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Abstract: Porous TiNi alloys fabricated by self-propagating high-temperature synthesis (SHS) are
biomaterials designed for medical application in substituting tissue lesions and they were clinically
deployed more than 30 years ago. The SHS process, as a very fast and economically justified
route of powder metallurgy, has distinctive features which impart special attributes to the resultant
implant, facilitating its integration in terms of bio-mechanical/chemical compatibility. On the
phenomenological level, the fact of high biocompatibility of porous SHS TiNi (PTN) material in vivo
has been recognized and is not in dispute presently, but the rationale is somewhat disputable.
The features of the SHS TiNi process led to a multifarious intermetallic Ti4Ni2(O,N,C)-based
constituents in the amorphous-nanocrystalline superficial layer which entirely conceals the matrix
and enhances the corrosion resistance of the unwrought alloy. In the current article, we briefly explore
issues of the high biocompatibility level on which additional studies could be carried out, as well as
recent progress and key fields of clinical application, yet allowing innovative solutions.

Keywords: porous SHS TiNi; biocompatibility; rheological similarity; corrosion resistance;
bone substitution

1. Introduction

Despite the fact that Nitinol was discovered in 1962 by William J. Buehler and further developed
by Buehler and Frederick E. Wang in the U.S. Naval Ordnance Laboratory, its rheological similarity
to biological tissues was reported for the first time in the 1980s [1,2]. Based on industrially deployed
Nitinol, special TiNi-based alloys were developed, wherein the narrow temperature gap of austenite
transformation was shifted towards a body temperature. This allowed shape memory implants made of
these alloys to be congruent with biological tissues that are subjected to alternating physiological loads
in the aggressive environment [3–5]. Whenever Nitinol is mentioned in the context of biomaterials
or long-term implantable devices, a combination of corrosion resistance and biocompatibility with
tissues is assumed, which is the pivotal characteristic of this alloy [6]. When considering the principles
making Nitinol very attractive for clinical utilization, it is to be noted that it is economically justified
regarding treatment cost minimization with a high performance.
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There are a few general requirements concerning metallic materials clinically deployed. First, the
material must have an appropriate viscoelastic potential, as regards the level of stress and frequency
occurring in the corresponding part of the body. Secondly, it should possess a sufficient level of corrosion
resistance, taking into account the implantation period and mechanical factors associated with the
corrosion process. Thirdly, it has to demonstrate sufficient biological inertness, which is determined by
negligible cytotoxicity, mutagenicity, carcinogenicity, immunogenicity, and thrombogenicity. As such,
Nitinol combines all these properties and belongs to a group of biomaterials whose usage complies
with the provisions of bioinertness, biocompatibility, and biomechanics [7–9].

Some early attempts at product development of medical Nitinol devices have been made by
Nitinol specialists, who were not clinicians or primarily design focused. On the other hand, not
enough designers and clinicians have yet received the insight and understanding of the Nitinol features
necessary for scaling up the new implant systems. This was, in turn, crucially important for the success
of clinical utilization. A set of orthopedic and traumatic devices for osteosynthesis was suggested,
tested, and approved [2]. Further, material science engineers, in collaboration with the medical
community, studied and exploited devices for surgical management of various lesions and injuries in
midface, spinal and abdominal surgeries, oncology, urology, dentistry, and cryosurgery [10–12].

In the 1980s, in the USSR (Siberian Physical-Technical Institute), porous TiNi alloys were obtained
using the self-propagating high-temperature synthesis (SHS) process in an inert atmosphere, followed
by successful clinical use of implant systems made of porous SHS TiNi [13,14]. The SHS method to
synthesize refractory ceramic compounds was initially proposed and comprehensively described by
Merzhanov et al. [15–17]. SHS, as a powder metallurgy method, turned out to be the most appropriate
for the fabrication of the porous TiNi body having the specified characteristics [18,19]. Additionally,
SHS is a versatile method that produces a variety of intermetallic compounds for various application
tasks [17].

Recently, porous SHS TiNi (PTN) compounds have been reported [20,21] to have some features
which significantly distinguish PTNs from porous materials obtained by other methods of powder
metallurgy using the same reactants [22–24]. It happens that the porous body formation during
the SHS reaction is accompanied with the genesis of nonmetallics (titanites, spinels, perovskites,
glass-ceramics, etc.) and nanocrystalline, amorphous superficial layers concealing the pore walls,
which are of great interest for the academic community and for clinical application. It highlights the
further need to investigate the surface structure of PTNs used as bone substitutes and scaffolds for
cell-tissue engineering. In fact, the surface layers of PTN serve as a protective barrier in the chlorine
corrosive-active environment, including for biological fluids [25–28].

PTN exhibits martensite transformations (MT), showing the shape memory effect and superelastic
behavior, which, however, are not pronounced as in Nitinol [29,30]. The known scientific complexity
is due to the multiphase state of PTN. In the case of variable cyclic load applied to the PTN graft
incorporated in the body, the full cycle (direct-reverse-direct) of MT repeatedly occurs in a corrosive
environment. The rheological similarity to biological tissues coupled with the enhanced corrosion
resistance of unwrought PTN is supposed to impart additional benefits to this material, making it a
promising alternative to Ti-based alloys, whose nontreated surface may incur an adverse corrosion
effect. Follow-up observations [31,32] evidenced the high adaptability level of PTN as a biomaterial
striving to complement existing surgical techniques for improved patient tolerance.

In the review, we discuss the main features of PTN alloys, of which advanced implants are made,
in the context of improved biocompatibility, along with the key fields of clinical application where
these implants were deployed.

2. Fabrication of Porous SHS TiNi

Almost all bone endografts made of high-porous TiNi alloys (porosity ≥ 60%) are fabricated
by the SHS method. This porous body minimizes implants’ failures (stress-shielding effect) and,
hence, the complication rates [33–35]. Although additive technologies merit close attention from the
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industrial community, the high-porous TiNi alloy fabricated by SHS has a number of advantages, even
in comparison to other powder metallurgy methods, including sintering, hot isostatic press, spark
plasma sintering, thermal explosion, etc., [36,37]. In SHS, the product is directly synthesized from Ti-Ni
elemental reactants via the propagation of a combustion wave through a green powder compact. Once
the synthesis is started, the heat of reaction sustains the reaction until all of the reactants have been
consumed. With regards to the clinical application of PTN, it is crucial to preset the desired mechanical
characteristics, the shape memory effect (SME), and the superelastic parameters at temperatures that
suit the body tissues. The main physical-mechanical characteristics of PTNs are summarized in Table 1.

