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Abstract

Background: Multi-region sequencing (MRS) has been widely used to analyze intra-tumor heterogeneity (ITH) and cancer
evolution. However, comprehensive analysis of mutational data from MRS is still challenging, necessitating complicated
integration of a plethora of computational and statistical approaches. Findings: Here, we present MesKit, an R/Bioconductor
package that can assist in characterizing genetic ITH and tracing the evolutionary history of tumors based on somatic
alterations detected by MRS. MesKit provides a wide range of analysis and visualization modules, including ITH evaluation,
metastatic route inference, and mutational signature identification. In addition, MesKit implements an auto-layout
algorithm to generate phylogenetic trees based on somatic mutations. The application of MesKit for 2 reported MRS
datasets of hepatocellular carcinoma and colorectal cancer identified known heterogeneous features and evolutionary
patterns, together with potential driver events during cancer evolution. Conclusions: In summary, MesKit is useful for
interpreting ITH and tracing evolutionary trajectory based on MRS data. MesKit is implemented in R and available at
https://bioconductor.org/packages/MesKit under the GPL v3 license.
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Introduction

Cancer evolves through a process of somatic alterations [1], of
which spatial and/or temporal changes can be detected by multi-
region sequencing (MRS). Currently, MRS has become an effec-
tive and affordable way to trace the evolutionary history of car-
cinogenesis and metastasis. Cancer evolution research is fo-
cused on the identification and estimation of intra-tumor het-

erogeneity (ITH), phylogenetic reconstruction, mutational signa-
ture analysis, and so forth. Numerous MRS studies have identi-
fied extensive ITH among many solid tumors originating in the
liver, prostate, esophagus, breast, and lung [2–7]. In addition,
increased ITH has been implicated in dismal cancer prognosis
[8–10]. While recent studies have largely generated descriptive
summaries of ITH, a quantitative understanding of the hetero-
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geneity within and between tumors from the same patient is
more informative for personal therapeutics.

Recently, plenty of MRS studies have used phylogenetic trees
to show the temporal sequence and heterogeneous divergence
between samples [2, 11, 12]. There are also increasing efforts to
reconstruct subclonal phylogenies via a “clone tree,” which sum-
marizes lineage relationships between cellular subpopulations
[13–15]. Phylogenetic reconstruction over the cancer cell fraction
(CCF) estimates has identified both monoclonal and multiclonal
seeding patterns in several cancers [3, 16–18]. The distinction be-
tween these 2 patterns may have important clinical implications
[19]; it is thus necessary to infer metastatic routes and to explore
potential metastasis drivers.

Moreover, MRS provides insights into the dynamics of muta-
tional processes during tumor progression. A previous study in-
dicated that DNA damage repair dysfunction might be crucial for
mutation accumulation during osteosarcoma evolution [20]. Re-
cently, Yan et al. [21] performed MRS of tumors from 39 patients
with esophageal squamous cell carcinoma and identified several
potential actionable targets, such as EGFR and FGFR1. They also
showed that APOBEC mutations and aging predominated in the
early stage of tumorigenesis of esophageal squamous cell car-
cinoma. These findings suggest that the MRS strategy has the
potential to reveal mutational mechanisms and thereby could
improve both diagnosis and treatment.

The downstream analysis of MRS data focuses on somatic al-
terations, including somatic single-nucleotide variants (sSNVs),
small insertions and deletions (INDELs), and copy number alter-
ations (CNAs). At present, many tools are available to analyze
somatic alterations, which has greatly promoted the develop-
ment of cancer genomics. For example, Maftools [22] provides
multiple functions for pathway annotation and de novo signa-
ture and enrichment analysis. MutationalPatterns [23] and de-
constructSigs [24] are powerful tools for exploring mutational
patterns and identifying mutational signatures of a single tu-
mor sample. Besides, Palimpsest [25] enables the identification
of different mutational signatures between clonal and subclonal
mutations. In addition, lots of methods infer tumor heterogene-
ity by assessing the complex subclonal structure of tumors. Ap-
proaches such as SciClone [26], PhyloSub [27], and PyClone [28]
are based solely on point mutations (sSNVs or INDELs), while
SCHISM [29], DPClust [30], and PhyloWGS [31] adjust for CNAs in
their models in different ways. In general, high-depth sequenc-
ing improves the accuracy of subclonal reconstruction and res-
olution [32]. However, performing integrated mutational anal-
ysis of MRS using these tools is inconvenient because differ-
ent preprocessing steps and inconsistent input formats are re-
quired. On the other hand, it is laborious and time-consuming
to generate publication-quality images such as mutational pro-
files and phylogenetic trees, which necessitates manual modifi-
cations using extra graphic editors.

To address these concerns, we present MesKit, an
R/Bioconductor package that provides commonly used anal-
ysis and visualization modules for MRS studies. MesKit was
designed as an easy-to-use R package that only requires a
MAF file and a clinical file as inputs, enabling researchers to
evaluate the contribution of point mutations to heterogeneity
within/between tumors from the same patient. MesKit can
also be used to depict mutational profiles, track evolutionary
dynamics, and characterize mutational patterns at different
levels. Notably, we implemented an auto-layout algorithm to vi-
sualize rooted phylogenetic trees with annotations. In addition,
MesKit enables easy integration and analysis of segmentation
data and CCF data and a Shiny application is provided to

facilitate interactive analysis. Finally, we applied MesKit on 2
high-quality MRS datasets of hepatocellular carcinoma (HCC) [2]
and colorectal cancer (CRC) [12] (Supplementary Table S1). We
reproduced well-known heterogeneous features and evolution-
ary patterns, together with potential driver events of HCC and
CRC, demonstrating the robustness of MesKit in interpreting
ITH and for inferring evolutionary trajectories based on MRS
data.

