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Abstract

Background: To assess the performance of BED-CEIA (BED) and AxSYM Avidity Index (Ax-AI) assays in estimating HIV
incidence among female sex workers (FSW) in Kigali, Rwanda.

Methodology and Findings: Eight hundred FSW of unknown HIV status were HIV tested; HIV-positive women had BED and
Ax-AI testing at baseline and $12 months later to estimate assay false-recent rates (FRR). STARHS-based HIV incidence was
estimated using the McWalter/Welte formula, and adjusted with locally derived FRR and CD4 results. HIV incidence and local
assay window periods were estimated from a prospective cohort of FSW. At baseline, 190 HIV-positive women were BED
and Ax-AI tested; 23 were classified as recent infection (RI). Assay FRR with 95% confidence intervals were: 3.6% (1.2–8.1)
(BED); 10.6% (6.1–17.0) (Ax-AI); and 2.1% (0.4–6.1) (BED/Ax-AI combined). After FRR-adjustment, incidence estimates by BED,
Ax-AI, and BED/Ax-AI were: 5.5/100 person-years (95% CI 2.2–8.7); 7.7 (3.2–12.3); and 4.4 (1.4–7.3). After CD4-adjustment,
BED, Ax-AI, and BED/Ax-AI incidence estimates were: 5.6 (2.6–8.6); 9.7 (5.0–14.4); and 4.7 (2.0–7.5). HIV incidence rates in the
first and second 6 months of the cohort were 4.6 (1.6–7.7) and 2.2 (0.1–4.4).

Conclusions: Adjusted incidence estimates by BED/Ax-AI combined were similar to incidence in the first 6 months of the
cohort. Furthermore, false-recent rate on the combined BED/Ax-AI algorithm was low and substantially lower than for either
assay alone. Improved assay specificity with time since seroconversion suggests that specificity would be higher in
population-based testing where more individuals have long-term infection.
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Introduction

The Serologic Testing Algorithm for Recent HIV Seroconver-

sion (STARHS) offers a promising alternative to prospective

measurement of HIV incidence, particularly in developing

countries where incidence rates may be high but are infrequently

measured owing to limited resources[1–4]. Two main STARHS

assays are the BED capture enzyme immunoassay (BED)[5] and

AxSYM Avidity Index method (Ax–AI)[6]. These and other

STARHS assays exploit biologic properties of early HIV infection,

such as development of HIV antibodies, to distinguish recent from

long-term infections in cross-sectional samples of individuals

testing HIV positive.

Studies conducted in a range of populations and settings,

however, reveal the tendency of STARHS assays, including the

BED and Ax-AI, to misclassify certain individuals with long-term

HIV infection as recently infected, thus inflating HIV incidence

estimates relative to prospective cohort rates[5,7–11]. A number of

strategies have been proposed for correcting assay misclassifica-

tion, including statistical adjustment, assessment of CD4 count and

antiretroviral therapy (ART) status among individuals tested in

order to remove those with probable long-term infection (LTI)

from ‘‘recent infection’’ (RI) classification by the assays prior to

calculation of incidence, and use of a dual testing algorithm in

which a second, different STARHS assay confirms the classifica-

tion on an initial assay[8,9,12–17]. In addition, individuals who

test HIV-positive in a cross-sectional survey can be followed in a

‘‘long-term infection cohort’’ with repeat STARHS testing $12

months later, in order to calculate assay false-recent rates (FRR);

incidence estimates can then be adjusted downward by applying

the FRR to available statistical formulae[8,9,18].

We applied the BED and Ax-AI assays in a cross-sectional survey

and to post-seroconversion panel specimens from a prospective HIV

seroconversion study among female sex workers (FSW) at Projet
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Ubuzima in Kigali, Rwanda. This paper reports on the proportion

of samples testing RI; concordance between BED and Ax-AI results;

frequency and factors associated with false-recent classifications by

the assays; estimated mean window periods for the assays based on

data from cohort seroconverters; estimated HIV incidence in the

prospective cohort; and unadjusted and adjusted STARHS-based

incidence estimates for the cross-sectional sample.

