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A B S T R A C T

Background: Traumatic spinal cord injury (TSI) is a leading cause of morbidity and mortality worldwide, with the
cervical spine being the most affected. Delayed diagnosis carries a risk of morbidity and mortality. However,
cervical spine CT scans are time-consuming, costly, and not always available in general care. In this study, deep
learning was used to assess and improve the detection of cervical spine injuries on lateral radiographs, the most
widely used screening method to help physicians triage patients quickly and avoid unnecessary CT scans.
Materials and methods: Lateral neck or lateral cervical spine radiographs were obtained for patients who under-
went CT scan of cervical spine. Ground truth was determined based on CT reports. CiRA CORE, a codeless deep
learning program, was used as a training and testing platform. YOLO network models, including V2, V3, and V4,
were trained to detect cervical spine injury. The diagnostic accuracy, sensitivity, and specificity of the model were
calculated.
Results: A total of 229 radiographs (129 negative and 100 positive) were selected for inclusion in our study from a
list of 625 patients with cervical spine CT scans, 181 (28.9%) of whom had cervical spine injury. The YOLO V4
model performed better than the V2 or V3 (AUC ¼ 0.743), with sensitivity, specificity, and accuracy of 80%, 72%
and 75% respectively.
Conclusion: Deep learning can improve the accuracy of lateral c-spine or neck radiographs. We anticipate that this
will assist clinicians in quickly triaging patients and help to minimize the number of unnecessary CT scans.
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How this study might affect research, practice, or policy

- The model provides a rapid interpretation of plain radiograph
results, which can help clinicians evaluate patients with sus-
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1. Introduction

Traumatic spinal cord injury (TSI) is a leading cause of morbidity and
mortality worldwide, the most common causes being traffic accidents
and falls [1, 2]. Cervical spine fractures, which occur commonly in
traumatized patients, might have devastating neurological implications.
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Instability and impingement of the underlying spinal cord can also occur
as a result of these injuries [3, 4, 5, 6].

The most common locus of spinal cord damage is the cervical spine,
with damage occurring at this level in 55% of all spinal cord injuries [7].
After a vertebral fracture, functional loss and neurological deficiencies
can develop, and a delayed diagnosis might worsen the prognosis or
necessitate invasive surgery [8]. Early identification and treatment are
vital in preventing morbidity and mortality, as well as improving patient
quality of life. Imaging plays a crucial role in this process, as damage to
the patient's important neurological structures can be reduced by prompt
and proper management—from diagnosis to therapy [9].

Plain cervical spine radiography is an important and commonly uti-
lized tool in the evaluation of cervical spinal fractures. Anteroposterior
and lateral cervical spine radiographs are often acquired in acutely
traumatized patients as soon as they arrive in the emergency room,
allowing for earlier detection of and intervention targeting many sig-
nificant injuries [10, 11]. However, plain cervical spinal radiographs are
insufficient to completely examine the cervical spine following forceful
trauma, necessitating the use of a supplemental CT scan [12, 13]. In
addition, standard 3-view radiography may be unreliable, missing up to
53% of all cervical spine fractures and producing perfectly normal results
in up to 8% of patients with bony cervical spine injuries [14].

There has been great effort to reduce the number of unnecessary scans,
including the use and implementation of the National Emergency X-Radi-
ographyUtilization Study (NEXUS) criteria andTheCanadianC-SpineRule
(CCR) to reduce the number of unnecessary cervical spinal non-contrast CT
scans [14, 15], as these evaluation methods are time-consuming, costly,
and not always available in the primary care setting.
Figure 1. Lateral cervical radiograph with a CT report of C4/5 osteophyte fract

2

Imaging identification based on deep learning is a potentially effec-
tive diagnostic strategy that can reduce the burden that increased im-
aging places on radiologists, who must labor to maintain diagnostic
accuracy and efficiency [16].

In this study, we analyzed cervical spine injury on lateral radiographs,
the most readily available screening tool, using deep learning with the
aim of enhancing their utility in a cost-effective manner.

2. Materials and methods

The local institutional ethics committee approved this retrospective
analytical study with a waiver of informed consent. Office of The Khon
Kaen University Ethics Committee in human research KKU EC approved
this study with trial number “HE641351”.

