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Abstract

Background: The bacterial endospore (spore) has recently been proposed as a new surface display system.
Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only
in a few cases the efficiency of expression and the effective surface display and have been determined. We used
this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater
acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens
and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA
has been recognized as a major antigen, able to induce high levels of protection against challenge infections.

Results: We expressed UreA from H. acinonychis on the B. subtilis spore coat by using three different spore coat
proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three

carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that,
when fused to CotB, UreA is displayed on the spore surface (ca. 1 x 10° recombinant molecules per spore),
whereas when fused to CotC, although most efficiently expressed (7-15 X 10° recombinant molecules per spore)
and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to
those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed.

Conclusion: UreA was efficiently expressed on the spore coat of B. subtilis when fused to CotB, CotC or CotG. Of
these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate
for the display of heterologous proteins on the spore surface.

Background

Surface display systems are a powerful biological tool
with a variety of applications in the development of live
vaccines, generation of biocatalysts or biosensors, treat-
ment of microbial infections and screening of peptide
libraries [1,2]. Several approaches to display heterolo-
gous proteins in bacteria and phages have been devel-
oped and extensively reviewed [2,3]. In general, methods
to display heterologous proteins involve the construction
of gene fusions that code for a chimera formed by a car-
rier protein that anchors a heterologous passenger pro-
tein on the cell surface [3]. Similar approaches have also
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been used for displaying heterologous antigens [4,5] or
enzymes [6,7] on the surface of endospores (spores) of
Bacillus subtilis. The spore surface (spore coat) is
formed by over 50 proteins organized into a inner and
an outer layer. Components of the outer layer, selected
for their surface location [4] or relative abundance [5-7],
have been used as carrier proteins.

Spores are extremely stable life forms generated by
gram-positive bacteria of the Bacillus and Clostridium
genera in response to harsh environmental conditions that
do not allow cell growth and survival. In the spore form
these bacteria can survive indefinitely in the absence of
nutrients and can resist UV irradiation, extreme tempera-
ture and exposure to lytic enzymes and toxic chemicals
[8]. Spore coat proteins are produced in the bigger cell
(mother cell) and assembled around the forming spore in
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the mother cell cytoplasm, thus eliminating the need of
secretion signals and the constrains due to translocation
across a membrane. In addition, several coat proteins are
dispensable for the formation of an apparently normal
spore and, for this reason, their manipulation to incorpo-
rate the heterologous part usually does not affect spore
structure [9]. With respect to systems based on the use of
phages or bacterial cells, the spore-display system provides
also additional advantages, such as high stability and safety
due to the unusual properties of this peculiar cell form [8].
The commercial use of spores of various species of the
Bacillus genus as probiotics or for the oral prophylaxis of
gastrointestinal disorders, clearly proves the safety of
spores of these species [10].

So far, two coat proteins have been used to display
heterologous antigens, CotB and CotC. Both proteins
are in the outermost layer of the coat, from where they
can be extracted as 66 kDa (CotB) and 12 kDa (CotC)
species [11,12]. CotB has been used to display the C-
terminal fragment of the tetanus toxin (TTFC) [4],
domains 1b-3 and 4 of the Protective Antigen (PA) of
Bacillus anthracis [13] and the C-terminal part of the
alpha toxin of Clostridium perfringens [14]. In the case
of CotB-TTFC, dot blot experiments showed that each
recombinant spore exposed 1.5 x 10% chimeric mole-
cules [15]. CotC has been used to display the C-terminal
fragment of the tetanus toxin (TTFC) [5], the B subunit
of the heat-labile toxin (LTB) of Escherichia coli [5] and
a tegumental protein of Clonorchis sinensis [16]. The
CotC-based display on the spore surface has been found
to depend on the site of insertion of the heterologous
part. A 5-fold increase in the efficiency of display was
observed when TTFC was located at the N-terminal end
of CotC rather than at its C-terminal end [15]. The abil-
ity of recombinant spores expressing antigen to induce
strong specific immune responses has highlighted the
spore as a novel and promising mucosal vaccine delivery
system [17]. A third coat protein, CotG [18], has also
been used to display heterologous enzymes [6,7].