Materials and Methods
Data collection and preprocessing

We used 2 cohorts in our analysis. The HCC cohort included tu-
mor tissue (n = 52) and matched blood (germline, n = 11) sam-
ples from 11 patients, which were collected before treatment
[2]. All samples were sequenced using whole-exome sequencing
(mean depth of 158×) and re-analyzed with a uniform pipeline
described below. In brief, we performed sSNV calling for each tu-
mor/normal pair with Mutect (version 1.1.7) [33], while INDELs
were detected with Strelka v2.7.1 [34]. Additionally, we adopted
the “force calling” method [35] to rescue potential real mutations
for each sample based on the aggregate set of somatic events in
each patient using Samtools mpileup (version 1.2) [36]. Both sS-
NVs and INDELs were annotated through ANNOVAR (v.20191024)
[37]. The following filters were further applied to identify the sS-
NVs and INDELs: (i) Mutations with <15 total reads or 5 vari-
ant reads were discarded. (ii) Mutations listed in dbSNP147 were
removed unless they were documented in the Catalogue of So-
matic Mutations in Cancer (COSMIC) database. (iii) Mutations
listed in the National Heart, Lung, and Blood Institute Exome
Sequencing Project were removed. Copy number analysis based
on exome sequencing was performed using Sequenza v3.0.0 [38].
Segments smaller than 500 kb were filtered and only autosomes
were used in copy number analysis. CCFs of mutations were es-
timated by PyClone (v0.13.0) [28], which adjusted the variant al-
lele frequencies (VAFs) of somatic mutations on the basis of local
copy numbers of the mutated loci and tumor purity (Sequenza
v3.0.0) [38]. The second cohort (the CRC cohort) comprised 6 pa-
tients processed with MRS for paired primary tumors and metas-
tases (3–5 regions each) [12]. We obtained somatic mutation calls
for sSNVs and INDELs, copy number segment data, and CCF es-
timates of mutations from the original study. Driver genes of
HCC and CRC were defined by IntOGen (v.2020.2). The GISTIC2
results of The Cancer Genome Atlas (TCGA) HCC and TCGA CRC
projects were obtained from the Broad Genome Data Analysis
Center (GDAC, http://gdac.broadinstitute.org) repository (analy-
sis stamp: 2016 01 28).

Clonal status of somatic mutations

Because multiple samples collected from a single tumor collec-
tively reflect its clonal composition, these regions should be con-
sidered as a whole to capture the overall tumor dynamics. Here,
we assume that each tumor follows neutral exponential growth
in a well-mixed population [39, 40]. When MRS data are avail-
able, the merged CCF (CCFmerged) of each mutation is computed
by integrating multiple regions as previously described [12, 41,
42]:

CCFmerged =
{ ∑k

i=1 CCFi × di∑k
i=1 di

CCF < 1

1 CCF ≥ 1
(1)
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where di and CCFi refer to the sequencing depth and CCF estima-
tion in region i , respectively. The clonal status of sSNVs/INDELs
are determined based on CCFs. A CCF value of 1 indicates that
the mutation is present in 100% of the cancer cells in a sample,
while a CCF value <1 indicates that the mutation is present in a
subset of the cancer cells in a sample and thus is subclonal. In
each sample, a mutation is classified as clonal when the upper
bound of the 95% confidence interval (CI) of the CCF is ≥1 and
subclonal otherwise [43]. For MRS data, a mutation is considered
subclonal when all of the following criteria are satisfied: (i) ≥1
region with upper bound of 95% CI of the CCF <1, (2) ≥1 region
with CCF < 0.5, and (iii) CCFmerged of mutation m < 0.5 (the cut-
off was chosen for its good performance in defining subclonality
in simulated virtual tumors [44, 45]).

Estimation of ITH

MesKit includes several measures of ITH defined by recent ge-
nomic studies. For a single region/tumor, it is common to infer
subpopulations of tumor cells by clustering VAFs or CCFs [26,
30]. To implement this process, we used Gaussian finite mix-
ture models for 1D clustering of VAFs or CCFs using mclust R
package [46]. Because copy number gains and losses can alter
the fraction of reads bearing a mutation, we only focused on
heterozygous mutations within copy number–neutral and loss-
of-heterozygosity–free regions when clustering VAFs. More re-
cently, Mroz et al. [47] developed the mutant-allele tumor het-
erogeneity (MATH) index, which corresponds to the ratio of the
median absolute deviation (MAD) and the median of the VAF val-
ues among tumor-specific mutated loci. Generally, a more het-
erogeneous tumor with a higher MATH score tends to have a
wider distribution of VAFs among all mutation loci and centers
at a lower fraction.

MATH = 1.4826 × MAD (VAF)
Median (VAF)

. (2)

Another approach to estimate ITH is calculating the area un-
der the curve (AUC) of the cumulative density function based
on the CCFs per tumor, and tumors with higher AUC values are
considered to be more heterogeneous [48]. Moreover, to quan-
tify the genetic divergence of ITH between regions or tumors, we
introduced 2 classical metrics derived from population genet-
ics, Wright fixation index (FST) [49] and Nei genetic distance [50].
Calculations of between-region genetic heterogeneity within tu-
mors only consider subclonal mutations because clonal muta-
tions present in all regions do not contribute to ITH. For pairwise
comparisons of heterogeneity between tumors, both clonal and
subclonal mutations were taken into consideration. The FST in-
dex estimating between-region ITH for k regions was computed
as described previously [44]:

FST = 1
r

×
∑r

j = 1
FST

Hudson
j , r =

(
k
2

)
, (3)

FST
Hudson
j =

∑mt
m = 1 ( f m

a − f m
b )2 − f m

a × (1 − f m
a )

dm
a − 1 − f m

b × (1 − f m
b )

dm
b − 1∑mt

m = 1 f m
a × (1 − f m

b ) + f m
b × (1 − f m

a )
, (4)

where mt represents the total number of sSNVs in regions a and
b, f m

a denotes the VAF for sSNV m, and dm
a denotes the sequencing

depth for sSNV m in region a.
The Nei genetic distance for k regions within the same tumor

was defined as follows [50]:

DNei = 1
r

×
∑r

j = 1
DNei j , r =

(
k
2

)
, (5)

DNei j
= − log

∑mt
m = 1 ccfm

a × ccfm
b + (

1 − ccfm
a

)
(1 − ccfm

b )√[∑mt
m = 1 ccfm

a
2 + (

1 − ccfm
a

)2
]

×
[∑mt

m = 1 ccfm
b

2 + (
1 − ccfm

b
)2

] ,(6)

where mt represents the total number of sSNVs in regions a and
b. ccfm

a and ccfm
b represent the CCF values in region a and region

b for mutation m, respectively.

Inference of metastatic routes

For spatially separated lesions from the same patient, the poten-
tial metastatic route can be determined by comparing subclonal
architecture between paired lesions. Here, MesKit integrated a
Jaccard similarity index (JSI)-based method to identify seeding
patterns based on the CCFs of sSNVs for paired lesions [42]. The
Jaccard coefficient for a lesion pair (a, b) is calculated as follows:

JSI = SSab

PCa + PCb + SSab
, (7)

where SSab and PCa/PCb represent shared subclonal sSNVs of le-
sion pair (a, b) and private clonal sSNVs of lesion a/b, respec-
tively. The mean SSab, and PCa/PCb of all sample pairs from le-
sion a and lesion b are used to compute the JSI for lesions with
MRS data.