Table 1. Physical-mechanical properties of unwrought PTNs [3,12].

Property Value

Specific weight, g/cm3 5.85
Porosity, % 60 to 75
Pore size, µm 0.1 to 200
Permeability coefficient (water/glycerin), m2 (0.27/62) × 10−9

Melting point, ◦C 1310
Ultimate tensile strength, MPa 100 to 500
Stretch at breaking point, % 5 to 7
Loading plato stress, MPa 50 to 200
Total elongation, % 2.5 to 4.5
Permanent set, % 5 to 20
SME recovery stress, MPa 200 to 400
SME temperature hysteresis, degree 30 to 100
Transformation temperature range, ◦C −180 to 50

Briefly, to fabricate PTN, commercial powders of coarse titanium made by calcium hydride
reduction (mean particle size of 80–100 µm) and carbonyl nickel (mean particle size of 10–15 µm) are
mixed for a few hours in an air jar and vacuum-dried [38]. The green powder mixture is loaded in a
quartz tube and then loose-compacted by tapping for 10 min to achieve a porosity of tapped green
compacts of 60–65%. The charged quartz tube is then loaded into a reaction furnace under flowing
argon gas with a heating rate of 10–15 ◦C/min and is ignited electrically. In the mode, SHS is considered
to occur with the involved liquid phase in a narrow reaction zone, which propagates autocatalytically
through the preheated green powder compact. The heating schedule and temperature profile are
controlled with a thermocouple placed inside the green powder compact. Once the compound has
been synthesized, the reactor is withdrawn and cooled in a water container.

The difference between SHS and reaction sintering lies in the kinetics of the heterogeneous
reaction [14,39,40]. At the beginning, the exothermic reaction of SHS partially dissolves the green
powder compact, followed by the liquid-phase reaction, which triggers and dictates the formation of
the intermetallic constituents (TiNi, Ti2Ni, and TiNi3). The TiNi/Ti2Ni/TiNi3 ratio in the matrix may
vary and depends on kinetic parameters of the heterogeneous reaction.

Impurities trapped in the reactants are also crucial in synthesizing the porous compound.
In powder metallurgy, the use of high-purity reactants is encouraged as it affords the fabrication of
homogeneous alloys exhibiting specific attributes. This concept is particularly accurate for sintered
TiNi, whereas it is not reasonable for PTN. Vacuum sintering at constant degassing forces not all of the
existing impurities in the reaction system to be thermally dissociated, wherein some are gasified and
subsequently withdrawn. The remaining impurities form diverse phases, which deteriorate the matrix,
affecting the performance of the resultant alloy. On the contrary, SHS is generally referred to as the
layer-by-layer exothermic reaction mode in an argon flow atmosphere when the preheated powder
compact is ignited at 250–500 ◦C. The incipience and evolution of intermetallic phases occur in a thin
solid-liquid reaction layer in milliseconds. A sequential cycle begins and evolves in the reaction layer
at 100–200 µm thick, which inherits the size and morphology of the previous reaction layer through
the capillary spreading of the (Ti + Ti2Ni) eutectic liquid emanated from the reaction zone.
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Notably, in the layer-by-layer combustion mode, the following processes are revealed in the
reaction layer: (i) Origin of the eutectic liquid in the contact area of Ti and Ni particulates; (ii)
dissolution of particulates in the eutectic liquid, which catalyzes a drastic increase of the eutectic
liquid; (iii) exothermic reaction between dissolved reagents and successive crystallization of TiNi3,
TiNi, and Ti2Ni precursors from the liquid; and (iv) interdiffusion migration of Ni atoms into solid
Ti particulates and Ti atoms into solid Ni particulates, followed by the formation of intermetallic
constituents [21,23,39,41].

Since the solid-liquid reaction layer remains porous, thermally dissolved gas-prone impurities
managed by reaction gases leave the over-pressured high-temperature reaction zone, filtering through
the structuring zone. The latter, having less pressure, remains red-hot. At the same time, the
reaction gases, having a distinct effect on the conductive-convective heat transfer mechanism,
are evident as a heat-and-mass transfer principal agent. They capture a portion of the liquid
and transfer it from the reaction zone towards the surface, forming voids in the structuring zone.
Therefore, the matrix is rectified to a large extent, whereas the pore wall surfaces are concealed by
the sophisticated shell. The given shell comprises amorphous-nanocrystalline phases of intermetallic
oxycarbonitrides in the form of epitaxial strata (foamy onlay and dense bisubstrate), as reported in
References [20,21]. Considering the chemical composition and structure, the shell can be classified as a
cermet Ti4Ni2(O,N,C) layer [42–44]. In fact, such amorphous-nanocrystalline phases are implied to
exhibit high corrosion resistance.

Thus, in contrast to sintering modulated by the scant liquid, when synthesis is lengthy and
coincides throughout the entire powder compact by the solid-liquid phase transformation, SHS is
the rapid process occurring in a similar way, but in the presence of the abundant liquid. Impurities
trapped in the reactants do not dissociate and recombine entirely upon sintering, whereas those upon
SHS are subjected to thermal dissociation and chemical decomposition, which further results in the
formation of the amorphous-nanocrystalline superficial layer. It provides a greater tolerance against
corrosion and does not hinder the viscoelastic behavior of cyclically loaded PTN.