Here we report the use of all three previously utilized
coat proteins, CotB, CotC and CotG, to display UreA, a
urease subunit of Helicobacter acinonychis, an animal
pathogen closely related to H. pylori and recognized as a
useful in vivo model to study H. pylori virulence
mechanisms [19]. UreA of H. pylori has been shown to
induce high levels of protection against a H. pylori chal-
lenge infection in vaccinated mice [17,20,21]. Clinical
studies (phase I) based on the use of UreA of H. pylori
as antigen have been performed [22-24] and the use of
that antigen patented (OraVax Inc., Cambridge, MA,
US). However, there is evidence that UreA from differ-
ent Helicobacter species can induce protection against
H. pylori infection [25,26].
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Results

The UreA of Helicobacter acinonychis

H. acinonychis produces a urease subunit A highly
homologous to that of H. pylori. The UreA subunits of
the two species share 96% identity with only 8 different
amino acid residues out of 238. The ureA gene of H.
acinonychis was PCR amplified and cloned in Escheri-
chia coli in frame with a 6xHis tag under the transcrip-
tional control of an inducible ara promoter. The protein
was over-expressed, purified on Ni-columns and used to
raise polyclonal antibody in mice. The obtained anti-
UreA serum recognized UreA of H. pylori (data not
shown), suggesting that the H. acinonychis protein can
be used as an antigen to develop a new spore-based vac-
cine against H. pylori. The anti-UreA antibody failed to
react against proteins extracted from Bacillus subtilis or
Escherichia coli (data not shown), indicating that the
recognition of UreA of H. acinonychis and H. pylori is
specific and that the signal observed with E. coli expres-
sing ureA of H. acinonychis is exclusively due to the het-
erologous protein.

Construction and chromosomal integration of gene
fusions

To obtain recombinant B. subtilis spores expressing
UreA on their surface we used three cot proteins, CotB,
CotC and CotG as carrier proteins. To this aim the cod-
ing part of the ureA gene of H. acinonychis was fused in
frame with the coding part of cotB, cotC or cotG, as spe-
cified below. All gene fusions retained the promoter of
the cot gene to ensure proper timing of expression dur-
ing the sporulation process (Fig. 1). Genetic stability was
obtained by integrating the gene fusions on the B. subti-
lis chromosome into the coding sequence of the non-
essential gene amyE [27].

The C terminus of CotB is formed of three 27 amino
acid repeats that confer genetic instability to chimeric
proteins containing them [9]. For this reason, when
CotB was used as a carrier, DNA encoding the three
repeats was not included in the gene fusions and only
DNA encoding the N-terminal 275 amino acid residues
of CotB was used (Fig. 1). When CotC or CotG were
used as carriers, DNA encoding the entire Cot proteins
was used (Fig. 1).

As heterologous part we initially used the entire UreA
subunit of 238 amino acids. However, while its fusion
with CotG produced a stable chimeric protein (see
below), with CotB and CotC we failed to observe any
fusion product. For this reason we fused to CotB and
CotC a shorter form of UreA, lacking 49 amino acids at
its N-terminal end. With the shorter form of the antigen
(ureAl in Fig. 1), stable chimeric proteins were pro-
duced with CotB and CotC (see below).
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Figure 1 Schematic representation of the three gene fusions obtained. Fither the entire coding region of the ureA gene (1-717) or part of it
(148-717) was cloned in frame to nucleotide 825 of cotB, to nucleotide 198 of cotC and to nucleotide 585 of cotG. In Fusion 1 the dashed line
represents the region of CotB not included in the chimeric protein (see text).

Fusion 1 was obtained cloning ureAI (570 bp) in
frame with the serine codon at position 825 of cotB;
Fusion 2 was constructed cloning ureAl in frame with
the tyrosine codon at position 198 of cotC; and Fusion 3
was obtained cloning a 717 bp DNA fragment contain-
ing the entire ureA gene in frame with the lysine codon
at position 585 of cotG (Fig. 1).

All gene fusions were integrated on the B. subtilis
chromosome and individual clones for each transforma-
tion, tested by PCR (not shown), were named KH17
(Fusion 1), KH10 (Fusion 2) and KH23 (Fusion 3) and
used for further analysis.

The three recombinant strains and their isogenic par-
ental strain PY79 showed comparable sporulation and

germination efficiencies and their spores were equally
resistant to chloroform and lysozyme treatment (not
shown). Therefore, limited to the spore properties that
we have analyzed, the presence of Cot-UreA fusions
does not affect spore structure or functionality.