Construction and visualization of phylogenetic trees

MesKit reconstructs the phylogeny of multiple specimens from
individual patients on the basis of the presence or absence
of somatic mutations. This process is implemented in get-
PhyloTree function via utilization R implementations of sev-
eral standard phylogenetic approaches from the APE [51] and
PHANGORN [52] R packages, including distance-based methods
(neighbor-joining [NJ] [53] and minimum evolution [54]), as well
as character-based methods (maximum parsimony [MP] [55] and
maximum likelihood [ML] [56]). Notably, we implemented an
auto-layout algorithm via the plotPhyloTree function to gen-
erate customizable images of phylogenetic trees with annota-
tions (Supplementary File S1). Furthermore, by using the treedist
function from the PHANGORN [52] R package, MesKit enables the
comparison of phylogenetic trees constructed by different meth-
ods via the compareTree function.

Mutational signature analysis

To illustrate the dynamic mutational spectrum during tumor
progression, we implemented mutational signature analysis
based on phylogenetic trees. The process starts with the con-
struction of a mutation matrix accounting for 96 trinucleotide
changes, where the sequence context of the base substitutions
can be retrieved from the corresponding reference genome us-
ing the BSgenome R package. Six types of base substitution types
are distinguished by convention: C>A, C>G, C>T, T>A, T>C, and
T>G. As methylated cytosine at CpG sites with the attendant risk
of spontaneous deamination are mutagenic hot spots in the hu-
man genome [57], C>T mutations can be divided into C>T at CpG
sites and other sites [23]. Genomic mutations are temporally dis-
sected into truncal (shared among all samples from the same
patient) and branch mutations of phylogenetic trees. For each
mutational type, the Fisher exact test is implemented to assess
the difference between the truncal and branch mutations. Once
the signature matrix is provided, the fitSignatures function esti-
mates the optimal contributions of known signatures to recon-
struct a mutational profile, which minimizes the residual sum
of squares (RSS) between the original and reconstructed muta-
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tional profiles. This process was implemented by integrating a
non-negative least-squares algorithm using the pracma R pack-
age [77], as previously described in MutationalPatterns [23]. For
convenience, we included known signature matrices (published
by Alexandrov et al. [73] and Cosmic version 2, 3) along with the
proposed etiology in MesKit. The similarity between mutational
profiles A and B is calculated by cosine similarity as follows:

sim (A, B) =
∑n

i = 1 Ai Bi√∑n
i = 1 A2

i

√∑n
i = 1 B2

i

, (8)

where mutational profiles A and B are non-zero vectors with n
mutational types. Cosine similarity value can be used to test
how well each mutational profile can be explained by the pro-
vided mutational signatures. Two mutational profiles are iden-
tical when the cosine similarity is 1 and are independent when
the cosine similarity is 0.

Results
Overview of MesKit functions and implementation

MesKit was implemented as an open source R/Bioconductor
package. With a MAF file and a clinical data file as standard in-
puts, MesKit provides a series of analysis and visualization func-
tions to interpret mutational data from MRS experiments (Fig. 1).
In addition, we implemented a Shiny application to facilitate the
use of the package. Moreover, we built a Docker image that en-
ables the deployment of the Shiny-based MesKit GUI in a C/S
mode.

Mutational landscape of MRS studies

Generally, somatic mutations identified from MRS in a single tu-
mor are classified as “public mutations” (existing in all regions of
the tumor), “shared mutations” (existing in part of all regions),
or “private mutations” (existing in a single region) [20, 44, 58].
Such spatial-mutation categories largely correspond to the tem-
poral order of mutation genesis during tumor evolution: most
public mutations occur early in tumor-initiating cells and are
inherited by their offspring, whereas private mutations accu-
mulate sporadically and markedly increase the ITH among dif-
ferent patients [59]. In MesKit, we implemented the classifyMut
function to help categorize somatic mutations based on regional
distribution, and/or to identify clonal and subclonal mutations
according to their estimated CCFs (Methods). Analysis of the
HCC and CRC cohorts showed significant inter-individual het-
erogeneity but much less intra-individual heterogeneity (Fig. 2
and Supplementary Fig. S1). In line with previous findings [13,
60, 61], the primary tumors and metastases of the CRC cohort
exhibited high genomic concordance (Fig. 2A). As expected, pub-
lic mutations harbor higher CCFs than private mutations (Sup-
plementary Fig. S2), which were more likely to be clonal events.
Recurrent mutations in putative driver genes of CRCs (defined
by IntOGen v.2020.2), such as KRAS and APC, were clonal and
shared between paired primary tumors and metastases, indicat-
ing their early occurrence in colorectal carcinogenesis (Fig. 2A
and Supplementary Fig. S2). Interestingly, heterozygous BRCA2
mutations were private to distant metastases, including the
lung metastases (LU) and brain metastases (BM) of 2 patients
(V824 and V930), while there is currently no strong evidence that
shows that BRCA2 mutations are associated with CRC metas-
tasis. In addition, the plotCNA function of MesKit can be used
to characterize the CNA landscape across samples on the basis
of copy number data. Consistent with TCGA projects and other

previous studies of HCC [62, 63], a number of copy number alter-
ations were observed in our HCC cohort, such as gains of 1q, 6p,
8q, and 13q, as well as losses of 1p, 4q, 9q, and 11q (Fig. 2B). Taken
together, these data suggest that MesKit can easily characterize
the mutational landscape and potential driver genes during can-
cer evolution.

ITH estimation

Understanding the degree and development of ITH is clinically
important because ITH has been associated with treatment re-
sistance and the prognosis of patients with cancer [64]. MesKit
integrates several approaches to estimate ITH within and be-
tween regions/tumors from the same patient. In MesKit, the
mutCluster function deduces distinct subpopulations of a sam-
ple/tumor by clustering VAFs/CCFs in 1 dimension based on
Gaussian finite mixture models [46]. It should be noted that low-
frequency clusters might be a mixture of subclones that con-
tain mutations coming from numerous parallel lineages grow-
ing neutrally [32, 65]. Another approach is calculating MATH
score, which is positively correlated with tumor heterogeneity
and metastatic potential [66, 67]. Besides, we integrated an in-
dex described by Charoentong et al. [48], to assess ITH by calcu-
lating the AUC of the cumulative density function from all CCFs
per sample/tumor. Samples/tumors with higher AUCs are con-
sidered to be more heterogeneous than those with lower AUCs.
Applying these measures on HCC8010 showed that samples with
wider distributions of VAFs tended to have higher MATH scores,
and VAF-based ITH was comparable to that calculated by CCFs
(Fig. 3A and B). Moreover, we introduced 2 measures from popu-
lation genetics [44, 49, 50], named FST and Nei genetic distance,
to enable pairwise comparisons between regions/lesions. Com-
parison of ITH between primary tumors and paired metastases
in the CRC cohort showed no significant difference using these
2 indices (Wilcoxon signed-rank test, FST: P = 0.5781, Nei dis-
tance: P = 0.1094, Fig. 3C). Similarly, this observation supports
the conclusion that primary and metastatic tumors of CRC ex-
hibit a high degree of mutational discordance.

