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ABSTRACT: The blood−brain barrier remains a major roadblock to
the delivery of drugs to the brain. While in vitro and in vivo
measurements of permeability are widely used to predict brain
penetration, very little is known about the mechanisms of passive
transport. Detailed insight into interactions between solutes and cell
membranes could provide new insight into drug design and screening.
Here, we perform unbiased atomistic MD simulations to visualize
translocation of a library of 24 solutes across a lipid bilayer
representative of brain microvascular endothelial cells. A temperature
bias is used to achieve steady state of all solutes, including those with
low permeability. Based on free-energy surface profiles, we show that
the solutes can be classified into three groups that describe distinct
mechanisms of transport across the bilayer. Simulations down to 310 K
for solutes with fast permeability were used to justify the extrapolation of values at 310 K from higher temperatures. Comparison of
permeabilities at 310 K to experimental values obtained from in vitro transwell measurements and in situ brain perfusion revealed
that permeabilities obtained from simulations vary from close to the experimental values to more than 3 orders of magnitude faster.
The magnitude of the difference was dependent on the group defined by free-energy surface profiles. Overall, these results show that
MD simulations can provide new insight into the mechanistic details of brain penetration and provide a new approach for drug
discovery.

■ INTRODUCTION

The development of drugs for central nervous system (CNS)
diseases is more challenging and more costly than for non-
CNS diseases,1−4 largely due to the difficulty in crossing the
blood−brain barrier (BBB).5−7 The transport of solutes across
the BBB is usually described in terms of a generalized rate
the permeability.8 However, the permeability does not carry
any mechanistic insight and hence the details of molecular
transport remain poorly understood.
Empirical criteria for predicting brain penetration of small

molecules include Lipinski’s rule of 59 and modifications based
on retrospective analysis of permeability and other phys-
icochemical data10−13 but have had limited success.14

Experimental values of permeability derived from the 2D
transwell assay (Papp) are widely used to predict brain
penetration of small molecules, and the transwell assay is
often considered the gold standard assessing barrier function of
other in vitro models.15 In vivo estimates of permeability can be
obtained from in situ brain perfusion in a rat model (P3D);

16,17

however, the correlation between in vitro and in vivo values is
also limited.18 While empirical models and in vitro and in vivo
measurements can provide useful relative comparisons, there
are no standard values of permeability for different solutes and
there are limited tools for predicting brain penetration, a key
requirement for CNS drugs.

Permeability describes the diffusion of a solute across a thin
volume element. For solute penetration into the brain, this
volume element is the vascular wall formed by brain
microvascular endothelial cells (BMECs). This is a complex
barrier to solute transport involving, in the simplest case,
diffusion across the luminal membrane, transport within the
cell, and diffusion across the abluminal membrane. Transport
may also involve interaction with the cell surface. Permeability
values provide little insight into the mechanistic details of
transport, such as molecular interactions or thermodynamics of
entry. In silico simulations have the potential to provide
valuable mechanistic insight into the kinetics of solute
transport across the BBB and enable new approaches for the
design and screening of neuropharmaceuticals. While high-
temperature simulations cannot accurately describe transport
properties in water, due to the inability of standard water
models to describe phase transitions accurately, this method-
ology is applicable to solute translocation across low dielectric
media, such as a lipid bilayer.
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Previous computational work has demonstrated the
feasibility of capturing spontaneous translocation of solutes
through model membranes with timescales above 1 μs.19−21