Surface expression

To verify that the gene fusions were localized on the
spore coat, we used a western blot approach using anti-
CotB, anti-CotC, anti-CotG and anti-UreA antibodies.
To perform the western blot experiments Fusion 2 was
moved by chromosomal DNA-mediated transformations
into isogenic B. subtilis strains deleted of cotC and/or
cotU genes, since it has been previously reported that
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the presence of the wild type allele of cotC or of its
homolog cotU, may reduce the efficiency of antigen dis-
play [4,5]. For the same reason Fusion 3 was moved into
an isogenic strain deleted of cotG [18], while Fusion 1
was only analyzed in otherwise wild type cells, since it
has been reported that the absence of a cotB wild type
allele impairs display of the recombinant form of
CotB [4].

Western blot analysis of spore coat proteins purified
from wild type and recombinant strains carrying Fusion
1 revealed the presence of an about 55-kDa band which
reacted with both UreA- and CotB-specific antibodies
(Fig. 2AB). A 66-kDa band, only reacting with CotB-spe-
cific antibody, was present in extracts from wild type
and recombinant spores (Fig. 2AB), indicating the pre-
sence of intact CotB molecules in the spore coat
together with CotB-UreAl fusion protein.

The analysis of strains carrying Fusion 2 showed the
presence of an about 30-kDa band which reacted with
both UreA- and CotC-specific antibodies (Fig. 3AB). A
standard pattern of CotC and CotU proteins [11,12] was
observed in wild type spore with and without Fusion 2
(Fig. 3A, lanes 1-2). In agreement with a previous report
[15], the fusion of a heterologous protein at the C ter-
minus of CotC impaired the formation of CotC homodi-
mer and CotC-CotU heterodimer. As a consequence,
when fused to UreAl CotC was only found as a mono-
mer. Only the recombinant protein was observed in
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strains carrying either a null mutation in cotC and/or
cotU (Fig. 3A, lanes 4-6).

The analysis of strains carrying Fusion 3 showed that
in the presence of a wild type cotG allele the chimeric
protein was not expressed (data not shown). However,
the analysis of the strain carrying the gene fusion and a
deletion of the wild type cotG gene, showed the appear-
ance of a 55-kDa band able to react with both UreA-
and CotG-specific antibodies (Fig. 4AB). A 32-kDa
band, corresponding to CotG [24], was observed in wild
type spores (Fig. 4A), while a band of about 30 kDa only
reacting with anti-UreA antibody was present in coat
extracts of a strain carrying a deletion of the cotG gene
and Fusion 3 (Fig. 4B, lane 3). This band is not (or very
weakly) recognized by anti-CotG antibody and is bigger
that purified UreA (Fig. 4B, lane 4), we therefore
hypothesize that it is a degradation product of CotG-
UreA and contains only a small fragment of CotG.

In all three cases the recombinant proteins observed
showed apparent molecular weights that correlated well
with the deduced molecular weights: Fusion 1, 52.4/55;
Fusion 2, 30/30; Fusion 3, 50.6/55 (deduced/apparent
kDa).

Surface display

To analyse the surface exposure of Cot-fused
UreA molecules, sporulating cells of wild type and
the isogenic recombinant strains were analyzed by

A

antibodies and visualized by the enhanced chemiluminescence method.
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Figure 2 Western blot analysis of Fusion 1 (CotB-UreA1) performed with anti-CotB (A) or anti-UreA (B) of spore coat proteins
extracted from strains PY79 (lanes 1) and KH17 (PY79 carrying cotB::ureAT) (lanes 2). In both panels arrows point to fusion proteins.
Purified UreA was run in lane 3 of panels B. Twenty five micrograms of total proteins were separated on either 8% (A), 12% (B) polyacrylamide
gels, electrotransferred to nitrocellulose membranes and reacted with primary antibodies and then with peroxidase-conjugated secondary
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Figure 3 Western blot analysis of Fusion 2 (CotC-UreA1) performed with anti-CotC (A) or anti-UreA (B) of spore coat proteins
extracted from strains PY79 (lanes 1), KH10 (PY79 carrying cotC:ureA1) (lanes 2), RH101 (PY79 cotC:spc) (lanes 3), KH11 (PY79 cotC::
spc cotC::ureAT) (lanes 4), RH209 (PY79 cotC:spc cotU::erm) (lanes 5) and KH12 (PY79 cotC::spc cotU::erm cotC::ureA1) (lanes 6). In both
panels arrows point to fusion proteins. Purified UreA was run in lane 7 of panels B. Twenty five micrograms of total proteins were separated on
either 15% (A) or 12% (B) polyacrylamide gels, electrotransferred to nitrocellulose membranes and reacted with primary antibodies and then with
peroxidase-conjugated secondary antibodies and visualized by the enhanced chemiluminescence method.
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Figure 4 Western blot analysis of Fusion 3 (CotG-UreA) performed with anti-CotG (A) or anti-UreA (B) of spore coat proteins extracted
from strains PY79 (lanes 1), ER203 (PY79 cotG::erm) (lanes 2) and KH23 (PY79 cotG::erm cotG::ureA) (lanes 3). In both panels arrows point
to fusion proteins. Purified UreA was run in lane 4 of panel F. Twenty five micrograms of total proteins were separated on either 15% (A) or 12%
(B) polyacrylamide gels, electrotransferred to nitrocellulose membranes and reacted with primary antibodies and then with peroxidase-
conjugated secondary antibodies and visualized by the enhanced chemiluminescence method.