3. Characteristics of Porous SHS TiNi

The high in vivo/vitro inertness of PTN is conditioned by the negligible anodic dissolution of
the dynamically loaded PTN sample in simulated body fluids [6–9,25,28]. In the early in vivo terms,
the anodic passivity of the PTN scaffold is beneficial for the attachment, cytocompatibility, and
proliferation of seeded precursor cells as it sustains the formation of manifold tissular variants, reported
in References [45–49]. Afterwards, a newly formed interface (e.g., bone regenerate) owes its vitality
to the two factors as follows: (i) Continuing superficial anodic passivity of the PTN scaffold and (ii)
minimum viscoelastic discrepancy between the surrounding bone tissue and the PTN matrix. The latter
shows high elasticity without deterioration of the mechanical characteristics at applied loads and it
physiologically redistributes stresses between adjacent bone fragments. Loads evoked by surrounding
tissues can often exceed 6–8% relative strain, which exceeds the allowable values for most metal
implants, destroying their protective surface films and ultimately leading to their destruction [50].
Deposited corrosion-resistant gradient coatings turn out not to remedy this challenge as they are
usually nonelastic and have low fatigue strength [51,52]. The surface layer of the unwrought PTN
alloy nevertheless withstands multicycle deformation and maintains its inherent integrity with the
viscoelastic matrix [53].

3.1. Structure and Phase Composition of the PTN Surface

Turning to the issue of the PTN enhanced corrosion resistance highlighted earlier, we were
bound to note the superficial amorphous-nanocrystalline layer of intermetallic oxycarbonitrides, which
entirely conceal the pore walls. It was denoted that the SHS process in itself is the rationale for this
layer appearance resulting from retrograde gas streams interacting with the surface melt [43,54]. In our
experience, we have studied the surface structures of high-porous PTN using a confocal laser scanning
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instrument [55]. The polished thin section is yellow, as can be seen in Figure 1, whereas the superficial
layer, on which the focus was made, is represented as a translucent green film inside the unpolished
open pore wall. It contains nonmetallic inclusions, observed as spatially distributed garnet flakes.
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Figure 1. Confocal laser scanning micrograph of the thin-sectioned high-porous PTN specimen
(wavelength—405 nm) [55].

The light microscope seemed to be a versatile instrument since it identified the massive superficial
layer (S) concealing the sectioned matrix (M) in a dark field, as illustrated in Figure 2a [21]. Nonmetallic
crystals (NM) can be distinguished in ultraviolet polarized light against both the matrix phase (M) and
massive superficial layer (S), as depicted in Figure 2b.
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Figure 2. Light microscopy images of the thin-sectioned PTN in (a) a dark field with differential
interference contrast (DIC) and (b) an ultraviolet polarized dark field [21].

Furthermore, data emanated from the scanning tunneling electron microscope (STEM) and
energy-dispersive X-ray spectroscopy (EDS) study of the (S) depicted in Figure 2 revealed its intricate
structure (Figure 3). The foamy onlay (F) is seen to shell two dense sublayers (IIT + IIB), which are
tightly bounded with the matrix (Figure 4). In Reference [20], it was previously reported that the (F)
results from nanocrystalline intermetallic foam managed and dispersed by reaction gases, which is
heterogeneous and discrete. High-resolution transmission electron microscopy (HREM), selected area
electron diffraction (SAED), and EDS analyses allowed the authors to state that the presence of residual
amorphous phases was obvious as well [21].

Qualitative X-ray diffraction (XRD) analysis carried out on a demolished PTN sample to facilitate
XRD-pattern acquisition of a non-uniform relief surface has strengthened the vision of the multifarious
amorphous-nanocrystalline ensemble. The grazing beam at a low incident angle (<1◦) was assumed to
penetrate no more than a 100 nm in depth. XRD-patterns of the surface layers reported in Reference [21]
were taken and brought together, as indicated in Figure 5.
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The prevailing constituent, seen in Figure 5, is the amorphous-nanocrystalline phase of intermetallic
oxycarbonitrides Ti4Ni2(O,N,C), whose fcc unit cell has been reported to appear due to oxygen, carbon,
and nitrogen interstitial migration into the Ti2Ni lattice [56]. In fact, it can be considered as a solid
solution of O, N, and C in the Ti2Ni phase. Reflexes belonging to the TiNi component appear in two
crystallographic modifications of B2 (cubic parent) and B19’ (monoclinic martensite), simultaneously
with Ti4Ni2O oxide. The crystallinity of the superficial layer at a depth of 100 nm is about 70%,
50–55% of which belongs to intermetallic oxycarbonitrides Ti4Ni2(O,N,C), whereas 10–15% goes
to glass-ceramic and cermet phases, detected as CaTiO3, Si(P2O7), CaSiO3, MgAl2O4, and TiNiAl.
The remaining 30% belong to the residual amorphous phases evident as a diffuse halo within 10–30◦.

Therefore, the discovered layers of amorphous-nanocrystalline Ti4Ni2(O,N,C), combined with
glass-ceramic and cermet phases, impart corrosion-proof attributes expressed through electrochemical
passivity in biological fluids, which is also consistent with Reference [57]. On the other hand, referring
to the featured pore’s topography, it may be hypothesized that the foamy onlay (F) would maintain
the promising bioactive characteristics, facilitating cell attachment and proliferation in vivo/vitro, as
discussed below.

3.2. Rheological Resemblance of PTN to Biotissues

Most of PTN applications involve cyclically varying biomechanical loads that promote the need
to fully understand the rheological behavior of this alloy. Although the accumulated knowledge on
PTN can predict the post-implantation life-span of such implants, both in terms of stress-strain (total
life) and damage tolerant (crack propagation) behavior, expanded information on their rheological
characteristics needs to be highlighted.

Viscoelastic rheological behavior of biological tissues is conditioned by their intricate
structure [58,59]. In the 1950–1960s, collagen fibers were already considered as a key structure
comprising all tissues, including bones [60,61]. Tropocollagen macromolecules mineralized with
hydroxyapatite form a durable composite which is resistant against tensile and compressive loads.
Moreover, the fact that bones are porous bodies underlines additional physical-mechanical features
in their behavior. Bones containing tissue fluids do not fail over millions cycles of alternating
load throughout their entire service life. With reference to Reference [62], the rationale for the
remarkable functioning can be explained by the following factors. First of all, it is due to the cyclic
viscoelastic characteristic of the organic matrix, in which collagen fibers are loaded, changing their
conformation. Second, it owes to the elastic deformation of the mineral framework consisting of
crystalline hydroxyapatite. Third, tissue fluids that fill the porous body of loaded bone redistribute
the hydrostatic pressure through the bone so as to accommodate the severe strain to the level safe for
collagen. As such, the porous bone structure, in which viscoelastic collagen fibers are mineralized by
elastic hydroxyapatite crystals, is patterned on an anisotropic poroelastic composite material perceiving
the external load. Viscous flows of tissue fluids infiltrating reciprocally through the osseous tissue
contribute significantly to the viscoelastic rheological behavior of the bone, transmitting functional
loads by means of fluid inertia and pressure gradients.