To resolve timescale issues, biased-sampling approaches have
been developed, these include using a single lipid model of the
BMEC cell membrane (e.g., POPC),19,20,22−26 or an implicit
membrane model in which the membrane is represented by a
background dielectric constant.27 The biased-sampling ap-
proaches, however, do not directly provide transport rates, but
only thermodynamics, without the need for reweighting the
resulting ensemble. Unlike any other technique, unbiased in
silico models provide unprecedented atomic detail of the
molecular mechanisms associated with transport across a cell
membrane by not requiring a priori knowledge of the
translocation pathway or coordinates. The kinetics can be
obtained from biased simulations only through an inhomoge-
nenous-solubility-diffusion (ISD) framework, which requires
the unbiasing of the rate, for example, using a Bayesian
postprocessing methodology.22,24 For this reason, we sought to
employ microsecond unbiased MD simulations to calculate
solute permeability using a transition-based counting method.
This method does not require a priori knowledge of the
translocation pathway and has been shown to converge on
similar timescales.20,21 This approach still requires simulation

times in the tens to hundreds of microseconds per to achieve
converged atomistic estimates of thermodynamics of mem-
brane penetration at 310 K (37 C), which is above the limit of
realistic sampling for routine MD simulations at present. For
this reason, high-temperature simulations can be used in
combination with a transition-based approach.
In this work, we employ unbiased atomistic MD simulations

to study the passive transport of a library of 24 solutes across a
lipid bilayer representative of BMECs. Our work constitutes
the first step toward an atomistic simulation model of the
blood−brain barrier. As described above, brain penetration
from systemic circulation involves transport across BMECs
that form the cerebrovasculature. Our simulations consist of a
lipid bilayer placed in a rectangular solvent box, containing a
fixed number of solute molecules. We show that solutes can be
classified into three groups based on free-energy surface
profiles that describe distinct mechanisms of transport across
the bilayer. The permeabilities obtained from simulations vary
from close to values obtained from the in vitro transwell assay
and in situ brain perfusion, to more than 3 orders of magnitude
faster. We show that the magnitude of the difference between
simulated values and experimental values is dependent on the
group defined by the free-energy surface profile. Overall, these
results show that MD simulations can provide new insight into

Figure 1. Developing an in silico model of solute transport across a lipid bilayer model of the blood−brain barrier and benchmarking simulations.
(A) Schematic illustration of the luminal and abluminal membranes of a brain microvascular endothelial cell. Passive transport into the brain
involves diffusion across both membranes. (B) Overlays from a simulation showing the location of a solute during translocation across the lipid
bilayer. The lipid bilayer consists of nine lipids: POPC (dark gray), OSM (red), SAPE (purple), SAPS (brown), SAPI (orange), cholesterol
(green), SAPC (cyan), SOPE (black), and SLPC (magenta). Atomic detail models were constructed using the CHARMM-GUI membrane builder.
(C) Molecular dynamics simulations of BBB permeability showing the real computational time (in months) to simulate solute transport at 310 K
using a modern graphics processing unit (GPU) based on a solution volume of 100 nm3 and a bilayer area of 25 nm2. We assume that 100
translocation events are necessary to determine the steady-state permeability, and that simulation of 100 ns takes 1 day. Experimental values of
solute permeability range from about 10−6 cm s−1 (slowest) to 10−3 cm s−1 (fastest). (D) Relationship between bilayer dimensions and
computational time, with smaller bilayer areas enabling longer simulation times.
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the mechanistic details of brain penetration and provide a new
approach for drug discovery.

■ RESULTS
Experimentally, the transport of small molecules across the
BBB is characterized by the permeability, P, which typically
varies from about 10−7 to 10−3 cm s−1 for neuropharmaceut-
icals. Passive transport of a solute across the BBB involves
diffusion across the luminal cell membrane, transport within
the cell in the cytosol, and diffusion across the abluminal
membrane. Here, we consider passive transport across a single-
cell membrane (Figure 1A,B). Assuming that the translocation
frequency k (s−1) across luminal and abluminal membranes is
the same, and that diffusion within the cell is fast, then P = k/
(2NAAC) where A is the area of the cell membrane, C is the
solute concentration, and NA is Avogadro’s constant.8