immunofluorescence microscopy with UreA-specific pri-
mary antibodies and anti-mouse IgG-TR (Texas Red)
(Santa Cruz Biotechnology Inc.) as secondary antibody.
While for Fusion 1 (CotB-UreAl) a weak fluorescence
signal was observed around free, mature, spores (Fig. 5),
for Fusion 2 (CotC-UreAl) and Fusion 3 (CotG-UreA)
fluorescence was observed around forming spores (still
inside mother cells) but not around free spores (Fig. 5).
These results indicate that in the case of CotB-UreAl

the spore-exposed antigen is accessible to the antibody,
while on spores carrying CotC- or CotG-UreA the anti-
gen is present (since it can be extracted and visualized
by western blot) but not accessible to the interaction
with the antibody.

Efficiency of expression
A quantitative determination of the amount of UreA pre-
sent on B. subtilis spores was obtained by dot blot
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Figure 5 Immunofluorescence microscopy analysis. Sporulating
cells and free spores are visualized by phase contrast (PC) and by
immunofluorescence (IF) microscopy. Samples were labeled with
mouse anti-UreA antisera, followed by anti-mouse IgG-TR (Texas Red
or sulphorhodamine 101 acid chloride) conjugates. The same
exposure time was used for all IF samples.
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experiments using serial dilutions of purified UreA and of
coat proteins extracted from spores of the wild type and
the recombinant strains. Proteins were reacted with anti-
UreA antibody, then with alkaline phosphatase-conju-
gated secondary antibodies and colour developed by the
BCIP/NBT system (Bio-Rad) (Fig. 6). A densitometric
analysis indicated that the CotB-UreAl fusion protein
amounted to 0.1% of total coat proteins extracted, CotC-
UreAl between 0.4 and 0.8%, depending on the genetic
background utilized, and CotG-UreA to 0.5% (Table 1).
Considering the average amount of total proteins
extracted in our experimental conditions from each
spore [4.6 mg/ml (+ 0.23) for strain KH17, 4.9 mg/ml (+
0. 26) for strain KH10, 5.1 mg/ml (+ 0.18) for strain
KH11, 5.1 mg/ml (£ 0.25) for strain KH12 and 4.7 mg/ml
(£ 0.31) for strain KH23], we calculated that the number
of recombinant proteins extracted from each spore ran-
ged between 1.1 x 10®> (KH17) and 15 x 10® (KH11)
(Table 1).

Discussion

The A subunit of the urease (UreA) of various species of
the Helicobacter genus, has long been recognized as an
antigen able to induce high levels of protection against
the infection by the human pathogen H. pylori
[17,20,21,25,26]. The use of spores as mucosal vaccine
vehicles has been tested with various antigens
[4,5,13,14,16] and recently reviewed [28]. Expression of
UreA on the spore was achieved by using three different
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Figure 6 Dot blot performed with the indicated concentrations of coat proteins (in pg) extracted from spores carrying Fusion 1 (A,
lane 3), Fusion 2 (B, lanes 3-5) and Fusion 3 (C, lane 3) and from wild type spores (lane 2 in all panels). In panel B, lanes 3, 4 and 5
contain proteins of strains KH10 (PY79 carrying cotC:ureAl), KH11 (PY79 cotC:spc cotCrureAl) and KH12 (PY79 cotC:spc cotUzerm cotC:ureAl),

respectively. Purified UreA (in ng, lane 1 in all panels) was also utilized.
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Table 1 Densitometric analysisa®
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UreA source Amount of proteins

Density in OD/mm?