Materials and Methods

Eight hundred FSW 18 years and older were HIV tested in a

cross-sectional survey. All women provided written informed

consent prior to study participation. Women who tested HIV

positive during the survey were further tested by the BED and Ax-

AI assays, and then asked to return to the study clinic at least 12

months later for repeat testing by both assays. HIV-negative, non-

pregnant women were eligible to enroll in a prospective HIV

seroconversion cohort. Cohort participants (N = 397) returned for

quarterly follow-up visits for one year and then for a single visit

during the second year of follow-up.

HIV testing was by First Response Rapid Test (Premier Medical

Corporation, India) and Uni-Gold Rapid Test (Trinity Biotech

Plc, Ireland), with Capillus HIV-1/HIV-2 Rapid Test (Trinity

Biotech Plc, Ireland) as the tie-breaker. Rapid test-positive results

were confirmed by Murex HIV Ag/Ab Combination ELISA

(Abbott Laboratories, Germany), and tested by CD4 cytometry.

Rapid test-negative specimens were pooled for testing by HIV-1

RNA PCR to identify acute HIV infections (COBAS TaqMan,

Roche Molecular Systems, Inc., USA).

Specimens from participants testing HIV positive in the cross-

sectional survey and cohort were tested with the BED and Ax-AI

assays. The BED assay measures the ratio of HIV-specific

immunoglobulin (IgG) antibody to total antibody; a low

proportion indicates infection within the past 155 days (i.e., RI)

(95% confidence interval [CI]: 146–165)) [2,5]. BED testing was

performed onsite following the manufacturer’s package insert

(CalypteH Biomedical Corporation, Oregon, US)[19]. The Ax-AI

method measures the ‘‘avidity’’—or strength—of the HIV

antibody-antigen bond; avidity is weak among individuals infected

during the past 180 days (i.e., RI)[6,20]. Avidity testing was

performed by the Pediatric HIV Research Unit in South Africa

using the AxSYM HIV-1/2gO ELISA (Abbott, USA), and

following procedures described elsewhere[6,20].

Women who tested HIV positive were given CD4 results and

referred for HIV care and evaluation for treatment eligibility, as

well as psychosocial services. BED and Ax-AI results were not

given to participants, as the assays are designed for research

purposes only[21]. The National Ethics Committee and the

National AIDS Control Commission (CNLS) in Rwanda, and the

Columbia University Medical Center Institutional Review Board

in the United States, approved the study.

Statistical methods
Prospective cohort sample. The estimated cohort HIV

incidence rate and 95% CI were calculated using standard

incidence formulae, assuming a Poisson distribution. HIV

infection was assumed to have occurred at the midpoint between

the last negative HIV test and first positive HIV test.

We estimated study sample-specific mean window periods for

the BED and Ax-AI assays, and combined BED/Ax-AI algorithm.

While rigorous statistical methods, such as mixed effects regression

or survival analysis techniques, are the preferred method for

deriving mean assay window periods (see e.g., [22]), such methods

require substantially larger sample sizes than were available for

this analysis. Instead, we used an approximate method to estimate

assay window periods: we observed in the pattern of antibody

kinetics the point at which each subject crossed the assay cutoff

(0.8 for BED, 0.85 for Ax-AI (Ax-AI cutoff based on personal

communication with B. Suligoi)), and then averaged the values across

subjects to obtain the mean assay window period. To estimate the

window period for the combined BED/Ax-AI algorithm, we took

the value of the earlier of the two assay threshold crossings (BED

or Ax-AI) for each individual, and then averaged across

individuals. For all window period calculations, we excluded

seroconverters who self-reported initiating ART after HIV

diagnosis, individuals lacking additional serial assay results from

post-seroconversion visits, and those who did not reach the

threshold of either assay during follow-up testing. Standard errors

(SE) were calculated around window period estimates using

standard spreadsheet software (Microsoft Excel, 2003).

Cross-sectional survey sample. In the cross-sectional

sample, we calculated the proportion of HIV-infected

participants classified as RI and LTI by each assay, as well as

the proportion with concordant and discordant results on the two

assays. A Kappa coefficient with 95% CI was calculated to

measure agreement between BED and Ax-AI classifications.