We can note the following arguments addressed to the provision of rheological similarity between
PTN and bone tissue.

(i) Regardless of which loading mode (axial, bending, or torsion) is applied, the minimum loads
on the PTN bone graft from the host bone tissue cause linear (elastic) deformation of the PTN matrix,
in which pore walls and interpore partitions undergo elastic cycling at a low strain magnitude (typically
less than 2%). Higher loads are characterized by a nonlinear region, resulting in the onset of martensite
transformation once a shear stress threshold of the PTN matrix is reached [63,64]. With that being
the case, higher alternating dynamic loads, at constant temperature, appear to trigger the reversible
austenite-martensite phase transformation, providing added value to the deformation process (up to
4%). Related to the general view of the deformation route, appearing structural defects, resulting from
an increased deformation magnitude and transcended in localized areas of the PTN matrix, catalyze



Materials 2019, 12, 2405 8 of 25

a crack formation and propagation, followed by the PTN bone graft or any part thereof eventually
degrades until failure. Evidence in the literature indicates that the bone tissue behaves in a similar
way [65,66]. The stress-strain behavior is characterized by a linear (elastic) region before a yield point,
a post-yield nonlinear region containing the ultimate load, and a failure point at which the bone tissue
can no longer carry the load.

(ii) The cyclic load applied to the PTN bone graft in vivo can be considered as a confluence
of elastic and viscous deformation, which is due to the austenite-martensite transformation. This
kind of combination is assumed to lead to stress relaxation and does not encourage the evolution of
structural defects. The PTN rheological behavior within a viscous deformation region is consistent
with that shown by the wet bone matrix ex vivo [67]. Of particular note is that the PTN body, having a
certain pore size distribution, possesses a prominent capillary effect, which is sufficient to hold tissue
fluids inside it [68]. This implies the PTN implant also has the possibility to transfer over most of the
applied physiological loads via redistributed hydrostatic pressure, just as spongy bone tissue does. It
must be acknowledged that a critical role, in this rheological context, is to be played by the ternary
complex, consisting of the adjacent spongy bone, tissue fluid, and the poroelastic PTN implant. It
acquires particular importance when substituting large defects of the loaded bones (e.g., femur, tibia,
lumbar vertebrae).

Numerous studies investigated the deformation behavior of porous TiNi compounds for the past
ten years [29,63,69,70]. Most have reported that the task is fascinating and actual, but still challenging.
As a rule, researchers carried out their tests in the axial loading mode. Although most of the studies
were experimental, it was pointed out that compressed dry specimens exhibit viscoelastic deformation
comparable to those mentioned above, but do not provide much information on a comprehensive
understanding of the realities prevailing in vivo. To characterize the biomechanical interaction of the
osteo-ligamentous interface with the engrafted PTN, a robust study of the PTN rheological patterns is
believed to be needed, including tension, bending, and torsion tests performed ex vivo.

Definitely, viscoelastic PTN is rheologically different from a viscoplastic porous material. The latter,
which possesses a high porosity, indicated an increased yield point (up to 6%), sustaining the irreversible
viscous behavior of thin interpore partitions in compression testing [71]. PTN can be easily deformed
by 4–6% [72,73], but the distinguishing peculiarity is that the noted strain is, for the most part, retained
comparably to that shown by superelastic Nitinol [64,74]. The degradation behavior of PTN is strongly
dependent on the phase-chemical composition, especially the brittle Ti2Ni phase network in the matrix
as well as the intermetallic TiNi3 and nonmetallic phases responsible for the crack’s initiation, which is
also true for dense TiNi.

3.3. Polarization Behaviour of PTN

Attempts have been made to protect the surface of Nitinol implants using various thin film
technologies and, for the most part, they have made only modest progress [75–79]. Deposited coatings
often suffer from microporosity, permeability, excessive thickness, and there is a mismatch in thermal
expansion coefficients and elastic moduli between the substrate and coating. Therefore, coatings
appear to be delamination-prone and have had little effect with regards to long-term protective films
in vivo. These challenges are particularly relevant for porous alloys as the known methods using
laser/electron-beam irradiation or sputtering are not effective. To some extent, this issue can be
circumvented by using either plasma deposition or, occasionally, chemical deposition throughout the
entire porous body as the most viable way of surface modification therein [80,81].

The osseointegration of bone substitutes can be facilitated by a change in the surface composition
using bioactive ceramics. The short period of osseointegration of PTN bone graft may imply that its
surface is chemically passive, bioactive, and cytocompatible, which can withstand the harsh conditions
of medical applications. This could mean that the features of SHS have a positive effect on the chemical
stability of the PTN surface, imparting chemical gradients inside the PTN implant to enhance cell
viability. However, this matter remains poorly known and needs further study. We may address a



Materials 2019, 12, 2405 9 of 25

peculiarity of the chemical resistance to the SHS process itself when nonmetallic impurities trapped in
the reactants are thermally dissociated, followed by the surface of the synthesizing porous body which
chemically absorbs them. Accordingly, the evolved superficial layer, having nanostructured attributes
and high adhesion strength to the substrate, is tightly bounded with the matrix, concealing the latter.

Potentiodynamic polarization was used in a comparative study of the surface susceptibility of
PTN and dense Ti, TiNi, and in a 1% HCl solution, as reported in Reference [43]. Figure 6 illustrates
the anodic behavior of unwrought PTN, dense Ti, and TiNi samples, modified by electropolishing,
followed by N ion implantation. It should be noted that the findings shed additional light on the nature
of unwrought PTN passivity. As seen, a corrosion measurement revealed that the anodic behavior of
unwrought PTN in the chloride-containing environment mimics that of a modified TiNi sample in the
passive region.
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by anodic polishing and subsequent N ion implantation [43].