2.1. Data collection

A list of patients who underwent a CT scan of the cervical spine from
May 2015 through May 2020 was retrospectively acquired from our
radiology reporting system. Basic patient characteristics, presence of
lateral neck or lateral cervical spine radiographs, indications for CT scan,
and CT reports were recorded. If lateral neck or lateral cervical spine
radiographs were available, they were obtained from our picture
archiving and communication systems (PACS) as JPEG, PNG, and BMP
image files. All annotations in the images were removed.

Indications for CT scan were recorded and categorized based on the
CCR and NEXUS criteria which includes age �65 years, dangerous
mechanism (fall from elevation >3 feet, axial load to the head, or high-
ure. The fracture is visible on the radiograph and was labeled accordingly.



Figure 2. Lateral cervical radiograph with a CT report of fracture at C2 vertebral body and fracture of C3 transverse process. The fractures are not clearly visible on the
radiograph (A) and were labeled at the relevant anatomy(B). (C) and (D) 3D CT scan of this patient shows fractures at C2 vertebral body and C3 spinous process.
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speedmotor vehicle, motorized recreational vehicle, or bicycle collision),
paresthesia in extremities, focal neurologic deficit, altered level of con-
sciousness, and midline spinal tenderness.

Inadequate radiographs and those with evidence of previous surgery
were excluded. Negative radiographs considered adequate were those
with coverage from C1 to C7. Adequate positive radiographs were those
covering the reported fracture/injury (e.g., radiographs that cover C1–C5
would be considered adequate if the reported injury was at C3).
3

2.2. Ground truth and labeling

The results from the CT scans were used as a ground truth. Radio-
graphs with negative CT reports were labeled as negative. Those with
positive reports were labeled with a bounding box by a neuroradiologist
with 5 years’ experience. If the injury was visible on plain radiographs,
the label would be placed at that area. If the injury was not clearly visible,
the label would be placed at the relevant anatomical location (Figures 1



Figure 3. The figure shows drag and drop boxes with node-flow programming style provided by CiRA CORE Deep learning platform.
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and 2). Twenty negative and 20 positive radiographs were randomly
selected for use as a test set.

2.3. Deep learning network configuration

Three YOLO network models (version 2, version 3, and version 4
algorithms) were used to detect and classify cervical spine injury. The
study was performed using a high-performance computer system running
Windows 10. All the experiments were conducted on the server with the
following configuration: CPU i510210U (1.6 GHz), RAM 16 GB, GPU
UHD (8 GB), and NVIDIA GeForce MX 250 (2 GB). Programming lan-
guages used were Cþþ and Python.

Data augmentation was performed using -20 to 20-degree rotation
and enhanced image contrast. No Gaussian noise or blur conditions were
applied because we concluded these would cause deterioration to the
injury visualization. The augmentation process provided 4,500 images
for model training.
Table 1. Differences between groups.

Total (n ¼ 625)

Sex Male 447 (71.52)

Age Median (IQR) 36 (21–54)

Mean (SD) 38.73 (20.43)

Age group �65 85 (13.6)

Indication

Dangerous mechanism 199 (31.84)

GCS �13, decrease GCS 368 (58.88)

paresthesia in extremities 17 (2.72)

Not ambulatory 17 (2.72)

Acute onset of neck pain 53 (8.48)

Midline tenderness 73 (11.68)

Able to bend neck 5 (0.8)

Others 82 (13.12)

Brain findings 338 (68.98)

One hundred eighty-one patients (28.9%) had cervical spine injuries. Of those, 82 (45.
and 29 (16%) had both upper and lower cervical spine injury.
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The model was implemented using CiRA CORE, the codeless deep
learning software developed by King Mongkut's Institute of Technology
Ladkrabang (KMILT; Figure 3). A trained model with a mini-batch size of
64 (min/max) and involving 8 subdivisions was used, with momentum
and decay of 0.9 and 0.0005, respectively. The learning rate was 0.002.

The performance of the deep learning network models was assessed
using an operating characteristic curve (ROC). The ROC analysis was
performed using the SPSS software.
2.4. Statistical analysis

Continuous data were analyzed using Pearson's Chi-square test or
Fisher's exact test, as well as the Mann-Whitney U test.