HIV-1 incidence estimates and 95% CI based on the BED and

Ax-AI assay results (with BED OD-n#0.80 and Ax-AI#0.85

indicating recent infection) were calculated using the formula, and

accompanying spreadsheet (available at: http://www.sacema.

com/page/assay-based-incidence-estimation; accessed July 8,

2010), provided by McWalter and Welter[23]. Inputs in the

formula include the number of positive individuals in the sample,

the number of recent infections, the assay window period (sample-

specific estimates), and the number of HIV-negative individuals

tested. Incidence estimates are expressed as an incidence rate

(number of new HIV infections per 100 person-years), and

confidence intervals are calculated using a delta method

approximation. Incidence estimates were adjusted with CD4

count data, by excluding individuals with probable long-term

infection (based on CD4,200) from recent infection classifications

for incidence estimate calculations (these individuals were also

excluded from FRR calculations). Further, a separate set of

adjusted incidence estimates was generated by adjusting estimates

with study-specific FRR for the BED and Ax-AI assays, and

combined BED/Ax-AI algorithm. False-recent rate was defined as

the proportion of ART-naı̈ve, HIV-infected cross-sectional survey

participants with known long-term infection and CD4 count $200

cells/ml who were classified by the BED and/or Ax-AI assay as

having recent infection upon repeat testing $12 months later[8,9].

All statistical analyses were performed using SAS version 9.2

(SAS Institute, Inc., Cary, NC).

Results

Assay results among prospective seroconverters
Nineteen individuals HIV seroconverted during the prospective

cohort study, generating a total of 52 samples (19 from the

seroconversion visit, and 33 post-seroconversion samples). The

duration between seroconverters’ last negative and first positive

HIV test ranged from 83 to 406 days (mean: 204 days; median: 93

days). Among 16 of 19 seroconverters with CD4 data available

within 3 months of the seroconversion visit, median CD4 count

was 549 cells/ml (range: 287–1218).

Figures 1a–b display BED OD-n values and Ax-AI scores,

respectively, over time since HIV seroconversion among prospec-

tive cohort seroconverters (N = 11) with BED/Ax-AI results for

post-seroconversion study visits. Among these 11 participants, 6

BED and Avidity Index Assays in Rwanda
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saw their BED result cross the designated assay cutoff value during

follow-up, and 7 saw their Ax-AI result cross the cutoff. Using data

from these participants whose infection status changed from RI to

LTI during follow-up, and excluding data from 2 seroconverters

who reported initiating ART since their HIV diagnosis, the

estimated mean window periods for BED and Ax-AI were

approximately 330 (SE 84.1) and 310 (SE 69.9) days, respectively.

The estimated window period for the combined BED/Ax-AI

algorithm was 267 days (SE 64.8).

Assay classifications in the cross-sectional sample
A total of 192 women tested HIV positive in the cross-sectional

survey (no acute HIV infections were identified by PCR). As none of

the women knew their positive HIV serostatus prior to testing, all

participants were ART-naı̈ve at the time of the survey. Among

HIV-positive participants, 190 were tested by BED and Ax-AI

(Fig. 2): 36 (19%) were classified as RI by BED, and 56 (30%) as RI

by Ax-AI; 23 (12%) were classified as RI by both assays; 121 (64%)

were classified as LTI by both assays; and 46 (24%) were classified

Figure 1. STARHS assay results over time among participants with incident HIV in prospective cohort (N = 11).
doi:10.1371/journal.pone.0018402.g001
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discordantly by the assays. BED and Ax-AI classifications were

concordant for 76% of cross-sectional sample specimens, yielding a

Kappa score of 0.35 (95% CI: 0.20, 0.50). The Spearman coefficient

for correlation between BED OD-n and Ax-AI results was 0.24.

False-recent rates
Among the 190 participants with STARHS results from the

survey, 141 (74%) returned for repeat testing by BED and Ax-AI

$12 months later (median 623 days, range: 432–861). Upon

repeat testing, 80% (113/141) of women were correctly classified

as having LTI by both assays. However, 9 women were falsely

classified by BED as RI; 23 women were falsely classified by Ax-AI

as RI; and 4 women were falsely classified by both assays as RI.

Four of the 9 participants with BED-false recent results (44%), 8 of

the 23 participants with Ax-AI-false recent results (35%), and 1 of

the 4 participants with false recent results on the BED/Ax-AI

algorithm (33%), reported taking ART since their HIV diagnosis.

After excluding ART-positive individuals, FRR for the BED and

Ax-AI were 3.6% (95% CI: 1.2–8.1) and 10.6% (95% CI: 6.1–

17.0), respectively. The FRR for the combined BED/Ax-AI

algorithm was 2.1% (95% CI: 0.4–6.1).