Inferring the clonality of metastatic seeding

Because metastasis is the major cause of cancer-related death,
it is particularly important to gain a systematic understanding
of how tumor cells disseminate and the scale of ongoing parallel
evolution in metastatic and primary sites [68]. Given that muta-
tions with similar CCFs tend to cluster into the same subpop-
ulation [69, 70], many studies inferred the potential metastatic
routes between different lesions from the same patient by plot-
ting CCFs of mutations [12, 42, 71]. By this means, Xue et al. [71]
identified both monoclonal and multiclonal origins of separate
type combined hepatocellular and intrahepatic cholangiocarci-
noma (cHCC-ICC). Here, we developed the compareCCF function
to calculate the merged CCFs of distinct lesions with MRS data.
To visualize the seeding patterns between lesions in a more intu-
itive way, the results of this function can be further used to plot
CCF plots, where the clusters at (1, 1) correspond to the clonal
mutations present in all cells in both lesions (CCF = 1), while
those on axes refer to lesion-private subclones. In addition,
MesKit integrated a JSI-based method to calculate mutational
similarity between lesions [42]. Pairs following polyclonal seed-
ing generally achieve higher JSI values because of their higher
proportion of shared subclonal sSNVs and fewer lesion-private
sSNVs (Methods). Analysis of the CRC cohort with these func-
tions revealed that all BMs exhibited enrichment of metastasis-
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Figure 1: Overview of the MesKit package A. Overview of MesKit. MesKit consists of 5 major modules: characterizing mutational landscape, estimating ITH, inferring

metastatic routes, exploring mutational patterns, and visualizing phylogenetic trees automatically. Corresponding functions for each module are displayed separately.

private clonal sSNVs and shared clonal sSNVs but lacked shared
subclonal sSNVs (Fig. 3D). Moreover, all BMs comprised a sin-
gle phylogenetic clade in the phylogenetic trees (Supplemen-
tary Fig. S4). These observations jointly indicated that the BMs
of this CRC cohort followed a monoclonal seeding manner, con-
sistent with the original study [12]. Besides, in both paired pri-
maries and metastases of most CRCs, the merged CCFs of mu-
tations in CRC driver genes including APC, KRAS, and TP53 were
>0.6, suggesting that they may contribute to CRC tumorigenesis
and metastasis. Notably, lymph nodes showed higher JSI values
than distant metastases in V750 and V824, indicating that poly-
clonal seeding was more prevalent in lymph node metastases
(Fig. 3D). In summary, these results demonstrated the ability and
efficiency of MesKit to identify distinct patterns of seeding be-
tween paired lesions.

Construction and visualization of phylogenetic trees

A systematic understanding of the evolutionary relationships
among tumor regions from a single patient plays a fundamen-
tal role in MRS studies, with the phylogenetic tree being a pri-
mary tool for delineating the relationship between tumor re-
gions and interpreting ITH [2, 11, 44]. Consistent with origi-
nal studies, we applied the MP method to reconstruct the tu-
mor phylogeny of the CRC cohort using the getPhyloTree func-
tion in MesKit. Phylogenetic trees were further visualized with
the function plotPhyloTree, which provides options to color the
branches according to the classification of mutations or puta-
tive known signatures. We consistently reproduced tree struc-
tures of most CRCs from the original study [12], in which the
primary regions and metastatic regions were clearly separated
(Fig. 4). Inspection of the phylogeny indicated early divergence

of the metastatic lineage in V402, V824, V930, V953, and V974,
whereas divergence occurred during diversification of the pri-
mary tumor in V750. Moreover, we compared the MP-based phy-
logenetic trees with those constructed by the NJ method and ML
method for each patient with CRC. Phylogenetic trees inferred
through the 3 methods shared the same topology and clades for
V402, V924, and V953 (Supplementary Fig. S3). When consider-
ing branch lengths, the MP-based trees were more similar to the
NJ-based trees than the ML-based trees according to KF-branch
distance [72] and weighted RF distance [74] (Supplementary Ta-
ble S2). Collectively, these results demonstrate the functional-
ity and efficiency of MesKit for analyzing and visualizing tumor
phylogeny.

Temporal dissection of mutational signatures

Analysis of mutational signatures can be used to understand
the mechanisms of transformation of normal cells to malig-
nant cells and to identify underlying risk factors for tumor de-
velopment. First, Alexandrov et al. [73] utilized >7,000 cancer
genomes and exomes to identify 21 signatures across 30 tumor
types. More recently, the Wellcome Trust Sanger Institute [78]
published 30 mutational signatures (Version 2) in primary can-
cer and an expanded 67 single-base substitution signatures (Ver-
sion 3). Considering the limited number of tumor samples as-
sessed by MRS and thus the limited number of identified muta-
tions, it is not amenable to conduct de novo signature extraction.
Therefore, we developed the fitSignatures function to calculate
the contribution of well-established signatures to mutations at
different levels. By reconstructing the mutational profiles of the
HCC and CRC cohorts using 30 COSMIC mutational signatures,
we demonstrated that the signature contributions estimated by
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Figure 2: Mutational landscape of the HCC and CRC cohorts A. Mutational profile of the CRC cohort. The oncoprint of the top 15 most frequently mutated driver
genes of CRC grouped by public, shared, or private mutations, including both clonal and subclonal drivers. Genes were sorted by mutational frequency, and those with

multiple mutations were annotated as Multi Hit. Samples were split by patients as indicated by the annotation bar (bottom). BM: brain metastasis; LN: lymph node
metastasis; LU: lung metastasis; P: primary tumor. The stacked bar charts on the top and right show the number of different types of mutations per sample and per
driver gene, respectively. B. The consistent CNAs of the HCC cohort with significant recurring CNAs were identified from the TCGA hepatocellular carcinoma project
by GISTIC2.0 (obtained from the Broad GDAC website). Each track represents 1 tumor sample. Dark red indicates amplifications (CN ≥ 4), light red indicates gains (2