Simple logistic regression was employed in univariate analysis and
multiple logistic regression was utilized with backward stepwise selec-
tion of variables in multivariate analysis.
No fracture (n ¼ 434) Fracture (n ¼ 191) p-value

299 (68.89) 148 (77.49) 0.028

34 (21–53) 39 (21–57) 0.229

38.10 (20.27) 40.16 (20.78)

58 (13.36) 27 (14.14) 0.795

136 (31.34) 63 (32.98) 0.684

266 (61.29) 102 (53.4) 0.065

6 (1.38) 11 (5.76) 0.002

11 (2.53) 6 (3.14) 0.667

37 (8.53) 16 (8.38) 0.951

50 (11.52) 23 (12.04) 0.852

3 (0.69) 2 (1.05) 0.644

53 (12.21) 29 (15.18) 0.311

244 (68.93) 94 (69.12) 0.967

3%) had upper cervical spine injury, 70 (38.7%) had a lower cervical spine injury,



Table 2. Association between outcome and factors.

Factors OR (95% CI) p-
value

Adjusted OR (95%
CI)

p-
value

Sex 0.029 0.163

Male 1 1

Female 0.64
(0.43–0.96)

0.72 (0.44–1.15)

Paresthesia in
extremities

0.004 0.006*

No 1 1

Yes 4.36
(1.59–11.97)

7.02 (1.77–27.79)

Assessing the models.

Table 3. Area under the curve of each model.

Model Area Std. Errora Asymptotic Sig.b 95% Confidence Interval

Lower Bound Upper Bound

YOLO V2 .514 .164 .922 .193 .835

YOLO V3 .650 .134 .306 .387 .913

YOLO V4 .743 .121 .097 .506 .980

a Under the nonparametric assumption.
b Null hypothesis: true area ¼ 0.5
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2.5. Testing the model

The model with the best performance was determined using 40 un-
seen radiographs (20 negative and 20 positive). The results were evalu-
ated for confusion matrix, sensitivity, specificity, and accuracy. For cases
with positive prediction, the intersection over union scores (IoU) were
calculated.

The test cases were also evaluated by a radiologist with nine years'
experience, an orthopedics with seven years’ experience and a senior
radiology resident. The McNemar test was used to evaluate the non-
inferiority of the accuracy, sensitivity, and specificity of the model
compared with the radiologist, the orthopedics, and the radiology
resident.

3. Results

Between May 2015 and May 2020, 625 patients (447 men [71.52%]
and 178 women [28.48%]) underwent CT scan of the cervical spine. The
average age was 38.73 years old, with the majority under the age of 65
(86.4%). Most had abnormal brain results (68.98%; Table 1). Sex and
paresthesia in the extremities were two statistically significant factors
according to univariate analysis (p-values < 0.05; Table 1). However,
after multiple logistic regression analysis (adjust odds ratio), sex was no
longer significant (adjust odds ratio and 95% CI of 1 and 0.72
(0.44–1.15), respectively; p ¼ 0.163). Fourteen (2.24%) of the 625 pa-
tients had no indication for imaging evaluation in the CT report ac-
cording to the CCR and NEXUS criteria. Of these 14 patients, three had
positive CT reports. Decreased Glasgow coma score, dangerous mecha-
nism, andmidline tenderness were themost common indications, present
in 368 (58.88%), 199 (31.84%), and 73 (11.68%) patients, respectively.
Paresthesia in the extremities was associatedwith cervical spine fractures
Figure 4. ROC curve
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(adjusted odds ratio: 7.02 [1.77–27.79]; p ¼ 0.006). Presence of
abnormal brain findings was not considered a factor due to the high p-
value (Table 2).

Three hundred thirty-one lateral neck or lateral cervical spine ra-
diographs from 266 patients were obtained from a list of 625 patients
who underwent CT scans after trauma. One hundred two radiographs
were excluded due to inadequate field of view (68 images) and the
presence of metallic instrumentation (34 images). A total of 229 radio-
graphs (129 negative and 100 positive) were included in our study.
Twenty radiographs of each class were randomly selected for inclusion in
the test set.

The performance of the models was tested using CiRA CORE software
with 40 test cases: 20 negative and 20 positive. The AUC of the ROC
curve for the YOLO V4 model was higher than that of the other two (0.75
versus 0.51 and 0.65; Figure 4, Table 3). The optimum cut-off point for
probability was 15%, which yielded a sensitivity, specificity, and accu-
racy of 80%, 72%, and 75%, respectively, using the YOLO V4 model.
Mean IoU was 0.32 (0.09–0.58; Figure 5.)