Characteristics of individuals testing false-recent on
assays

There was no significant association between testing false-recent

on STARHS $12 months after HIV diagnosis and marital status,

duration between baseline and repeat STARHS tests, years working

as a sex worker, or recent AIDS-like symptom (Table 1). However,

there was a borderline significant association between older age and

higher likelihood of testing false-recent on the Ax-AI assay

(P = 0.06). Furthermore, participants with a false-recent result on

the Ax-AI assay had a significantly higher median baseline CD4

count than those correctly classified by Ax-AI (590 vs. 444 cells/ml, P

,0.01). Median baseline CD4 cell count did not differ between

participants falsely and correctly classified by the BED assay (447 vs.

461 cells/ml, P = 0.77). Moreover, on both assays, participants with

a false-recent test result had been HIV tested more frequently in

their lifetimes compared with participants who were correctly

classified as LTI by the assays (BED P = 0.01, Ax-AI P = 0.02).

Finally, on both assays, testing false-recent was significantly

associated with having been classified as RI by the assay during

the cross-sectional survey (BED P,0.0001, Ax-AI P,0.0001).

Unadjusted and adjusted STARHS incidence rate
estimates

Unadjusted HIV incidence estimates based on the BED, Ax-AI,

and combined BED/Ax-AI algorithm were: 6.5 infections per 100

person-years (PY) (95% CI: 3.2–9.9), 10.8 per 100 PY (95% CI:

5.6–16.0), and 5.2 per 100 PY (95% CI: 2.2–8.1), respectively

(Table 2). Adjustment of assay-based incidence estimates with their

corresponding FRR reduced the BED, Ax-AI, and combined

BED/Ax-AI estimates to: 5.5/100 PY (95% CI: 2.2–8.7); 7.7/100

PY (95% CI: 3.2–12.3); and 4.4/100 PY (1.4–7.3), respectively.

Exclusion of individuals with CD4 count ,200 cells/ml from RI

classification (without adjustment by FRR) reduced the BED, Ax-

AI, and combined BED/Ax-AI estimates to: 5.6/100 PY (95% CI:

2.6–8.6); 9.7/100 PY (95% CI: 5.0–14.4); and 4.7/100 PY (95%

CI: 2.0–7.5), respectively.

Figure 2. Correlation of results on BED-CEIA and AxSYM Avidity Index for recent HIV infection, Cross-sectional sample (N = 190).
doi:10.1371/journal.pone.0018402.g002
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Comparison between STARHS incidence estimates and
estimated cohort incidence rate

In the prospective cohort sample, the estimated 12-month HIV

incidence rate was 3.5 infections per 100 PY (95% CI: 1.6–5.4).

However, HIV incidence showed a non-significant downward

trend over time, with rates of 4.6/100 PY (95% CI: 1.6–7.7) and

2.2/100 PY (95% CI: 0.1–4.4) in the first and second 6 months of

the cohort, respectively. Compared with the highest cohort

incidence rate (from the first 6 months of the cohort), all

STARHS-based incidence estimates for the cross-sectional sample

fell within the confidence bounds of the estimated prospective

cohort rate, except for the unadjusted Ax-AI estimate and the

CD4-adjusted Ax-AI estimate (Fig. 3). The FRR-adjusted Ax-AI

estimate fell nearly within the CI of the prospective rate.

Discussion

In this investigation, incidence estimates based on cross-

sectional data were affected by misclassification by the BED and

Ax-AI assays. The unadjusted BED (6.5/100 PY) and Ax-AI

(10.8/100 PY) incidence estimates were both substantially higher

than our estimated prospective cohort 12-month incidence rate of

3.5/100 PY (95% CI: 1.6–5.4). Even after adjustment for poor

specificity with CD4 data or sample-specific FRR, most assay-

based estimates remained substantially higher than the overall

estimated incidence rate for the prospective cohort. However,

comparison with the incidence rate for the first 6 months of the

cohort showed good correspondence with most STARHS-based

estimates, particularly those for the combined BED/Ax-AI

algorithm (both unadjusted and adjusted).