UreA concentration (ng) n° of recombinant proteins

used (ng) (standard deviation) in extracts (% of total) extracted from each spore
Fusion 1
Purified UreA 6.25 ng 389 (+ 0.08) NA
3.12 ng 19,1 (£ 0.11) NA
156 ng 9.8 (+ 0.06) NA
KH17 (CotB-UreAl) 5.00 g 304 (+ 0,03) 493 (0.10)
2.50 ug 15,1 ( 0,01) 2.51 (0.10) 1.1 x 103
1.25 pg 74 (£ 0,02) 1.12 (0.09)
Fusion 2
Purified UreA 25.0 ng 127.8 (= 0.02) NA
125 ng 63,3 (+ 0.01) NA
6.25 ng 32.1 (= 0.04) NA
KH10 (CotC-UreAT wt 250 ug 99.1 (+ 0.07) 16.55 (0.66)
background)
125 ug 486 (+ 0.09) 8.14 (0.65) 9.6 x 10°
0625 ug 236 (£ 0.10) 4.37 (0.70)
KH11 (CotC-UreA1 cotC 2.50 ug 1174 (= 0.03) 20.82 (0.83)
background)
125 g 57.7 (+ 0.08) 1035 (0.83) 15 x 10°
0625 ug 289 (£ 0.21) 5.15(0.82)
KH12 (CotC-UreA1 cotC cotU 250 pg 63.9 (+ 0.03) 11.10 (0.44)
background)
1.25 ug 30.7 (£ 001) 5.71 (0.46) 7.2 x 10°
0625 ug 154 (+ 0.03) 293 (047)
Fusion 3
Purified UreA 25.0 ng 131.2 (= 0.30) NA
125 ng 64,1 (£ 0.11) NA
6.25 ng 316 (+ 022 NA
KH23 (CotG-UreA cotG 5.00 ug 135,7 (+ 0.25) 2842 (0.57)
background)
2.50 ug 68,2 (+ 0.37) 14.73 (0.59) 53 x 10°
1.25 pg 34,7 (+ 0,05) 7.15 (0.57)

spore coat proteins as carriers. All three proteins, CotB,
CotC and CotG, were previously used to express and/or
display heterologous proteins on the B. subtilis spore
surface. In particular, CotB and CotC were used to
express heterologous antigens [4,5,13,14,16], while CotG
was used to express heterologous enzymes [6,7]. Our
initial attempts of using the entire UreA subunit of 239
amino acid residues were not successful with CotB and
CotC as carriers. However, we successfully used a
shorter version of UreA, indicated here as UreAl and
lacking 49 amino acids at the N-terminal end of the
antigen, with both CotB and CotC. UreAl, contains all
six potentially most immunogenic regions of UreA that
are all included between residue 64 and residue 189, as
determined by analysis of the UreA protein sequence by
the Antigen program (a part of EMBOSS package).

A first conclusion of this study comes from the analy-
sis of the strain carrying the cotB::ureAl gene fusion.
Immunofluorescence experiments showed that, when

fused to CotB, UreAl is displayed on the spore surface,
and dot-blot data followed by densitometric analysis
indicated that 1.1 x 10> CotB-UreAl molecules were
extracted from each purified spore. A previous study, in
which CotB was used to express the C fragment of the
tetanus toxin (TTFC), showed that the heterologous
part was displayed on the spore surface and that 1.5 x
10 recombinant proteins were extracted from each
spore [4]. The similarities observed between spores car-
rying CotB-UreAl and CotB-TTFC suggest that surface
display and amount of recombinant protein expressed
depends mainly on CotB and is not influenced by the
nature of the heterologous part.

The functionality of CotC as a carrier appears, instead,
to be dependent on the heterologous protein. When
fused to CotC, UreAl is efficiently expressed and is pre-
sent on the coat but is not displayed on the spore surface.
Two other antigens, TTFC and the B subunit of the heat-
labile toxin of E. coli (LTB) were previously reported as
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surface displayed when fused to CotC [5]. However, the
number of recombinant molecules extracted from each
purified spore is reproducibly higher with CotC than
with other two coat proteins as carriers and ranges from
7.2 x 10% and 15 x 10° depending on the genetic back-
ground of the host cell (Table 1).