< CN < 4), dark blue indicates deletions (CN = 0), and light blue indicates losses (0 < CN < 2).

fitSignatures function were highly similar to those calculated
by 3 other signature deconvolution tools (average Pearson cor-
relation: 1, MutationalPatterns [23]; 0.997, SignatureEstimation
[74]; 0.948, deconstructSigs [24]) (Supplementary Fig. S4A and Ta-
ble S3). The similarities (indicated by cosine similarity) and dis-
crepancies (indicated by RSS) between the original and recon-
structed mutational profiles generated with MesKit were also
comparable to those generated from other tools (Supplementary
Figure S4B). As shown in Fig. 5B, hierarchical clustering via Eu-
clidean distance of the patients based on their cosine similar-
ity values clearly separated the HCCs from the CRCs. These re-

sults demonstrate the ability of MesKit to reliably estimate sig-
nature contributions. We further applied the fitSignatures func-
tion with 30 COSMIC signatures to truncal and branch sSNVs
of HCC5647, HCC7608, and HCC8716 (other HCCs were excluded
because their truncal/branch sSNVs were <50). All 3 HCCs ex-
hibited a prominent decrease of the contribution of Signature
22 (exposures to aristolochic acid) in branch mutations com-
pared with truncal mutations (Fig. 5A and Supplementary Table
S4) Among them, HCC5647 and HCC8716 showed significantly
higher percentages of T>A (P < 0.01) in truncal mutations than
branch mutations (Supplementary Fig. S5), which is consistent
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Figure 3: ITH estimation and the clonality of metastatic seeding A. Clustering mutations by VAFs of each tumor sample from HCC8010 based on a Gaussian finite

mixture model. MATH scores are indicated above. B. CCF density plot of tumor samples from HCC8010. C. FST- and Nei distance–based quantification of ITH in paired
primary tumors and metastases of the CRC cohort (n = 7). P-value, Wilcoxon rank-sum test (2-sided). D. Density plots of merged CCF values in paired primary tumors
and metastases of the CRC cohort. For each pair, the JSI was computed according to equation (7). Putative CRC driver genes are indicated on the plot. BM: brain

metastasis; LN: lymph node metastasis; LU: lung metastasis; P: primary tumor.

with the characteristic patterns of Signature 22 (characterized
by T>A). Considering these observations, we hypothesized that
exposure to aristolochic acid contributed significantly to muta-

genic process in the early stage of tumorigenesis for these HCCs.
This analysis suggests the utility of MesKit to reveal the dynamic
mutational processes.
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Figure 4: Phylogenetic trees of the CRC cohort Phylogenetic trees of the CRC cohort were constructed from all sSNVs and INDELs using the MP algorithm. Branches

were colored according to the regional distribution of mutations. The branch lengths are proportional to the number of mutations.

Discussion

Multi-region sequencing has become an affordable and effective
way to investigate genetic heterogeneity and trace tumor evolu-
tionary trajectory. Multiple spatial snapshots of tumors can help
reduce sampling bias and detect minor subclones. Despite these
advantages, there are few tools available to systematically ana-
lyze mutational data of multi-region samples from a single pa-
tient so far. In this regard, we present MesKit, an R/Bioconductor
package, which incorporates a diversity of essential analysis
and visualization functions for MRS studies. MesKit quanti-
fies ITH based on somatic mutations by integrating several ap-
proaches described in recent cancer genome studies [47–50].
Besides, MesKit can be used to infer metastatic routes, char-
acterize mutational patterns at different levels, and generate
publication-quality images such as mutational profiles and phy-
logenetic trees. Via implementation of the Shiny application,
MesKit enables researchers with minimal informatics skills to
effortlessly interpret and visualize the intricate mutational data
from MRS. Furthermore, we demonstrated the utility and effi-
ciency of MesKit in interpreting ITH and inferring evolutionary
trajectory using 2 published MRS datasets of HCC and CRC. Col-
lectively, we believe that MesKit is a handy and feature-rich tool,
which will greatly facilitate the exploration of mutational data
from MRS experiments.

Because MesKit takes a MAF file and a clinical data file
as standard inputs, it primarily evaluates ITH based on so-
matic mutations, and its assessment of contributions of CNAs
is still limited. At present, several subclonal reconstruction
methods are available to infer the relative order of occurrence
between an SNV and its associated CNA. In future updates,
we plan to implement the integration of results from these
methods to provide insights into the clonality and temporal
dynamics of ITH. On the other hand, as ITH arises through
various mechanisms, it is invaluable to perform investiga-
tions at the genetic, transcriptomic, phenotypic, and cellular
levels.

Availability of Source Code and Requirements

Project name: MesKit
Project home page: https://github.com/Niinleslie/MesKit
Operating system(s): Platform independent
Programming language: R
Other requirements: R ≥4.0
License: GPL-3
RRID: SCR 020959
biotools: meskit

https://github.com/Niinleslie/MesKit
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/browse/resources/SCR_020959
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Figure 5: Temporal dissection of mutational signatures. A. Relative contribution of the 96 trinucleotide changes to the original mutational profile (upper panel), the

reconstructed mutational profile (middle panel), and the difference between these profiles for truncal mutations and branch mutations from HCC patient HCC8716.
The RSS, cosine similarity between the original and the reconstructed mutational profile and proposed etiology for mutational processes underlying the signature
are indicated on the top. B. Heat map of cosine similarities between the 30 COSMIC signatures and the mutational profiles of the HCC and CRC cohorts. Patients

were hierarchically clustered between the vectors of cosine similarities of signatures using the Euclidean distance methods. The signatures were ordered according to
hierarchical clustering based on the cosine similarity between signatures.
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Data Availability

The code for creating the figures in this article can be found and
re-executed in a Code Ocean capsule [75]. Supporting data and
an archival copy of the code are also available via the GigaScience
database, GigaDB [76].