Therefore, for typical values of permeability, the time between
translocation events (1/k) across a small area of the lipid
bilayer (e.g., 5 × 5 nm2) would be on the order of
microseconds to seconds at a concentration of 10 mM.
Therefore, for molecules with low to moderate permeability, it
is extremely difficult to accumulate a sufficient number of
translocation events in simulations to enable reliable
determination of solute permeability within a reasonable
computational time (typically 24−72 h on a standard GPU)
(Figure 1C,D). Therefore, simulations were performed for a
library of 24 solutes at 440 K (see Figure S1 for the molecular
structure of all solutes). For solutes with relatively fast
permeability, simulations were also performed at 310 K.
To enable assessment of a solute’s free-energy surface (FES)

through the bilayer, which provides insight into the mechanism
of translocation, we used long timescale equilibrium simu-
lations. In contrast, enhanced sampling techniques, such as

umbrella sampling, use biasing potentials to evaluate FES
profiles along an empirical reaction coordinate. In addition, our
approach also provides transport kinetics, as well as atomic
resolution mechanistic details of solute transport without bias,
which cannot be obtained by any other method.
Most simulations were performed on a bilayer area of 5 × 5

nm2 located in the middle of a box 7.5 nm high (Figure 1A).
The aqueous volume was seeded with 20 solute molecules. In
validation experiments, simulations were performed with
different bilayer areas, water volumes, and solute concen-
trations see Supporting Information endothelial cells that
contain sphingolipids (SM),28 cholesterol (CH), and phos-
phatidylcholine (PC),29,30 as well as phosphatidylethanolamine
(PE), phosphatidylinositol (PI) lipids (Figure 1B),31 on a
bilayer average.
From the simulations, we obtained the steady-state rate of

translocation across the bilayer (Figure 2A) and the FES
profile (Figure 2B) for each solute. A translocation event is
defined when a solute molecule moves from bulk solution on
one side of the lipid bilayer, diffuses across the bilayer, and
then appears in bulk solution on the opposite side. Examples of
the translocation frequency k versus time (Figures S3 and S4)
are provided for the complete solute library. The translocation
rates and permeabilities for our solute library at 440 and 400 K
are summarized in Table 1. The translocation frequencies
varied from 0.0066 ns−1 (doxorubicin) to 1.52 ns−1

(propanol). The FES for each solute was determined from
the weighted spatial probability distribution normal to the
bilayer (z-direction) (see the Materials and Methods section
for details) (Figure 2B). The FES curves for the solute library
are described in more detail below.

Free-Energy Surfaces at 440 K. The FES profiles for the
solute library can be categorized into three distinct groups with

Figure 2. Simulation workflow for determination of translocation frequency and free-energy surface (FES) profiles. (A) Translocation rate and
permeability: (1) perform unbiased MD simulations to obtain the translocation frequency, k (s−1), (2) determine the steady-state translocation
frequency, and (3) estimate the permeability P (cm s−1) from P = k/(2NAAC), where A is the area of the cell membrane, C is the solute
concentration, and NA is Avogadro’s constant. (B) FES profiles: (1) calculate the spatial probability distribution for the solute along the z-direction
and (2) reweigh the probability distribution to obtain the FES profile.
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characteristic topological shapes (Figure 3A−C). A similar
classification approach has been proposed to describe solute
permeability across an implicit membrane model based on the
Heterogeneous Dielectric Generalized Born (HDGB) equa-
tion.27 Each FES profile is described in terms of three
parameters: ΔG1, ΔG2, and ΔG3 (Figure 3D−F). Energy
minima in the head group regions result in an energy well for
partitioning and an energy barrier to escape from the bilayer
(ΔG1). An energy barrier in the center of the bilayer provides
an energy barrier for translocation across the hydrophobic core
(ΔG2). Energy minima in the head group regions combined
with an energy barrier in the center of the bilayer result in an
energy barrier for hopping between the energy minima (ΔG3).
Group 1 molecules (N = 7) include ethanol, propanol,