An early study on the electrochemical reaction has conversely shown that sintered porous Ti-based
compounds undergo more corrosion [82]. Moreover, from the potentiodynamic polarization of porous
TiNi fabricated by a powder metallurgy method using a high-purity ammonium bicarbonate powder
and a blend of elemental reactants, it was reported that the studied sample was more susceptible
to localized corrosion in a 0.9% aqueous NaCl solution as compared to the dense TiNi sample [83].
This also confirms our suggestion about the shielding superficial layer of intermetallic oxycarbonitrides,
which entirely conceals the PTN rough surface, imparting a high corrosion resistance innate to cermets.
The findings emanated from References [84–86], in which the authors explored the porous SHS
TiNi alloy using a variety of instruments, accord well with our supposition. It is unlikely that the
surface structure and the chemical composition of the studied samples are the same; however, we
can inferentially assert that the PTN matrix is well protected by corrosion-proof strata consisting of
intermetallic oxycarbonitrides and non-metallic inclusions.

4. Cytocompatibility of the PTN Surface

The spitted rough topography and biochemical aspect of the PTN surface play an important role in
cell adhesion, growth, and proliferation, as a system of interconnected macro-/microvoids and grooves,
which ultimately influence the biocompatibility of the hydrophilic PTN body in vitro/vivo [47,49,87,88].
Cell response to the surface topography is a primary feature of the forming tissue-specific variants.
Surface roughness has a direct beneficial influence on cell morphology and proliferation. Moreover,
the microporous surface structure can reduce a stress-shielding effect, encouraging the propitious
tissue ingrowth [89]. On the contrary, the even surface prevents friendly cells adhesion and, in turn,
decreases total biocompatibility. Literature confirmed that tissues ingrown on rough surfaces were
stimulated towards differentiation [90,91], as shown by their gene expression in comparison with
cells growing on smooth surfaces. For example, primary rat osteoblasts had higher proliferation,
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alkaline phosphatase, and osteocalcin expression on the rough surface compared to the smooth one [91].
Large size pores (>500 µm) may inhibit cell adhesion, reducing bone formation and vascular ingrowth.
In contrast, small size pores (<100 µm) may hinder the diffusion of nutrients and metabolites but
stimulate osteogenesis, reducing cell proliferation and forcing the implant’s incorporation. Therefore,
the pore size distribution and average pore size of the PTN implant being developed are among the
most important factors to strive towards for the right balance of the cell growth, proliferation, and
tissue/vascular ingrowth herein [92].

The PTN scaffold has been reported to possess a wide range of pore sizes suitable for the cell
cultivation in vitro, followed by the growth in vivo. Bone marrow cells (initial) seeded on the PTN
scaffold attach to the pore walls, then actively grow and spread across the porous body. The cell
growth and incipient intercellular substance cause reproduction of this cell mass, which contributes to
colonization and subsequent differentiation [47,49]. The SEM control of cell attachment has indicated
that the isolated initial cell tosses pseudopodia at a distance of 15 to 30 µm away by decoupling the
chemotactic mechanism for the first 24 h. Further, solitary microfilament ends (less than 1 µm) were
found to be attached and localized in superficial micropits of the pore wall.

The SEM study of pore spaces was carried out in a 7 day time interval and the following features
were noted: At the end of the first week, the cells were attaching and proliferated; most of the cells
were fixed in local cavities, where there were many small pores less than 3 µm in size; and then, cells
were actively growing (Figure 7).
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islet cells herein (on 7th day post-seeding) [47].

The cell population continued to increase, as well as their growth in pores and the synthesis of the
extracellular matrix. The 3D pore cluster allows them to proliferate intensively due to synthesis of the
extracellular matrix and formation of spatial incrustations with different shapes and sizes (Figure 7a).

Beginning on the 14th day, the tissue gradually lined the inner surface of pores and then the growth
vector moved from the periphery towards the center, filling the entire pore space. During the fourth
week, most of the pores were completely filled by cells and the differentiating matrix (Figure 8b). This
effect was observed consistently from one week onwards, both in vitro (mesenchymal cells) and in vivo
(hepatocytes and pancreas islet cells). The samples were ingrown by tissues and pores were filled by
mesenchymal cells in 28 days and by hepatocytes and pancreatic islets in 40–60 days, respectively.

In vitro experiments have shown that cells implanted into the PTN scaffold actively attach, grow,
differentiate, and create a specific tissue structure even in vivo allogenic condition of the recipient.

Using various modes of the SHS process, it is possible to obtain different structures of the PTN
scaffold with a specific pore size and distribution, which is very important in cellular and tissue
engineering. With reference to References [93–97], a set of the mentioned features concerning the
structure and characteristics of the PTN scaffold can be defined as follows:

- A well-developed spitted topography of pore walls (a large number of interconnected small pores
and rough interpore partitions), which sustains the initial cell adhesion;
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- Wetting ability, which facilitates saturation by water-soluble substances;
- Phase and chemical composition of the superficial strata, which has no inhibitory/toxic effect on

cells seeded and growing tissular variants;
- Bio-mechanical behaviour, which is pretty similar to that exhibited by alive tissues.

The above-mentioned points are necessary for initial attachment, growth, and replication of host
cells as a driving force for desired tissue to be harvested. Consistent cell growth and a short time
whilst host cells colonize the PTN scaffold, competing with and conquering pathogenic cells, may
emphasize the specific strengths for advanced bioengineering goals. The targeted differentiation
of multipotential mesenchymal stromal cells of cartilage or osseous tissue inside the PTN scaffold
proves the cytocompatibility of this material and extends the functional life-span of the incubated cells,
prolonging the curative effect.

Thus, we can say that the PTN scaffold represents favorable conditions for the interactions of
the host cell with the surface and expends the opportunities of bioengineering capabilities when
considering morphological/functional properties of cells incubated herein. It can be used in a wide
range of medical applications (management of locomotor apparatus diseases, metabolic disorders
of the liver and pancreas, etc.). This material is designed to interact as long as it is in the body, in
large deformations, exhibiting comparable rheological behavior and no graft vs. host response, which
significantly distinguishes it from rivals.
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Figure 8. SEM images of cellular evolution in vivo: (a) Synthesized extracellular fibers and formation
of spatial pseudopodia (on the 7th day); (b) gradual cellular ingrowth and formation of the extracellular
matrix (on the 14th day); (c) phase of active infiltration (on the 21st day); and (d) PTN scaffold entirely
filled by tissues (on the 28th day) [47].
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5. Histological Studies of the Implanted PTN Scaffold in Vivo

To study the morphogenesis of reparative regeneration in the porous-permeable TiNi-based alloy,
experimental studies were conducted on 10 mongrel dogs aged from 1 to 1.5 years, with weights
ranging from 18 to 26 kg [98]. As-received PTN ingots were disintegrated into pellets. Bone defects were
created in alveolar processes and then filled with porous granules. For the study of the microstructure
characteristics, histological analysis of the material and the produced regenerate was performed at
different times.