Of the three coat proteins tested, CotG is the only
one that allowed the expression of the entire UreA
protein. UreA is not displayed but is present in the
coat and is extracted in amounts about intermediate
between those observed with the other two coat pro-
teins (Table 1). However, the recombinant CotG-UreA
protein is partially processed. While most CotG-UreA
molecules have a size of about 55 kDa, that correlates
well with the deduced size of 50.6 kDa, a fraction of
these molecules is probably processed to originate a
protein of about 30 kDa. This protein is smaller than
UreA alone (Fig. 4B), is recognized by anti-UreA anti-
body and not recognized, or very poorly recognized by
anti-CotG antidody (Fig. 4AB). We speculate that
either the CotG-UreA chimera is unstable and partially
degraded or that a proteolytic cleavage occurs within
the CotG part of the chimera. In this case the 30 kDa
protein would be formed by UreA and by a small frag-
ment of CotG, explaining the size and the weak, if any,
reactivity with anti-CotG antibody. However, a proteo-
lytic processing has never been reported for wild type
CotG. Additional experiments will be needed to
explain the observed phenomenon and identify the
presumptive cleavage site.

It is interesting to note that, for the various coat pro-
teins used as carriers, the genetic background of the
host cell differently affects the surface expression of the
fusion proteins. CotC-based chimeras are better
expressed in the absence of a wild type allele of cotC
but in the presence of a wild type allele of cotl, coding
for a CotC homolog, known to interact with CotC [12],
while CotB-UreAl is only expressed in the presence of a
wild type allele of cotB and, on the contrary, CotG-UreA
is only expressed in the absence of a wild type allele of
cotG.

Results reported here point to CotB and CotC as the
most appropriate carriers for UreA display on the spore
surface and for its efficient expression, respectively.
Immunological experiments will now be needed to
assess whether the surface display of an antigen is an
essential requisite for inducing a protective immune
response or whether it is preferable to have the highest
possible number of recombinant molecules on the spore
coat layers even though these are not exposed on the
spore surface. An antigen that is not directly exposed on
the spore surface but is very abundant in the under-
neath protein layers, could be protected from the gastric
enzymes and result immunologically more active.
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Conclusions

1) UreA of H. acinonychis was expressed on the spore of
B. subtilis, a new heterologous expression system
recently utilized to display antigens and enzymes [28].
Three different spore surface proteins were used as car-
rier to express UreA: CotB, CotC or CotG.

2) Among the three carriers, CotC was shown to allow
the highest efficiency of expression. A large amount of
its passenger protein was found to be located within the
coat, however it was not displayed outside the spore. On
the contrary, the level of expression of CotB-fused UreA
was lower, but in this case the passenger protein was
exposed on the spore surface and thus CotB resulted as
a more appropriate carrier for the display of heterolo-
gous proteins. Finally CotG gave results similar to those
with CotC, but the CotG-UreA recombinant protein
appeared to be partially processed.

Methods

Bacterial strains and transformation

Bacillus subtilis strains used in this study are listed in
Table 2. Plasmid amplification for nucleotide sequencing
and subcloning experiments were performed with
Escherichia coli strain DH5a [29]. Bacterial strains were
transformed by previously described procedures: CaCl,-
mediated transformation of E. coli competent cells [29]
and transformation of B. subtilis [30].

Construction of gene fusions

To obtain various gene fusions DNA coding for the
selected coat protein was PCR amplified using the B.
subtilis chromosome as a template and as primers oligo-
nucleotide pairs cotB-up/cotB-dn, cotC-up/cotC-dn and
cotG-up and cotG-dn (Table 3) for fusions cotB:ureAl,
cotC::ureAl and cotG-ureA, respectively. Amplification
products of 1100 bp (cotB:ureAl), 393 bp (cotC::ureAl)
and 1043 bp (cotG::ureA) were obtained and cloned into
the pGem-T easy vector (Promega) or pDL vector
(Bacillus Genetic Stock Center) for cotG::ureA, yielding
plasmids pGEM-CotB, pGEM-CotC and pDL-CotG.