Comparisons between incidence estimates derived from the

cross-sectional and prospective samples may be fraught for several

reasons. First, by definition, cross-sectional and prospective

incidence rates are estimated at different time points (over some

time prior to baseline and during the months following baseline,

respectively). Second, limited statistical power, as in the case of this

analysis, will make meaningful comparisons between estimates

difficult. Third, CD4- and FRR-adjustment strategies may not

have fully corrected for misclassification in the cross-sectional

sample, thereby leaving residual bias in the BED and Ax-AI

incidence estimates. Fourth, selection bias may have caused the

estimates to diverge, for example if there were differences in risk

Table 1. Characteristics of cross-sectional survey participants with long-term HIV infection by repeat STARHS test result $12
months after HIV diagnosis (N = 141).

Characteristic BED-CEIA Assay Avidity Index method

False-recent
result (n = 9)

Correctly
classified as
LTI (n = 132) P value1

False-recent
result (n = 23)

Correctly
classified as
LTI (n = 118) P value1

Median age in years (IQR) 26.0 (13) 27.0 (9) 0.75 33.0 (15) 27.0 (8) 0.29

Age groups, %:

18–20 45 31 35 31

21–24 11 29 0.41 9 32 0.06

25–29 11 22 21 21

30–34 33 18 35 16

Current breastfeeding, % 33 21 0.40 26 21 0.59

Marital status – Divorced/separated, % 22 12 0.32 13 13 1.0

Marital status – Never married, % 56 66 0.72 61 66 0.64

Marital status – Widowed, % 22 22 1.0 26 21 0.59

Have HIV positive sex partner, % 11 8 0.53 9 4 0.69

Median no. years in sex work (IQR) 2.5 (6.5) 4.0 (3) 0.48 4 (5) 4 (3) 0.94

History of forced sex 44 37 0.73 39 37 0.87

Lifetime HIV testing history, %:

Never tested 22 52 48 50

Once 44 30 0.01 13 34 0.02

Twice 0 14 17 12

3–5 times 22 5 17 3

$6 times 11 1 5 1

Had HIV test in past 6 months, % 11 2 0.18 4 2 0.42

$1 AIDS symptom in last 6 months+, % 33 43 0.73 22 19 0.77

Median baseline CD4 cells/ml (IQR) 447 461 0.77 590 444 ,0.01

Classified as RI by baseline STARHS test during cross-
sectional survey, %

100 0 ,0.0001 65 17 ,0.0001

Median no. days between baseline and repeat STARHS test692 623 0.69 593 641 0.42

Abbreviations: RI = recent infection; LTI = long-term infection.
1P-values for the Chi-square or Fisher’s exact tests for categorical variables, and the Wilcoxon-Mann-Whitney test for continuous variables.
+Includes: recent unexpected weight loss, chronic diarrhea, chronic weakness, fever, cough, night sweats, oral candidiasis.
doi:10.1371/journal.pone.0018402.t001
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between women who enrolled in the prospective cohort and

women in the survey sample who were eligible (i.e., HIV negative)

but did not enroll. Indeed, cohort participants tended to be lower

risk than non-enrolled women (data not shown). In addition,

observation biases such as the Hawthorne effect or study-related

risk-reduction interventions (e.g., condom provision, prevention

counseling, STI treatment) may create artifactual differences in

rates between prospective and cross-sectional samples[1]. We did

observe a non-significant downward trend in incidence in the

prospective cohort during follow-up, which could be due to the

Hawthorne effect and/or some effect of study interventions. While

specific reasons for the downward trend are difficult to isolate, the

trend supports using early (first 6 months) rates from the cohort as

the most appropriate comparator for STARHS-based estimates.

Table 2. HIV incidence estimates based on STARHS assays among ARV-naı̈ve, high-risk women in Kigali, Rwanda.

Assay
Number HIV
positive

Number
Recent

Number HIV
negative

Assay window
period1 Estimated Incidence

Unadjusted estimates

BED-CEIA 190 36 610 330 6.5 (3.2, 9.9)

AxSYM Avidity Index 190 56 610 310 10.8 (5.6, 16.0)

BED and Ax-AI 190 23 610 267 5.2 (2.2, 8.1)

CD4-adjusted estimates, cut-off $200 cells/ml2

BED-CEIA 190 31 610 330 5.6 (2.6, 8.6)

AxSYM Avidity Index 190 50 610 310 9.7 (5.0, 14.4)

BED and Ax-AI 190 21 610 267 4.7 (2.0, 7.5)

Adjusted with local BED false-recent rate of 3.6%3

BED-CEIA 190 36 610 330 5.5 (2.2, 8.7)