Figure 9 shows the filling of pores with tissue inside and between granules. New mature tissue is
generated both on the surface and in pores, between PTN granules. On the first day of observation,
islets of tissue start to form, mainly in large granules. On the 7th day, loose connective tissue can
be observed between individual granules. In the course of time, the filling of the pores and the
intergranular space with the newly formed multilayer tissue continues and it replicates the pore’s
microrelief, which is in good agreement with the heterogeneous mechanism of bone formation. X-ray
microanalysis of the tissues between granules and tissues that conceal the granules showed their similar
composition [98]. The content of calcium, phosphorus, and potassium in the tissues corresponded to
that in mature bone tissues.
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Morphological findings from Reference [99] revealed that the cellular reticular tissue with
sinusoidal capillaries, which comprises cellular elements of myeloid origin, is formed in the porous
structure and between granules in a day (Figure 10). After two days, the number of leukocytes and
fibroblasts in the generated tissue increased and thin fibrous structures appeared. By the 5th day, loose
connective tissue was found closer to the defect edges, with fibers oriented along the bone trabeculae
of the near-defect part of the bone. Separate cartilage cells were detected close to the defects in the
lacunes. Further, the amount of cartilaginous elements decreased from the edges and the regenerate
was a dense connective tissue with vessels that exhibited a muscular wall.

By the 7th day, the volume of the connective tissue component in the regenerate decreased since it
was replaced with fibrous cartilage tissue. Closer to the defect center, dense loose connective tissue
with collagen fibers was formed. After ten days, hyaline cartilage components were observed among
the fibrous cartilage structures. During the following days, the replacement of connective tissue with
fibrous cartilage tissue continued, which was then replaced with hyaline cartilage tissue. By the 42nd
day, coarse fibrous bone tissue was detected on the defect edges and after 56 days, the regenerate
mainly consisted of compact and spongy bone tissue. Further on, the resulting tissue did not noticeably
change and was organotypic bone regenerate as an integral part of the implant material.

The fibrous cartilage is replaced by hyaline cartilage due to the formation of intercellular substances
resulting from the chondroblastic activity, namely proteoglycans (e.g., chondroitin sulfates) supplanting
the collagen fibers. In the recipient zone, the partial pressure of oxygen is known to increase due
to the abundant periphery vascularization of the bone tissue, providing a rich blood supply to the
margins. It makes pericytes, as a source of osteogenic cells, differentiate into osteoblasts under the
effect of the high partial pressure of oxygen around them, whereas the function of osteoblasts is
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to form the intercellular substance of bone tissue. In so doing, active osteoblasts, modulating the
intercellular substance of bone tissue, form the inorganic constituent known as osseomucoid. The
latter, in turn, consists of calcium phosphate and hydroxyapatite crystals, which hinder the diffuse
route of nutrients towards the hyaline cartilage. The scant diffuse nutrition leads to a situation in
which the hyaline cartilage deteriorates and dies. Blood vessels with the same type of differentiation,
controlled by pericytes, grow into the remaining space. This process ends when the hyaline cartilage is
entirely replaced by coarse fibrous bone tissue, as seen in Figure 10 (depicting all stages of indirect
osteogenesis).
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(b) five, (c) seven, (d) ten, (e) fourteen, (f) seventeen, (g) twenty-one, (h) twenty-eight, (i) forty-two,
and (j) fifty-six days [99].

Analysis of the reparative osteogenesis in bone defects after their reconstruction with PTN
granules indicated that formation of bone regenerate through the ingrowth and differentiation of
tissues occurred according to the patterns of indirect osteogenesis. At first, loose connective tissue
forms, followed by the formation of dense irregular tissue, which results in the fibrous cartilage with
signs of incipient hyaline cartilage. Further, the latter are gradually replaced by coarse fibrous bone
tissue, transforming into mature spongy tissue.

6. Clinical Application of PTN Implants

6.1. Cervical Spine Superelastic PTN Cages

The specific characteristics of the anatomical structure of the vertebral bodies, the presence of
shock-absorbing intervertebral discs, and special biomechanics of the vertebra exclude the use of
traditional materials and structures in spinal surgery [100]. The properties and structure of the PTN
cage for the vertebra are close to those of the spinal body, which ensures circulation of tissue fluids,
plasma at the bone-implant boundary responsible for the metabolism of bone cells, and the formation
of the bone-implant interface [9,28,45,86]. The contact surface resistant to aggressive biological fluids
and the rheological behaviour of the PTN cage ensures its supportability, maintains the height of the
vertebral body, and eliminates excessive loads without failure.

Forty-three patients suffering from cervical osteochondrosis received a dynamic PTN cage, whose
shape is set as an eiloid cylinder, seen in Figure 11, for ventral interbody fixation of the cervical
spine [12,32,101]. Since the PTN cage structure is superelastic, it is easy to attach the desired shape for
insertion, followed by the implant deploys and self-locking in-situ, as depicted in Figure 11b. Due to
the reliable elastic stabilization of the cervical spine, there was no need to wait when the bone block
was formed, and all patients have been discharged the next day after surgery. The consistency of
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the operated vertebral motor segments allowed us to exclude postsurgical external immobilization
of the neck. No complications associated with the implant features were noted in all cases. X-ray
check performed 24 months after surgery indicated no evidence of migration, cracks, or failure of the
implants. No areas of bone resorption were identified around the implants. Head flexion and extension
radiographic images (Figure 11c,d) indicate preserved mobility in the cervical levels, which were
managed using the PTN cage. Additionally, the range of motions in adjacent levels did not change,
as can be seen in the Supplementary Video clip taken in the follow-up period.Materials 2019, 12, x FOR PEER REVIEW 14 of 25 
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Figure 11. Cervical spine dynamic PTN cage: (a) General view; (b) intraoperative view of the surgical
wound; X-ray images of the head tilted (c) down and (d) back in two years after surgery [101].