Table 2 Strain list

Strain Relevant genotype Source
PY79 prototrophic [34]

KH17 amyE:cotB:ureAl This work
RH101 cotC:spc [11]
RH209 cotC:spc cotU:neo [15]

KH10 amyE:cotC:ureAl This work
KH11 cotCzspc amyE:cotC:ureAl This work
KH12 cotCzspe cotUzneo amyE:cotCiureAl This work
ER203 cotGrerm [18]

KH23 amyE:cotG:ureA cotG:erm: This work
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Table 3 Oligonucleotides list
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Name Sequence (5'-3') Restriction site
cotB-up AAGCTTACGGATTAGGCCGTTTGTC Hindill
cotB-dn GATATCGGATGATTGATCATCTGAAG EcoRV
cotC-up ACCCAAGCTTTGTAGGATAAATCGTTTG Hindlll
cotC-dn GATATCGTAGTGTTTTTTATGCTT EcoRV
cotG-up CCCGAATTCCGAGAAAAAATCC EcoRl
cotG-dn CTTGGATCCTTTGTATTTCTTTTTGACTAC BamHI
ureA-up GAGGGATCCATGAAACTCACCCCAAAAG BamHI
ureA-dn CGCGAGCTCTAGGGCCATACATAGAAAC Sacl
ureAl-up GAAGCGGATATCGGTAAAAAGACTGCG EcoRV
ureAl-dn GGGCCATACACTAGTACATATTCTTTTCTGCTAATC Spel
hisureA-up CTCGGTACCTTCTTTTCTGCTAATCTTTTTTTC Kpnl
hisureA-dn TATGCTAGCATGCATCATCACCATCACCATCACTCGAAACTCACCCCAAAAGAG Nhel

In bold are the recognition sites for the restriction enzymes indicated in the table.

A 625 bp DNA fragment coding for a fragment of UreA
was PCR amplified using H. acinonychis chromosome as a
template and oligonucleotides ureAl-up and ureAl-dn
(Table 3) as primers. The PCR product was sequentially
digested with EcoRV and Spel and cloned in frame to the
3’ end of the cotB and cotC genes carried by plasmids
pGEM-CotB and pGEM-CotC, yielding plasmids pKH09
and pKHO02, respectively. Plasmids pKHO09 and pKHO02
were digested with HindlIl and EcoRI and fragments car-
rying the gene fusions gel-purified and ligated into plasmid
pDG364 [27] previously digested with the same two
restriction enzymes, yielding plasmids pKH14 and pKHO3,
respectively. A 748 bp DNA fragment coding for the entire
UreA subunit was PCR amplified using H. acinonychis
chromosome as a template and oligonucleotides ureA-up
and ureA-dn as primers (Table 3). The PCR product was
sequentially digested with BamHI and Sacl and cloned in
frame to the 3’ end of the cotG gene carried by plasmid
pDL-CotG yielding plasmid pKH20.

Chromosomal integration

Plasmids pKH14 and pKHO3 were linearized by diges-
tion with Xhol while plasmid pKH20 was linearized by
digestion with Pstl. Linearized DNA was used to trans-
form competent cells of the B. subtilis strain PY79.
Chloramphenicol-resistant (Cm®) clones were the result
of a double-crossover recombination event, resulting in
the interruption of the non-essential amyE gene on the
B. subtilis chromosome. Several Cm® clones were tested
by PCR using chromosomal DNA as a template and oli-
gonucleotides AmyS and AmyA [9] to prime the reac-
tion. Three clones, one for each transformation, were
selected, called KH17 (from pKH14, Fusion 1), KH10
(from pKHO3, Fusion 2), and KH21 (from pKH20,
Fusion 3) and kept for further studies.

Chromosomal DNA extracted from strain KH10 was
moved into a isogenic cotC null strain RH101 [5], and
isogenic cotC cotU double null strain RH209 [15] by
chromosomal DNA-mediated transformation [27] yield-
ing strains KH11 and KH12, respectively. Chromosomal
DNA extracted from strain KH21 was used to transform
the isogenic cotG null strain ER203 [18], yielding strains
KH23.