The overall accuracy, sensitivity, and specificity of the radiologist, the
orthopedics, and the radiology resident are shown in Table 4. An
McNemar's test determined that the model had a higher accuracy and
specificity compared with the radiology resident (p ¼ 0.012 and 0.011,
respectively). But there was not a statistically significant difference be-
tween the model and the radiologist or the orthopedics.

4. Discussion

Lateral neck radiographs have been reported as having a high false-
negative rate and limited use in screening protocols [12, 17, 18]. How-
ever, other reports have found high negative rates of cervical CT scans in
trauma settings, indicating the possibility that such scans were excessive,
resulting higher-than-necessary costs [10, 19, 20, 21].

In our study, 71% of CT scans of the cervical spine were negative,
which amounts to approximately 89 excessive scans per year. Plain ra-
diographs require highly experienced eyes to make an accurate diagnosis
for each model.



Figure 5. Examples of correctly labeled cases. The green bounding boxes are ground truth labels and the red boxes are the predictions. The CT reports are (A, B) C2
spinous process fracture, C3 right lamina process fracture and C3/C4 facet subluxation, (C,D) fracture at pars interarticularis of C2 vertebra and multiple linear fracture
at C3 vertebral body.
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and immediate expert opinion is not always available. Our results show
that deep learning can enhance the use of lateral c-spine or neck radi-
ography with an accuracy of 75% which may be as high as the detection
accuracy of expert's diagnosis. We believe that this can help physicians in
terms of promptly triaging and reducing excessive CT scans.

Based on the CT reports, we found that 14 patients (2.2%) had no
indication for imaging evaluation according to the CCR and NEXUS
criteria [14, 22] for imaging evaluation. Of these, three had positive CT
reports. About 98% of the patients had at least one indication, of whom
only 29.3% (178 of 611) had cervical spine injury (either significant or
6

non-significant). Although some information may have been missing, as
our data mining did not emphasize clinical information and was based
purely on CT reports, this raises concerns about the effectiveness of the
CCR and NEXUS criteria and suggests a possible need for revision. For
example, giving each data point a different weight as in TI-RADS might
add more value to the criteria [23].

One strength of our study is that it is one of the first to use deep
learning in cervical spine injury to assess plain radiographs. The results
are promising in that they indicate a possible 85% reduction in excessive
CT scanning (17 of 20 cases).



Table 4. Predictive values for the diagnosis of C-spine injury.

Value (%) 95% CI p-value

Yolo V4 Model

Accuracy (%) 75 64.56–90.44 1

Sensitivity (%) 80 40.80–84.60 1

Specificity (%) 72 68.30–98.8 1

Resident

Accuracy (%) 50 34.50–65.50 0.012*

Sensitivity (%) 50 27.20–72.80 0.317

Specificity (%) 50 27.20–72.80 0.011*

Orthopedics

Accuracy (%) 72.5 58.66–86.34 0.527

Sensitivity (%) 65 40.80–84.60 >0.999

Specificity (%) 80 56.30–94.30 0.414

Radiologist

Accuracy (%) 82.5 70.72–94.28 0.593

Sensitivity (%) 75 50.9–91.3 0.527

Specificity (%) 90 68.3–98.8 >0.999
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However, this study also had several limitations. Due to the high
percentage of inadequate radiographs according to standard C1-T1
coverage, we were forced to adjust our exclusion criteria in order to
have sufficient data. However, this data—although imperfect—might be
a good representation of real-world data. Second, although the results are
promising, we believe that better results can be obtained with more data
for training. Finally, we did not classify injuries according to standard
classification which would be helpful for the decision-making process for
proper management [24]. Themodel was only trained on the detection of
the injury, but different kinds of injuries have different protocols.
Therefore, injuries detected by the model should be re-evaluated by a
clinician or a radiologist to confirm the diagnosis.

Deep learning can improve the accuracy of lateral C-spine or neck
radiographs.We believe that our results will be useful for rapid screening,
especially in cases where specialists are unavailable to provide an im-
mediate opinion. We anticipate that this will assist clinicians in quickly
triaging patients and minimize the number of unnecessary CT scans.
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