescribed process for this resin system. Table 1 outlines the mass of resin, hardener,
and compound used in the samples and subsequent percentage of phosphorus content.

Table 1. Amounts of hardener, resin, and compound with phosphorus content.

Compound Resin (g) Hardener (g) Compound (g) P %

Control 1.8 1.2 0 0
5–10 1.8 0.96 0.24 ~0.60

11 1.8 0.96 0.24 0.48

2.3. Analytical Techniques
2.3.1. Nuclear Magnetic Resonance Spectroscopy (NMR)

All 1H, 13C, 19F, and 31P NMR spectra were recorded on a Bruker AVANCE III 500 MHz
(Massachusetts, MA, USA) or Bruker AVANCE 400 MHz (Massachusetts, MA, USA) as
indicated. Samples were dissolved in deuterated DMSO or deuterated chloroform (CDCl3)
with the residual solvent peaks used as an internal reference (DMSO-d6: δ 2.50 ppm and
CDCl3: δ 7.26 ppm).

2.3.2. Infrared Spectroscopy

Near infrared spectroscopy (NIR) was performed on a Bruker Alpha FT-IR (Mas-
sachusetts, MA, USA) in transmission mode at a resolution of 4 cm−1 and an average of
128 scans between 4000 and 7500 cm−1.

2.3.3. Thermogravimetric Analysis (TGA)

TGA was carried out in both oxidative and non-oxidative environments using a TA
Instruments TGA Q50 analyser (New Castle, DE, USA). For air atmospheres, a flow rate of
60.0 mL min−1 was used, and for those performed in nitrogen, a flow rate of 40.0 mL min−1

was employed. Resin samples of 5–10 mg were heated from 20 to 800 ◦C in air and to
800 ◦C in nitrogen at a constant heating rate of 20 ◦C min−1.

2.3.4. Limiting Oxygen Index

Ignition was performed using a lighter flame applied to the end face of the sample.
The flame was applied for 10 s in order to induce uniform burning across the top. Samples
were considered ignited when the flame lasted for more than 30 s. Pure oxygen (99.9%, O2)
and nitrogen (99.99%, N2) streams in combination with mass-flow controllers (Bronkhorst
F-203AV, Ruurlo, Netherlands) were used to achieve target oxygen concentrations. All tests
were conducted with a nominal flow velocity of 100 mm s−1. The test condition temperature
was 23 ± 2 ◦C. Reported LOI values are defined as the lowest oxygen concentration in
which a given sample did not extinguish for 180 s from the moment of ignition. The ASTM
D2863 standard [25] suggests that the flaming should last > 180 s to calculate the LOI value.

2.3.5. SEM

SEM was used to obtained images of the samples after LOI testing to investigate
the morphologies post-burn. SEM imaging was performed on a Zeiss Supra 55-VP
(Oberkochen, Germany) at an electron accelerating voltage (electron high tension) of 3 kV.
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The burnt samples were mounted to an aluminium pin stub using double-sided carbon
tape. Imaging was performed with a 2 nm carbon coating to enhance the visualization.

3. Results and Discussion
3.1. Synthesis and Characterisation

A catalogue of seven α-aminophosphonate compounds were synthesized for investi-
gation (Figure 2). The one-pot synthesis involved the in situ formation of an imine from
the corresponding amine-benzaldehyde, before introducing the diphenyl phosphite.
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The reaction proceeds to completion in a maximum of 30 min at room tempera-
ture, yielding the corresponding α-aminophosphonate compounds (Figure 3). Mono-
substitution of the parent diamine was achieved giving 11, to compare the ability of the
unreacted primary amine and secondary amine to react with the epoxy matrix and facilitate
covalent integration into the network. The single substitution was prepared through careful
stoichiometric regulation.
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Figure 3. Compounds synthesised and corresponding yields for novel compounds.

The efficiency of each halogen atom (bromine, chlorine, and fluorine) is compared
to assess the abilities to act synergistically with phosphorus to impart flame retardant
properties to the polymer system. Compounds 6 and 11 are without halogen substitution
to compare the abilities of phosphorus alone.

Each analogue was analysed by 1H NMR. The spectra of new derivative 9 is provided
below (Figure 4). The doublet in the 1H NMR spectrum at δ 5.15 ppm is diagnostic of
the α-aminophosphonate as it possesses the correct chemical shift and coupling constant
(27 Hz) consistent with a J2 hydrogen–phosphorus interaction.
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Figure 4. 1H NMR spectra of 9 in CDCl3.

Chemical Structure of the Cured Network

NIR was used to examine the cure mechanism and incorporation of the α-amino-
phosphonate compounds into the polymer network, by assessing the presence of an epoxide
peak (~4530 cm−1) and the increase in hydroxyl absorbance (~7000 cm−1). Observation of
a combination of primary and secondary amine absorbance (~6570–6670 cm−1) identifies
presence of these species in the system (Figure 5).
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Figure 5. NIR analysis of DGEBA/DDM resin doped with samples (grey is the control spectra). NIR
spectra of each substitution to evaluate amine incorporation (small molecule α-aminophosphonate
and DDM-substituted α-aminophosphonate). Blue bands indicating the presence of epoxy, amine,
and hydroxyl peaks, respectively.