Adjusted with local Ax-AI false-recent rate of 10.6%3

AxSYM Avidity Index 190 56 610 310 7.7 (3.2, 12.3)

Adjusted with local BED/Ax-AI combined false-recent rate of 2.1%3

BED and Ax-AI 190 23 610 267 4.4 (1.4, 7.3)

1. Sample-specific window periods, based on data from seroconverter panel.
2. CD4 adjustment removes individuals with CD4,200 from recent infection classifications: 2 from Concordant; 5 from BED-RI.
3. False-recent rate calculations exclude individuals taking antiretroviral therapy and with CD4 count ,200 cells/ml. Assuming a CoV for the window period of 20%; (CoV
for FRR were calculated and input into spreadsheet).
doi:10.1371/journal.pone.0018402.t002

Figure 3. STARHS assay-based incidence estimates, cross-sectional sample.
doi:10.1371/journal.pone.0018402.g003
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The BED-FRR in this sample was lower than BED-FRR

reported for Zimbabwean[9] and North American[8] samples, but

was higher than the rate reported for a rural South African

sample[18]. Compositional, clinical (e.g., circulating HIV subtype

or ART coverage), or biologic differences (e.g., disease progres-

sion) among the study populations could explain differences in the

FRR. To our knowledge, this is the first publication of a false-

recent rate for the Ax-AI method based on follow-up STARHS

testing of HIV-positive survey participants. In this study, the FRR

of the Ax-AI method was higher than the FRR for the BED assay.

Although few studies have compared and contrasted results from

the two assays, one study in Côte d’Ivoire did report poorer

specificity on the Ax-AI as compared to the BED in prospective

study seroconverter panels[7]. Poorer performance of the Ax-AI in

this study, including the low correlation with BED, could be due to

suboptimal cross-reactivity with a range of HIV-1 subtypes[24].

Estimated mean window periods for the BED and Ax-AI assays

among participants in the prospective sample were substantially

longer than published window period values (330 vs. 155 days for

BED, and 310 vs. 180 days for Ax-AI). Differences in mean

window period may reflect underlying variability in the biologic

response after infection with different HIV-1 subtypes[10,25].

Indeed, a recent analysis of data from multiple HIV seroconver-

sion cohorts with varying HIV subtypes estimated the overall

mean BED window period to be 197 days, with longer window

periods for African vs. non-African cohorts (Parekh et al.,

submitted). While the small sample size and lack of robust methods

led to a high degree of uncertainty in our sample-specific window

period estimates, they suggest potential improvement in assay

performance with longer window periods—a finding that

underscores the benefit of using a locally derived window period.

For example, using the manufacturer’s window period of 155 days

for BED, the unadjusted incidence estimate is 13.9/100 PY (95%

CI: 6.7–21.0), versus 6.5/100 PY (3.2, 9.9) with our estimated

local window period of 330 days. An ideal assay would be

applicable to all HIV-1 subtypes, as well as not rely on modifying

existing commercial assays, be easy to transfer in the field, and be

unaffected by changes in HIV antigen-specific antibodies associ-

ated with long-term infection.

This is also the first report of a false-recent rate for the

combined BED/Ax-AI algorithm. The FRR for the combined

BED/Ax-AI algorithm (among ART-naı̈ve participants) was lower

than the individual assay FRR, at only 2.1%. Indeed sequential

testing with two STARHS assays is increasingly being recom-

mended as a strategy for reducing misclassification and improving

incidence estimates[26,27]. However, with two assays that perform

sub-optimally in a given population there will be a trade-off

between improved specificity and loss of sensitivity[8]. Availability

of ART has rapidly increased in Rwanda during the past few

years[28]. As individuals taking ART may be misclassified on

STARHS assays because of changes in HIV antibody level due to

treatment, misclassification rates in this population may increase

over time as more individuals initiate treatment[18]. The ART

status of survey participants, especially those testing recent on

assays, should be measured systematically (e.g., therapeutic drug

monitoring (TDM), chart review, self-report) so that individuals

taking ART can be excluded from incidence analyses and FRR

calculations[29].