All clinical cases indicated a high durability of the PTN cage structure with the maximum form
change. In the follow-up period, the deformed PTN cage was noted to survive even in the case of high
loads. When it is free from a load, the shape completely retains without any degradation. Notably, the
phase transitions provoked by applied cyclic loads accommodate internal stresses throughout the PTN
matrix and this is a justification for high performance under continuous cyclic loads.

6.2. Customized PTN Endografts in Maxillofacial Surgery

For the first time, an experimental study on replacement of the mandible using a prototype of
PTN was performed in 1982, whereas follow-up observation of this clinical case was reported in
1986 [2], and it is still feasible for clinical application. Customized combined endografts made of
PTN and dense TiNi were developed to treat patients with mandibular lesions, including mandibular,
maxillary and nasopharyngeal malignant tumors [102,103]. The PTN endografts of the mandibular
ramus can be developed with right and left versions, including the head of the temporomandibular
joint. The prosthesis consists of an ultra-elastic perforated plate, with porous parts of similar shape
and size, fixed on both its sides. On the one hand, the structure exhibits a polished thickening that
corresponds to the configuration of the head of the mandible (Figure 12). The size and configuration of
the endoprosthesis are determined individually in accordance with computed tomography imaging
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and CAD modelling. Due to the superelasticity of the construct, it can be easily modified, depending
on the shape required, to eliminate defects of the mental and lateral mandibular parts.Materials 2019, 12, x FOR PEER REVIEW 15 of 25 
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Figure 12. Customized PTN endografts for surgical repair of mandibular lesions [102].

This ensures restoration of the anatomical architecture of the repaired area, normalizes the function
of chewing and swallowing, and prevents secondary deformities caused by protruded bone fragments
and scarring of soft tissues in the postoperative period, as illustrated in Figure 13.
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Figure 13. X-ray images of the repaired left mandible for deforming temporomandibular osteoarthrosis
(a year after surgery) [102].

Analysis of the follow-up observations in patients with destructive changes in the condylar
processes proved the high efficiency of customized PTN endografts. Due to biochemical and
biomechanical compatibility, combined endografts substituting tissue lesions behave congruently.
Connective tissues from recipient areas ingrow the PTN body with negligible foreign body response
and form an organotypic regenerate. The polished articular heads, from Figure 12, prevent adhesion
with host tissues and maintain the necessary range of mandibular movements.

The use of customized PTN endografts for total and subtotal substitution of the mandible,
including the condylar process and mandibular ramus, is thus a pretty good surgical method for
reconstructing the anatomical features of the affected area.

6.3. Customized PTN Endografts in Oncosurgery

Customized endografts made of PTN disk plates 0.3–0.4 mm thick, as depicted in Figure 14,
were applied to replicate the maxilla, zygomatic bone, orbit, nose, and midface structures in cancer
patients [104]. The superelastic property makes the implant flexible, which enables intraoperative
modeling. The porous structure fixes the implant firmly in the wound, followed by connective and bone
tissue ingrowth, which occurs with subsequent epithelialization of the postoperative cavity. The rigid
central part and flexible edges of endoprostheses eliminate various discrepancies. The customized
PTN graft can be produced based on CT scans and CAD modeled construct. At the same time, the
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implants provide good anatomical and aesthetic results in the elimination of complex defects on the
walls of the orbit and its edges and adjacent bone structures (Figure 14). One of the adverse factors
of midface reconstruction is highly virulent flora influencing the operating wound, which trigger
the inflammation process in the implantation zone. Additionally, the subcranial region is an area of
increased functional activity. It is clear that an endograft, in which resilience to the adverse impacts
along with the anisotropic compliance and versatility in terms of stress-strain is inherent, can be the
most advanced option. The superelastic feature of PTN is beneficial for smooth insertion through the
minimal incision (the customized graft can be intraoperatively predeformed and shrunk for smooth
insertion), followed by deploying within the orbital area in situ. This means that a concept of minimally
invasive surgery is technically feasible. Moreover, in terms of stress-strain, the superelastic behaviour
shown by PTN can counterbalance possible negative effects in the follow-up period. It is particularly
important in pediatric patients or teenagers when the implanted PTN graft mimics the anisotropic
compliance of the repaired orbit. So, in other words, the superelastic PTN as a load-bearing implant
adapts to the augmenting midface/orbital environment, demonstrating higher adaptability without
impairment of the mechanical performance at higher loads.
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Figure 14. Repair of the orbit: (a) PTN disk plate before modeling, (b) preoperative customization
using the 3D printed model; (c) coronal plane CT of the orbit before surgery; and (d) 3D reconstructed
postsurgical CT of the repaired orbit [105].

Clinical examples have shown that PTN grafts ensure reliable restoration of the inferior orbital wall,
prevent displacement of the eyeball, correct vision errors, and eliminate undesirable aftereffects [105].
The properties of the PTN plate allow modeling of sophisticated implants at a certain temperature
regime. The customized PTN grafts precisely render orbitozygomatic outlines and orbital floor, thus
recovering the anatomical structure, and are supposed to be an attractive alternative to Ti-based plates.

6.4. PTN Implants in Traumatic Surgery

In the past three decades, PTN implants have been successfully deployed for surgical treatment of
fractured bones since they showed remarkable efficiency [106]. A vivid example of the high biochemical
and biomechanical compatibility of PTN is the use of cylindrical PTN grafts in hand surgery when
repairing traumatic lesions and lost bone structures, as illustrated in Figure 15 [107]. Four damaged
bone fragments resulted from a labor accident were substituted at once using cylindrical PTN grafts,
which were customized intraoperatively.