caffeine, glycerol, doxorubicin, ethosuximide, and temozolo-
mide (Figure 4A). The FES profiles are characterized by a
large energy barrier at the core of the bilayer with no
significant minima (ΔG1 ≤ 2kT; ΔG2 ≥ kT; ΔG3 ≈ 0). These
molecules are hydrophilic and have a low concentration within
the bilayer. Group 2 molecules (N = 11) include nicotine,
atenolol, diazepam, nadolol, lacosamide, abilify, risperdal,
rhodamine-123, dilantin, ketoprofen, and naproxen (Figure
4B). The FES profiles have energy wells in the head group
regions within the bilayer and an energy barrier at the
hydrophobic core (ΔG1 ≥ 2kT; ΔG2 ≤ kT; ΔG3 ≥ 2kT).
These molecules partition into the bilayer head group regions
but must surmount the energy barrier at the core to occupy the
adjacent well prior to escaping the bilayer. Group 3 molecules
(N = 6) include solutes ibuprofen, effexor, ritalin, sertraline,
duloxetine, and bupropion (Figure 4C). The FES profiles have
a broad energy minimum in the hydrophobic core, with a near-

Table 1. Kinetic Parameters Extracted from Simulations of
the Library of Solutes at 440 and 400 Ka

molecule
k (ns−1)
400 K

k (ns−1)
440 K

Psim,400 K
(cm s−1)

Psim,440 K
(cm s−1)

glycerol n/a 0.0137 n/a 1.01 × 10−1

temozolomide n/a 0.0178 n/a 1.32 × 10−1

caffeine n/a 0.0069 n/a 6.60 × 10−2

ethanol 0.4100 1.3580 3.08 ×100 9.99 × 100

propanol 0.4980 1.5119 3.74 ×100 1.12 × 101

doxorubicin n/a 0.0066 n/a 6.34 × 10−2

ethosuximide n/a 0.0869 n/a 7.09 × 10−1

atenolol 0.0103 0.0385 7.73 × 10−2 6.99 × 10−1

diazepam 0.0361 0.0564 2.71 × 10−1 3.88 × 10−1

nadolol 0.0160 0.0714 1.20 × 10−1 6.48 × 10−1

lacosamide 0.0786 0.2350 5.90 × 10−1 2.65 × 100

abilify 0.0357 0.1361 2.68 × 10−1 1.01 × 100

risperdal 0.0285 0.2010 2.14 × 10−1 1.49 × 100

rhodamine-123 0.0638 0.2220 4.79 × 10−1 1.64 × 100

dilantin 0.0245 0.1665 1.84 × 10−1 1.23 × 100

ketoprofen 0.0282 0.1610 2.12 × 10−1 2.72 × 100

naproxen 0.0220 0.2000 1.65 × 10−1 3.37 × 100

nicotine 0.3346 0.9700 2.51 × 100 1.21 × 101

ibuprofen 0.0120 0.1441 9.01 × 10−2 1.60 × 100

effexor 0.0161 0.0878 1.21 × 10−1 6.49 × 10−1

ritalin 0.0868 0.2396 6.51 × 10−1 1.77 × 100

sertraline 0.0021 0.0238 1.58 × 10−2 2.29 × 10−1

duloxetine 0.0076 0.0810 5.73 × 10−2 7.81 × 10−1

bupropion 0.0099 0.0925 7.41 × 10−1 8.92 × 10−1

aFor five solutes, the translocation frequency did not reach a steady-
state value at 400 K (indicated by n/a).