Several factors were associated with testing false-recent on the

assays among HIV-positive participants with known LTI,

including having been classified as RI by the assays at baseline;

more frequent history of HIV testing; and older age (borderline

significant association). HIV testing history and older age were

significantly positively associated with long-term HIV infection in

this sample (data not shown). The association between testing

false-recent and having a prior STARHS classification of RI may

reflect the presence of ‘‘assay non-progressors’’ in this sample, or

individuals who are repeatedly classified as RI by STARHS assays

over time because of sustained low antibody levels[26]. Further,

false-recent classification by Ax-AI could be due, in part, to

infection with multiple HIV clades, wherein subsequent waves of

antibody production maintain low antibody avidity[30–32]. Our

observation of a higher Ax-AI-false recent rate among participants

with an HIV-positive partner, frequent HIV testing history, and

higher baseline CD4 count, support such a hypothesis.

In this population, adjustment of STARHS-based incidence

estimates with FRR brought estimates closer to the gold standard

estimated cohort incidence rate than did adjustment using a CD4

cutoff of ,200 CD4 cells/ml for probable LTI. Incidence surveys

should use a locally derived, population-specific FRR versus a

published rate from a different population, and indeed should be

reconsidered when a local FRR is not available. While follow-up of

a long-term infection cohort such as was done in this study is the

optimal method for estimating an FRR, false-recent rates can also

be estimated in sufficiently large cross-sectional samples of ART-

naı̈ve individuals with long-term infection. In our study, CD4

adjustment also appeared to help reduce potential inflation of

estimates, which underscores the value of CD4 data for adjusting

and interpreting STARHS results, and thus the importance of

incorporating CD4 count measurement into national or popula-

tion-based serosurveys using STARHS to estimate HIV incidence

if feasible. CD4 testing may be feasible, for example, in settings

with enhanced clinical and laboratory capacity as a result of

treatment scale-up. Ideally, assay FRR and CD4 count data, along

with other clinical information, would be available for adjusting

STARHS-based incidence estimates.

This study has several strengths. The combined cross-sectional

and prospective design enabled us to compare incidence estimates,

derive population-specific FRR on the assays, including for the

combined test algorithm, and estimate assay window periods from

serial specimens from individuals with known interval of HIV

seroconversion. The use of two STARHS assays contributes

important information about the assays’ independent and relative

performance in a high-risk setting with little experience with

STARHS. Discussion is ongoing regarding the optimal assay

parameters (e.g., window periods, cutoff values, including use of a

‘‘grey zone’’ instead of a single value) for a combined BED/Ax-AI

algorithm.

Study limitations are also noted. The small sample size of the

study, and relatively few HIV seroconversions and recent infection

classifications, may have limited statistical power for certain

analyses. Specifically, the small sample size, along with other study

design features, prohibited the use of more robust statistical

methods for comparing the cross-sectional and prospective

incidence rates, such as equivalence tests[33], and may have also

led to reduced precision around the assay FRR estimates[9].

However, the statistical approach employed for incidence

estimation does attempt to quantify the affect of uncertainty in

the calibrating parameters (e.g., FRR and window period) on the

incidence estimates. Furthermore, our approach to CD4-adjust-

ment of STARHS classifications (using a cutoff of ,200ml for LTI)

may have erroneously excluded individuals with primary HIV

infection and low CD4 count[34] from the RI classification.

However, the lower limit of 287 CD4 cells/ml among recent

seroconverters in this sample suggests that using a cutoff of

CD4,200 for adjustment would not result in the loss of many

individuals with true RI status in incidence estimates (indeed there

were no individuals with CD4,50 and RI status on the assays).
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Additionally, participants’ ART status was assessed by self-report

rather than by pharmacokinetic testing. However, women in the

baseline survey were newly diagnosed with HIV by the study and

so were assumed to be ART-naı̈ve, and even at follow-up few

women would have begun taking ART given the relatively short

time since diagnosis. Finally, although some studies have shown

that the Ax-AI method may be more specific than the BED

assay[35,36], the ideal dual testing algorithm would include a

confirmatory test with perfect specificity.

In this sample of Rwandan FSW, adjusted incidence estimates

based on a combined BED/Ax-AI algorithm were similar to the

estimated HIV incidence rate in the first 6 months of cohort

follow-up, when incidence was highest. Furthermore, false-recent

rate on the combined BED/Ax-AI algorithm was low, and

substantially lower than for either assay alone. In population-based

testing, specificity of the BED and Ax-AI assays, and the combined

test algorithm, would be expected to be substantially higher given

that a larger proportion of individuals will have longer-term HIV

infection.
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