Additional Files

Figure S1: Mutational landscape of HCC and CRC cohorts A. Mu-
tational profile of HCC cohort. Oncoprint of top 15 most fre-
quently mutated driver genes of HCC were grouped by public,
shared, or private mutations including both clonal and subclonal
drivers. Stacked bar charts on the top and right show the num-
ber of mutations for different types per sample and per driver
gene, respectively. Genes were sorted by mutational frequency
and samples were split by patients as indicated by the annota-
tion bar (bottom). B. The consistent CNAs of CRC cohort with sig-
nificant recurring CNAs identified from TCGA Colorectal Adeno-
carcinoma project by GISTIC2.0 (obtained from Broad GDAC web-
site). Each track represents 1 tumor sample. BM: brain metas-
tasis; LN: lymph node metastasis; LU: lung metastasis; P: pri-
mary tumor. Dark red indicates amplifications (CN ≥ 4); light
red, gains (2 < CN < 4); dark blue, deletions (CN = 0); and light
blue, losses (0 < CN < 2).
Figure S2: CCF heat maps of CRC cohort The heat maps of CCF
values of tumor samples from the same patient. The color bar
next to the heat map indicates the classification of mutations
shared amongst different samples. The proportion of each clas-
sification is indicated in the legend. Putative CRC driver genes
are labeled on the right.
Figure S3: Comparison of phylogenetic trees constructed by dif-
ferent methods of the CRC cohort. Comparison of the MP-based
phylogenetic trees against those constructed by NJ method and
ML method for each patient with CRC. For each pair, the differ-
ent clades between 2 phylogenetic trees are highlighted in red
(the first tree) or blue (the second tree).
Figure S4: Comparison of signature contributions measured by
MesKit, MutationalPatterns, SignatureEstimation, and decon-
structSigs. A. Relative contributions of all 30 COSMIC signatures
for each patient in the HCC and CRC cohorts. B. Cosine similarity
and RSS between the original and the reconstructed mutational
profiles.
Figure S5: Mutation spectra of truncal and branch mutations
of HCC5647, HCC7608, and HCC8716. Stacked bar plots show
the proportions of truncal and branch mutations accounted for
by each of the 6 mutation types in HCC5647, HCC7608, and
HCC8716. The number of analyzed mutations is displayed on
top of each bar. A Fisher exact test was used to compare truncal
and branch mutations for each mutation type (2-sided test: ∗P
< 0.01).
Figure S6: Schematic diagram of visualizing phylogenetic trees.
Node N refers to a non-mutated normal sample: node 0 repre-
sents the starting node. In tree T0: K = {node 0, node 2, node 4,
node 5, node 8}, K [1] is node 0; B = {node 1, node 3, node 6, node
7}, B [1] is node 1; R = {node 1, node 7}, R[1] is node 1; L = {node
3, node 6}, L [1] is node 3.
Table S1: Clinical features of the HCC and CRC cohorts
Table S2: Distance between the MP-based phylogenetic tree and
the NJ-/ML-based phylogenetic tree for each patient in CRC co-
hort
Table S3: Relative contributions of all 30 COSMIC signatures for
each patient in HCC and CRC cohorts, as measured by MesKit,
MutationalPatterns, SignatureEstimation, and deconstructSigs

Table S4: Signature contributions of truncal and branch muta-
tions of HCC5647, HCC7608, and HCC8716
Supplementary File S1: Phylogenetic visualization auto-layout
algorithm

Abbreviations

AUC: area under the curve; BM: brain metastasis; CCF: cancer
cell fraction; CI: confidence interval; CNAs: copy number alter-
ations; COSMIC: Catalogue of Somatic Mutations in Cancer; CRC:
colorectal cancer; FST: fixation index; GDAC: Genome Data Anal-
ysis Center; GUI: graphical user interface; HCC: hepatocellular
carcinoma; INDELs: small insertions and deletions; ITH: intra-
tumor heterogeneity; JSI: Jaccard similarity index; LN: lymph
node; LU: lung metastasis; MAD: median absolution deviation;
MAF: mutation annotation format; MATH: mutant-allele tumor
heterogeneity; ML: maximum likelihood; MP: maximum parsi-
mony; MRS: multi-region sequencing; NJ: neighbor-joining; RSS:
residual sum of squares; sSNV: somatic single-nucleotide vari-
ant; TCGA: The Cancer Genome Atlas; VAF: variant allele fre-
quency; WES: whole-exome sequencing.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

Q.Z. and J.R. conceived the project. M.L., J.C., X.W. and C.W. de-
veloped the methodology and implemented the method. X.Z.,
Z.Z. and Y.X. helped test the software. M.L., Q.Z., and J.R.
wrote the manuscript. All authors read and approved the final
manuscript.

Acknowledgements

This work was supported by grants from the National Nat-
ural Science Foundation of China (Grant Nos. 91753137,
31471252, 31771462, 81772614, U1611261, and 31801105); Na-
tional Key R&D Program of China (Grant No. 2017YFA0106700);
Program for Guangdong Introducing Innovative and En-
trepreneurial Teams (Grant No. 2017ZT07S096); Guangdong
Natural Science Foundation (Grant No. 2018A030313323);
Fundamental Research Funds for the Central Universities
(SYSU: 19ykpy184) and China Postdoctoral Science Foundation
(2017M610573).

References

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next gen-
eration. Cell 2011;144(5):646–74.

2. Lin DC, Mayakonda A, Dinh HQ, et al. Genomic and epige-
nomic heterogeneity of hepatocellular carcinoma. Cancer
Res 2017;77(9):2255–65.

3. Gundem G, Van Loo P, Kremeyer B, et al. The evolution-
ary history of lethal metastatic prostate cancer. Nature
2015;520(7547):353–7.

4. Hong MK, Macintyre G, Wedge DC, et al. Tracking the origins
and drivers of subclonal metastatic expansion in prostate
cancer. Nat Commun 2015;6(1):6605.

5. Hao JJ, Lin DC, Dinh HQ, et al. Spatial intratumoral hetero-
geneity and temporal clonal evolution in esophageal squa-
mous cell carcinoma, Nat Genet 2016;48(12):1500–7.



Liu et al. 11

6. Yates LR, Gerstung M, Knappskog S, et al. Subclonal diver-
sification of primary breast cancer revealed by multiregion
sequencing. Nat Med 2015;21(7):751–9.

7. de Bruin EC, McGranahan N, Mitter R, et al. Spatial and tem-
poral diversity in genomic instability processes defines lung
cancer evolution. Science 2014;346(6206):251–6.

8. Zhang J, Fujimoto J, Zhang J, et al. Intratumor heterogene-
ity in localized lung adenocarcinomas delineated by multi-
region sequencing. Science 2014;346(6206):256–9.

9. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq
highlights intratumoral heterogeneity in primary glioblas-
toma. Science 2014;344(6190):1396–401.

10. Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Track-
ing the evolution of non–small-cell lung cancer. N Engl J Med
2017;376(22):2109–21.

11. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor hetero-
geneity and branched evolution revealed by multiregion se-
quencing. N Engl J Med 2012;366(10):883–92.