Figure 5 compares the NIR analysis of the α-aminophosphonate analogues to observe
if the degree of curing has been disturbed due to the addition of the compounds. The
grey curve corresponds to the control sample, and minimal epoxide peaks are present
(~4530 cm−1) with high hydroxyl absorbance (~7000 cm−1), indicating that there is neg-
ligible unreacted epoxy in the system. A primary/secondary amine peak observed at
~6640 cm−1 is expected, as the addition ratio of epoxy/amine introduces an excess of
amine. Examination of the NIR spectra for each of the samples showed trace amounts
of residual epoxide (observed at ~4490 cm−1); the large presence of hydroxyl absorbance
(observed at ~7000 cm−1) also indicates that the epoxy in the network has undergone
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cross-linking. The sample containing compound 11 (red spectra) shows a presence of a
combination of primary and secondary amines; this is expected as there is an excess of
amine in this system compared to the other α-aminophosphonate compounds. The sample
containing compound 6 (black spectra), without any halogenated substitution, does not
reveal the presence of residual epoxide or amine, indicating that the sample is cross-linked
without unreacted primary or secondary amine.

3.2. Thermogravimetric Analysis and Flammability

The cured resin samples were tested via TGA to assess their thermal stability, in both
air and nitrogen atmospheres. The resulting TGA curves (in air) are demonstrated below,
identifying which substituents from each reagent component (i.e., originating from the
aniline or benzaldehyde) are optimal for imparting fire retardance.

The TGA curves of all derivatives in air (Figure 6) demonstrate an earlier onset of
degradation in comparison to the control sample, suggesting promotion of char formation
and a wider plateau range, highlighting an increased stability at high temperatures.
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α-aminophosphonate 5 bearing a 4-fluoro substituent showed that the Compounds
9 and 10 possess a superior elongating tail, demonstrating an improved resistance to
thermal degradation.

All samples have an extended plateau ranging between 420 and 620 ◦C, which is an
improvement on the plateau range of the control samples (460–590 ◦C).

Figure 7 demonstrates the TGA curves in inert atmosphere. Improvements in the inert
atmosphere TGA for these compounds were also observed with higher residual weights at
600 ◦C for each compound.

Of particular note is 5, which showed excellent improvements in both nitrogen and
air (Table 2). This is interesting as α-aminophosphonate 9, bearing the 3,4,5-fluorine
substitution, did not show a similar behaviour. This would suggest that the introduction of
more fluorine atoms does not further improve the fire-retardant properties of the polymer
material and perhaps a balance between halogen content and beneficial flame retardant
properties exists in this scaffold.
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Table 2. TGA char yield and LOI data.

Compound Char Yield (%) a Char Yield (%) b LOI (%)

Control 35.8 21.1 28.0 ± 0.3
5 38.5 29.6 34.2 ± 0.2
6 33.8 33.2 32.8 ± 0.3
7 33.7 28.1 32.2 ± 0.2
8 35.4 31.6 34.6 ± 0.3
9 33.5 30.8 30.0 ± 0.1
10 33.1 32.0 33.0 ± 0.4
11 36.0 31.0 33.2 ± 0.5

a Analysis conducted in air, b analysis conducted in nitrogen, char yield at 500 ◦C.

To assess the minimum oxygen concentration to sustain flaming combustion, of each
sample with the incorporation of the α-aminophosphonates, the LOI was determined
(Table 2). This test involves defining the minimum concentration of oxygen (expressed
as a percentage) at which a material can sustain a flame. The LOI for the control resin
was determined to be 28.0% ± 0.3%. The addition of 8 resulted in the largest increase to
34.6% ± 0.3%, followed by 5 that achieved an LOI of 34.2% ± 0.2%, demonstrating that the
introduction of para-fluorine substitution provides the highest improvement.

Interestingly, compound 9, the trifluoromethyl derivative, does not provide further im-
provement, with the lowest LOI increase (30.0% ± 0.1% relative to the remaining analogues),
consistent with thermogravimetric analysis. This compound, (9), also demonstrated high
amounts of unreacted amine and residual epoxy present in the sample (Figure 5). This
could be due to the 4-fluroine deactivating the scaffold, thus minimizing its inclusion into
the polymer network.

Moreover, the compound bearing the 3,4,5-fluorine substitution is less soluble, in-
ducing phase separation and impacting the ability of the compound to homogenously
incorporate into the polymer material.

The introduction of bromine or chloride did not prove substantial benefit over the
compounds without any substitution (33.0% ± 0.4%, 32.2% ± 0.2%, and 32.8% ± 0.3%, re-
spectively).

The maximum improvement (relative to control sample) obtained was 6.6%. This is a
considerable increase and furthers our previous work, which obtained overall improvement
of 2.3% [23]. Moreover, the LOI values reported herein are higher when comparing to
studies that also modified DGEBA/DDM resin systems [9,10,26].
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3.3. Morphology of the Residue

After LOI testing, the morphology of the residue was investigated by SEM. Figure 8
displays the morphologies of the residues from the control sample (DGEBA/DDM) and
the resin samples containing compound 8 and 11. The morphology of the control resin
displays a surface with some small holes and smooth patches, due to the complete burning.
In comparison, the morphologies of the charred resin samples containing compounds 8
and 11 exhibit porous interior morphology with pores and bubbles. This indicates that the
incorporation of the α-aminophosphonate compounds restricts the rapid volatilization at
the surface and they act as an insulating layer
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In conclusion, we have reported the rapid, easily accessible synthesis of a catalogue of
α-aminophosphonates to assist in the covalent integration to an epoxy-based resin system.
NIR confirmed the incorporation of the compounds to the polymer system, demonstrating
minimal unreacted epoxy with strong hydroxyl contribution. The compounds assisted in
imparting flame retardance, with improved thermal degradation as verified by TGA and
LOI. This is further exhibited in SEM images of the burnt residue, revealing the protective
effect of the char layer to the underlying polymer. The compounds bearing para-fluorine
substitution provided the highest improvement, with no statistical difference between
bromine and chlorine substitutions to the control. This demonstrates the synergistic
effects of incorporating phosphorous- and fluorine-containing compounds into epoxy resin
systems to decrease flammability.
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