The rough developed surface of PTN possesses self-adherence feature, whereas the porous
structure maintains the ingrowth of host tissues herein. Due to the good rheological property and
functional strength of the PTN graft, the range of hand motions was fully restored in five days after
surgery. The patient was reported to continue his job three days after discharge. Follow-up observations
evidenced the tight incorporation with host tissues and no complications. This highlights once more
the functionality of PTN as a bone substitute when it uniformly redistributes high dynamic loads and,
therefore, enables long-term cycling with no failure.
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Figure 15. Clinical case of a repaired hand after a labour accident: (a) general view of PTN graft;
(b) preoperative view of the injured hand; (c) postsurgical X-ray image, (d–f) range of hand motions in
five days after surgery [107].

6.5. Cryotools Made of PTN

Cryotools having a working part made of PTN have been used in clinical practice for over 25 years
due to the unique properties of the material [108]. Moreover, the flexibility of Nitinol rods/wires has
allowed the fabrication of cryotools having the variable geometry handle seen in Figure 16, which is
configured depending on application. From Figure 16, the working PTN part can be either unwrought
or polished. Once the working PTN part has been immersed into liquid nitrogen, its changing color
indicates how long the cryotool can be applied. Of course, the larger the working PTN part, the longer
would be the cryoeffect. However, in a case of a minimally invasive approach or a hollow organ of
smaller size, the appropriate cryotool needs to be chosen from [109,110]. Changing the SHS parameters,
the inner structure of the PTN body was suggested to be intentionally designed to have a variable
porosity in this regard (high-porous center and fine-porous periphery) [64]. This concept is feasible and
helps to hold liquid nitrogen inside, preventing leakage as long as possible during cryo-application
until the entire coolant content is evaporated.

The variable and open-end porosity attains both a high permeability and low thermal conductivity
of the working PTN part. In other words, the thermal screening effect ensures a lengthy cryo-exposure
due to the higher performance, wherein up to 90% of the consumed coolant is transmitted to the contact
surface. The main feature of PTN cryotools is that the working part does not adhere to applied tissues
owing to the dry interface, which precludes ice formation. Such cryotools have been reported to be
utilized in cryotherapy, cryosurgery, cryodestructive oncology, and skin care [104,108,111]. Figure 17
illustrates a clinical case for the cryotherapy of a precancerous orolabial lesion, where cryodestruction
was performed using a cylindrical cryotool [108].

The biopsy probe has verified limited precancerous hyperkeratosis, whereas histological
examination carried out six months after cryotreatment revealed a soft inconspicuous scar at the former
affected area.

Finally, analysis of documented clinical cases using PTN devices over the past decade is given in
Table 2. Spinal surgery has turned out to be the most sought-after field for implantable PTN devices,
whereas cryotherapy has been in the forefront in the context of non-implantable devices.
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Table 2. Brief summary of clinically applied PTN devices from 2000 to 2010 [101–104,106,108].

Clinical Field Embodiment of PTN Number of Cases Note

Traumatic and
orthopedic surgery

Plates, Bars, Round bars,
Stripes, Tapers,
Customized endografts,
Pellets

621

Open/closed bone fracture—361
Traumatic bone/joint lesion—127
Posttraumatic joint contracture—62
False joint—38
Congenital bone abnormality—23
Ankylosis—10

Spinal surgery Customized cages
(cylinder, bar, wedge etc.)

1983 Lumbar anterior/posterior interbody fusion:
L5-S1—959; L4-5—791; L3-4—233

641 Cervical anterior/posterior interbody
fusion: C2-4—190; C4-7—451

257 Spinal stenosis surgery:
Lumbar—214; Cervical—43

Maxillofacial surgery

Plates, Bars, Round bars,
Tapers, Stripes,
Customized endografts,
Pellets

409

Radicular cyst—175
Ameloblastoma—81
Odontoma—56
Osteoma—33
Condylar joint replacement—29
Total/subtotal mandibular replacement—25
Giant-cell tumor—10

Cryo-surgery/therapy

Cryotools having
different
size/shape/surface of the
working part

1314
Cryodestruction of cutaneous and
subcutaneous tumors (malignant,
premalignant, non-malignant)

200 Cryodestruction of hemorrhoidal boluses

138 Cryotherapy of the obstructed urethra
(urethral patency restoration)

<9000 Cryotherapy of hemangioma in infants and
pediatric patients

Oncosurgery

Plates, Disks,
Round bars, Stripes,
Customized endografts,
Pellets

617 Bone/joint post-resection repair—322
Head and neck sparing surgery—295
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7. Conclusions

The PTN biomaterial has been discussed in the light of material science engineering and more
than three decades of clinical experience, and the following conclusions can be drawn:

(i) The biomechanical compatibility is referred to as the similarity of viscoelastic rheological
characteristics between the PTN implant and host tissues. The combination of toughness inherent
in Ti-based alloys, the porous morphology, and the viscoelastic reversible behavior of the porous
body emphasizes the potential of PTN alloys to redistribute well physiological loads even in the
early postoperative period, allowing to circumvent obstacles faced by existing implants;

(ii) The biochemical compatibility has turned out to be successful as well. The bioinertness of surface
and inferential bioactivity evidenced through cytocompatibility and negligible foreign body
reaction owe much to self-assembled superficial layers resulted from the SHS process and, as such,
the as-received PTN implant does not require further surface modification;

(iii) Multifarious superficial layers demonstrating a complex structure/composition and high corrosion
resistance conceal the matrix entirely and can be congruentially deformed without rupture and
delamination, withstanding multicycle alternating loads;

(iv) The in vivo performance of PTN bone substitutes is also high. They may go through 107 cycles
with no failure due to the fact that chemical-proof layers arrest the surface deterioration, whereas
the superelastic behavior of the matrix at alternating load rules out a possibility of the early
material’s degradation.

(v) A large number of PTN devices have been clinically applied in traumatic/orthopedic surgery,
maxillofacial surgery, spinal surgery, etc., due to a rare combination of structure, mechanical,
and physicochemical properties of PTN as a biomaterial. Moreover, bioengineering can consider
customized PTN grafts and PTN-based surgical techniques in the context of the next generation
implants concerning surgery cost minimization and improved patient tolerance.

(vi) Comparative studies on corrosion fatigue behaviors of porous Ti and TiNi alloys made by both
SHS and sintering are further needed to accomplish a complete and systematic understanding of
PTN as an advanced biomaterial which can serve multiple clinical purposes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/15/2405/s1.
Video S1: Cervical spine dynamic PTN cage.
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