12. Hu Z, Ding J, Ma Z, et al. Quantitative evidence for
early metastatic seeding in colorectal cancer. Nat Genet
2019;51(7):1113–22.

13. Kim TM, Jung SH, An CH, et al. Subclonal genomic ar-
chitectures of primary and metastatic colorectal cancer
based on intratumoral genetic heterogeneity. Clin Cancer
Res 2015;21(19):4461–72.

14. El-Kebir M, Oesper L, Acheson-Field H, et al. Reconstruction
of clonal trees and tumor composition from multi-sample
sequencing data. Bioinformatics 2015;31(12):i62–70.

15. Gerlinger M, Horswell S, Larkin J, et al. Genomic archi-
tecture and evolution of clear cell renal cell carcinomas
defined by multiregion sequencing. Nat Genet 2014;46(3):
225–33.

16. Liu W, Laitinen S, Khan S, et al. Copy number analysis indi-
cates monoclonal origin of lethal metastatic prostate cancer.
Nat Med 2009;15(5):559–65.

17. Huang Y, Gao S, Wu S, et al. Multilayered molecular profil-
ing supported the monoclonal origin of metastatic renal cell
carcinoma. Int J Cancer 2014;135(1):78–87.

18. Cheung KJ, Padmanaban V, Silvestri V, et al. Polyclonal breast
cancer metastases arise from collective dissemination of
keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci
U S A 2016;113(7):E854–63.

19. Beltran H, Demichelis F. Prostate cancer: Intrapatient hetero-
geneity in prostate cancer. Nat Rev Urol 2015;12(8):430–1.

20. Wang D, Niu X, Wang Z, et al. Multiregion sequencing re-
veals the genetic heterogeneity and evolutionary history of
osteosarcoma and matched pulmonary metastases. Cancer
Res 2019;79(1):7–20.

21. Yan T, Cui H, Zhou Y, et al. Multi-region sequencing
unveils novel actionable targets and spatial heterogene-
ity in esophageal squamous cell carcinoma. Nat Commun
2019;10(1):1670.

22. Mayakonda A, Lin D-C, Assenov Y, et al. Maftools: efficient
and comprehensive analysis of somatic variants in cancer.
Genome Res 2018;28(11):1747–56.

23. Blokzijl F, Janssen R, van Boxtel R, et al. MutationalPatterns:
comprehensive genome-wide analysis of mutational pro-
cesses. Genome Med 2018;10(1):33.

24. Rosenthal R, McGranahan N, Herrero J, et al. Deconstruct-
Sigs: delineating mutational processes in single tumors dis-
tinguishes DNA repair deficiencies and patterns of carci-
noma evolution. Genome Biol 2016;17(1):31.

25. Shinde J, Bayard Q, Imbeaud S, et al. Palimpsest: an R
package for studying mutational and structural variant sig-

natures along clonal evolution in cancer. Bioinformatics
2018;34(19):3380–1.

26. Miller CA, White BS, Dees ND, et al. SciClone: inferring
clonal architecture and tracking the spatial and temporal
patterns of tumor evolution. PLoS Comput Biol 2014;10(8):
e1003665.

27. Jiao W, Vembu S, Deshwar AG, et al. Inferring clonal evo-
lution of tumors from single nucleotide somatic mutations.
BMC Bioinformatics 2014;15(1):35.

28. Roth A, Khattra J, Yap D, et al. PyClone: statistical infer-
ence of clonal population structure in cancer. Nat Methods
2014;11(4):396–8.

29. Niknafs N, Beleva-Guthrie V, Naiman DQ, et al. Sub-
Clonal hierarchy inference from somatic mutations: au-
tomatic reconstruction of cancer evolutionary trees from
multi-region next generation sequencing. PLoS Comput Biol
2015;11(10):e1004416.

30. Nik-Zainal S, Van Loo P, Wedge DC, et al. The life history of
21 breast cancers. Cell 2012;149(5):994–1007.

31. Deshwar AG, Vembu S, Yung CK, et al. PhyloWGS: re-
constructing subclonal composition and evolution from
whole-genome sequencing of tumors. Genome Biol 2015;16
(1):35.

32. Caravagna G, Heide T, Williams MJ, et al. Subclonal recon-
struction of tumors by using machine learning and popula-
tion genetics. Nat Genet 2020;52(9):898–907.

33. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive de-
tection of somatic point mutations in impure and het-
erogeneous cancer samples. Nat Biotechnol 2013;31(3):
213–9.

34. Saunders CT, Wong WS, Swamy S, et al. Strelka: accurate so-
matic small-variant calling from sequenced tumor-normal
sample pairs. Bioinformatics 2012;28(14):1811–7.

35. Stachler MD, Taylor-Weiner A, Peng S, et al. Paired exome
analysis of Barrett’s esophagus and adenocarcinoma. Nat
Genet 2015;47(9):1047–55.

36. Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25(16):2078–9.

37. Wang K, Li M, Hakonarson H. ANNOVAR: functional anno-
tation of genetic variants from high-throughput sequencing
data. Nucleic Acids Res 2010;38(16):e164.

38. Favero F, Joshi T, Marquard AM, et al. Sequenza: allele-
specific copy number and mutation profiles from tumor se-
quencing data. Ann Oncol 2015;26(1):64–70.

39. Williams MJ, Werner B, Barnes CP, et al. Identification of
neutral tumor evolution across cancer types. Nat Genet
2016;48(3):238–44.

40. Durrett R. Population genetics of neutral mutations in expo-
nentially growing cancer cell populations. Ann Appl Probab
2013;23(1):230–50.

41. Zhang C, Zhang L, Xu T, et al. Mapping the spreading routes
of lymphatic metastases in human colorectal cancer. Nat
Commun 2020;11(1):1993.

42. Hu Z, Li Z, Ma Z, et al. Multi-cancer analysis of clonality and
the timing of systemic spread in paired primary tumors and
metastases. Nat Genet 2020;52(7):701–8.

43. McGranahan N, Favero F, de Bruin EC, et al. Clonal sta-
tus of actionable driver events and the timing of mu-
tational processes in cancer evolution. Sci Transl Med
2015;7(283):283ra54.

44. Sun R, Hu Z, Sottoriva A, et al. Between-region genetic diver-
gence reflects the mode and tempo of tumor evolution. Nat
Genet 2017;49(7):1015–24.



12 MesKit: dissecting cancer evolution of multi-region tumor biopsies

45. Caswell-Jin JL, McNamara K, Reiter JG, et al. Clonal re-
placement and heterogeneity in breast tumors treated
with neoadjuvant HER2-targeted therapy. Nat Commun
2019;10(1):657.