Preparation of spores

Sporulation was induced by the exhaustion method in
DS (Difco-Sporulation) medium as described elsewhere
[31]. Sporulating cultures were harvested 24 h after the
initiation of sporulation and purified using a lysozyme
treatment to break residual sporangial cell followed by
washing steps in 1 M NaCl, 1 M KCI and water (two-
times), as described previously [31]. PMSF (0.05 M) was
included to inhibit proteolysis. After the final suspension
in water, spores were treated at 65°C for 1 h to kill resi-
dual cell. The spore suspension was titrated immediately
for CFU/ml before freezing at -20°C. By this method we
could reliably produce 6 x 10'° spores per liter of DSM
culture. Sporulation and germination efficiencies were
measured as previously reported [27]. Alanine and
asparagine were used to induce germination.

Extraction of spore coat proteins

Spore coat proteins were extracted from 50 pl of a sus-
pensions of spores at high density (1 x 10'° spores per
ml) using a Decoating extraction buffer as described
elsewhere [32]. Extracted proteins were assessed for
integrity by SDS-polyacrylamide gel electrophoresis
(PAGE) and for concentration by two independent
methods: the Pierce BCA Protein Assay (Pierce) and the
BioRad DC Protein Assay kit (Bio-Rad).
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Western and dot blot analyses

Extracted proteins were separated in 8%, 12% or 15%
denaturing polyacrylamide gels, electrotransferred to
nitrocellulose filters (PerkinElmer) and used for Western
blot analysis by standard procedures. Western blot fil-
ters were visualized by the enhanced chemiluminescence
(PerkinElmer) method as specified by the manufacturer.
Serial dilutions of extracted proteins and of purified
UreA were used for dot blot analysis. The filters were
then visualized by the enhanced chemiluminescence
(PerkinElmer) method and subjected to densitometric
analysis with Chemidoc XRS (Bio-Rad) and the MultiA-
nalyst software.

Immunofluorescence microscopy

B. subtilis strains (PY79, KH17, KH10 and KH23) were
induced to sporulate by the exhaustion method [27].
Samples were collected at different times after the onset
of sporulation and fixed directly in the medium as
described by Harry et al., [33], with the following modi-
fications: after suspension in GTE-lysozyme (50 mM
glucose, 20 mM Tris- HCI [pH 7.5], 10 mM EDTA, 2
mg of lysozyme/ml), samples (30 pl) were immediately
applied to microscope slide previously coated with
0.01% (wt/vol) poly-L-lysine (Sigma). After 3 min, the
liquid was removed and the microscope slide allowed to
dry (2 h at room temperature). The microscope slides
were washed three times in phosphate-buffered saline
(PBS) (pH 7.4), blocked for 30 min with 3% milk in PBS
at room temperature and then washed nine more times
with PBS. Samples were incubated overnight at 4°C with
anti-UreA antibody (raised in mouse), washed ten times,
and then incubated with anti-mouse IgG-TR conjugates
with Texas Red or sulphorhodamine 101 acid chloride
(Santa Cruz Biotechnology, Inc.) for 2 h at room tem-
perature. After ten washes the coverslip was mounted
onto a microscope slide and viewed using an Olympus
BX51 fluorescence microscope using the same exposure
time for all samples. Images were captured using a
Olympus DP70 digital camera, processed with analySIS
software and saved in TIFF format.

Purification of UreA and antibody production

The ureA gene of H. acinonichis was PCR amplified using
chromosomal DNA as a template and oligonucleotides
hisureA-up and hisureA-dn (Table 3) as primes. DNA
encoding six histidines (His6-tag) was carried by oligonu-
cleotide hisureA-dn. The obtained PCR product of 737
bp was digested with enzymes Kpnl and Nhel and cloned
into the commercial vector pBAD (Stratagene). The
resulting plasmid, pMD1, was verified by restriction ana-
lysis and nucleotide sequencing. pMD1 was used to
transform the E. coli strain DH50 and the recombinant
strain used to overproduce UreA by addition of arabinose
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0.05%. A 27 kDa protein was visualized on a blue-coo-
massie stained gel and purified on Ni-NTA superflow
agarose (Qiagene) followed by gel filtration on Superose
6 resin. 0.7 mg of pure UreA protein were obtained from
3 liters of culture. For antibody production six C57BL/6]
mice were immunised intraperitoneally with 30 pg of
purified UreA per mouse with incomplete Freund’s adju-
vant in a total volume of 300 pl. The injections took
place at day 0, 14, 35 and 56. At day 24 and 45 sera sam-
ples were taken by tail bleeding. At day 66 total blood
was collected. Obtained sera were tested against purified
protein and optimal dilution of anti-UreA sera was estab-
lished as 1:100 000 for western blot analysis.
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