46. Scrucca L, Fop M, Murphy TB, et al. mclust 5: Clustering, clas-
sification and density estimation using Gaussian finite mix-
ture models. R J 2016;8(1):289–317.

47. Mroz EA, Tward AD, Pickering CR, et al. High intratumor ge-
netic heterogeneity is related to worse outcome in patients
with head and neck squamous cell carcinoma. Cancer-Am
Cancer Soc 2013;119(16):3034–42.

48. Charoentong P, Finotello F, Angelova M, et al. Pan-cancer im-
munogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint
blockade. Cell Rep 2017;18(1):248–62.

49. Bhatia G, Patterson N, Sankararaman S, et al. Estimating and
interpreting FST: the impact of rare variants. Genome Res
2013;23(9):1514–21.

50. Lee JK, Wang J, Sa JK, et al. Spatiotemporal genomic architec-
ture informs precision oncology in glioblastoma. Nat Genet
2017;49(4):594–9.

51. Paradis E, Claude J, Strimmer K. APE: Analyses of Phy-
logenetics and Evolution in R language. Bioinformatics
2004;20(2):289–90.

52. Schliep KP. phangorn: phylogenetic analysis in R. Bioinfor-
matics 2011;27(4):592–3.

53. Saitou N, Nei M. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol Biol Evol
1987;4(4):406–25.

54. Desper R, Gascuel O. Fast and accurate phylogeny recon-
struction algorithms based on the minimum-evolution prin-
ciple. J Comput Biol 2002;9(5):687–705.

55. Yang Z. Phylogenetic analysis using parsimony and likeli-
hood methods. J Mol Evol 1996;42(2):294–307.

56. Felsenstein J. Evolutionary trees from DNA sequences:
a maximum likelihood approach. J Mol Evol 1981;17(6):
368–76.

57. Youssoufian H, Kazazian HHJr, Phillips DG et al. Recurrent
mutations in haemophilia A give evidence for CpG mutation
hotspots. Nature 1986;324(6095):380–2.

58. Hu Z, Sun R, Curtis C. A population genetics perspective on
the determinants of intra-tumor heterogeneity. Biochim Bio-
phys Acta Rev Cancer 2017;1867(2):109–26.

59. Liu M, Liu Y, Di J, et al. Multi-region and single-cell sequenc-
ing reveal variable genomic heterogeneity in rectal cancer.
BMC Cancer 2017;17(1):787.

60. Brannon AR, Vakiani E, Sylvester BE, et al. Comparative se-
quencing analysis reveals high genomic concordance be-
tween matched primary and metastatic colorectal cancer le-
sions. Genome Biol 2014;15(8):454.

61. Tan IB, Malik S, Ramnarayanan K, et al. High-depth sequenc-
ing of over 750 genes supports linear progression of pri-
mary tumors and metastases in most patients with liver-
limited metastatic colorectal cancer. Genome Biol 2015;16
(1):32.

62. Wang K, Lim HY, Shi S, et al. Genomic landscape of
copy number aberrations enables the identification of
oncogenic drivers in hepatocellular carcinoma. Hepatology
2013;58(2):706–17.

63. Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis
of somatic mutations and focal copy-number changes iden-
tifies key genes and pathways in hepatocellular carcinoma.
Nat Genet 2012;44(6):694–8.

64. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resis-
tance to cancer therapies. Nat Rev Clin Oncol 2018;15(2):81–
94.

65. Williams MJ, Werner B, Heide T, et al. Quantification of sub-
clonal selection in cancer from bulk sequencing data. Nat
Genet 2018;50(6):895–903.

66. Rajput A, Bocklage T, Greenbaum A, et al. Mutant-allele tu-
mor heterogeneity scores correlate with risk of metastases
in colon cancer. Clin Colorectal Cancer 2017;16(3):e165–70.

67. Mroz EA, Rocco JW. MATH, a novel measure of intratu-
mor genetic heterogeneity, is high in poor-outcome classes
of head and neck squamous cell carcinoma. Oral Oncol
2013;49(3):211–5.

68. Campbell PJ, Yachida S, Mudie LJ, et al. The patterns and dy-
namics of genomic instability in metastatic pancreatic can-
cer. Nature 2010;467(7319):1109–13.

69. Ding L, Ley TJ, Larson DE, et al. Clonal evolution in re-
lapsed acute myeloid leukaemia revealed by whole-genome
sequencing. Nature 2012;481(7382):506–10.

70. Griffith M, Miller CA, Griffith OL, et al. Optimizing cancer
genome sequencing and analysis. Cell Syst 2015;1(3):210–23.

71. Xue R, Chen L, Zhang C, et al. Genomic and transcrip-
tomic profiling of combined hepatocellular and intrahepatic
cholangiocarcinoma reveals distinct molecular subtypes.
Cancer Cell 2019;35(6):932–947.e8.

72. Kuhner MK, Felsenstein J. A simulation comparison of phy-
logeny algorithms under equal and unequal evolutionary
rates. Mol Biol Evol 1994;11(3):459–68.

73. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signa-
tures of mutational processes in human cancer. Nature
2013;500(7463):415–21.

74. Huang X, Wojtowicz D, Przytycka TM. Detecting presence of
mutational signatures in cancer with confidence. Bioinfor-
matics 2018;34(2):330–7.

75. Liu M. Supporting code and data for “MesKit: a tool kit for
dissecting cancer evolution of multi-region tumor biopsies
through somatic alterations” [Source Code]. Code Ocean.
2021; https://doi.org/10.24433/CO.6811520.v2.

76. Liu M, Chen J, Wang X, et al. Supporting data for “MesKit: a
tool kit for dissecting cancer evolution of multi-region tumor
biopsies through somatic alterations.” GigaScience Database
2021. http://dx.doi.org/10.5524/100891.

77. Hans W. Borchers. pracma: Practical Numerical Math Func-
tions. R package version 2.3.3. https://CRAN.R-project.org/p
ackage=pracma. Accessed 1 January 2021.

78. COSMIC Mutational Signatures. http://cancer.sanger.ac.uk/
cosmic/signatures. Accessed 1 July 2020.

https://doi.org/10.24433/CO.6811520.v2
http://dx.doi.org/10.5524/100891
https://cran.r-project.org/web/packages/pracma
https://CRAN-project.rg/package=-pracma
https://CRAN.R-project.org/package=pracma
https://CRAN-project.rg/package=-pracma
https://cran.r-project.org/web/packages/pracma
http://cancer.sanger.ac.uk/cosmic/signatures