Figure 3. Characterizing free-energy surface profiles for BBB translocation for the solute library. (A) Group 1 solutes have an energy barrier located
in the hydrophobic core in the center of the bilayer (ΔG2 ≥ kT). In some cases, there are energy minima located in the head group regions, with a
barrier to escape from the bilayer (ΔG1 ≤ 2kT) and an energy barrier between the two minima (ΔG3 ≤ kT). (B) Group 2 solutes have two energy
minima located in the head group regions of the bilayer separated by a small energy barrier in the hydrophobic core. This profile results in a barrier
to escape from the bilayer ΔG1 ≥ 2kT and an energy barrier associated with hopping between the two minima in the hydrophobic core (ΔG3 ≤
kT). (C) Group 3 solutes have an energy minimum in the center of the bilayer, resulting in a barrier to escape from the bilayer (ΔG1 ≥ 4kT). (D)
Energy minima in the head group regions result in an energy barrier to escape from the bilayer (ΔG1). (E) Energy barrier in the center of the
bilayer provides an energy barrier to translocation across the hydrophobic core (ΔG2). (F) Energy minima in the head group regions combined
with an energy barrier in the center of the bilayer result in an energy barrier for hopping between the energy minima (ΔG3).
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zero probability of finding a molecule outside the bilayer core
(ΔG1 ≥ 4kT; ΔG2 ≈ 0; ΔG3 ≈ 0). These molecules are
typically lipophilic drugs. The molecular structures for the
three groups are shown in Figure S7. The average FES profiles
for each group show the characteristic shapes (Figure 4D−F).
The classification of solutes into three groups is based solely

on thermodynamic considerations (barrier heights), and not
on chemistry or transport kinetics. To assess differences
between the three groups, we considered a number of
physicochemical parameters (Table S1) along with metrics
associated with the simulations (Tables S6−S9).
Group 1 solutes are highly polar (average log Poct = 0.0 ±

0.4) and have the lowest percentage of successful translocation
events (0.1 ± 0.1%). The number of failed translocation
attempts (based on molecules entering the bilayer) was 214 ±
56 ns−1. Group 2 solutes have a higher lipophilicity (average
log Poct = 2.1 ± 0.4) and have an intermediate percentage of
successful translocation events (2.2 ± 0.7%), and a lower
number of failed attempts (27 ± 13 ns−1). Group 3 solutes are
highly lipophilic (average log Poct = 3.7 ± 0.4) and have the
highest percentage of successful translocation events (4.2 ±

0.7%) and the lowest number of failed translocation events
(3.3 ± 1 ns−1).
The translocation frequency was not statistically different

between groups, despite the differences in an energy barrier,
indicating that different FES profiles, and hence different
translocation pathways, can have similar rates. The lipophilicity
(log Poct), attempt frequency, residence time, and fraction of
successful translocation events (Figure 4G,I−K) were different
between groups. Solute molecular weight was also not
significantly different between groups (Figure 4H), which is
consistent with previous observations that molecular weight is
a poor descriptor of permeability and entry into the brain.32−34

There are two important implications of the existence of
discrete groups. First, it suggests that solutes utilize different
mechanisms for passive transport across the BBB. Second, it is
possible to classify new solutes into one of the three groups
based on their physicochemical properties.

Mechanisms of Passive Diffusion. The relationship
between the trajectory of molecules and FES profiles provides
insight into the mechanism of translocation. As an example,
here we considered passive diffusion of the group 3 solute
ibuprofen (Figure 5). Ibuprofen is widely used to treat pain

Figure 4. Free-energy surface profiles, translocation kinetics, and physicochemical properties of a 24 solute library. Free-energy surface (FES)
profiles can be classified into three groups based on energy barriers ΔG1, ΔG2, and ΔG3. (A) Group 1: ethanol, propanol, caffeine, glycerol,
doxorubicin, ethosuximide, and temozolomide. (B) Group 2: nicotine, atenolol, diazepam, nadolol, lacosamide, abilify, risperdal, rhodamine-123,
dilantin, ketoprofen, and naproxen. (C) Group 3: ibuprofen, effexor, ritalin, sertraline, duloxetine, and bupropion. (D−F) Average free-energy
surface profiles for each group. (G−K) Dependence of hydrophobicity (log Poct), molecular weight, attempt frequency for bilayer entry, residence
time in the bilayer, and the fraction of successful translocation events for each group. Bars represent mean ± standard error (SE). Statistical
significance was tested with an ANOVA test with a posthoc Tukey test. Symbol meaning, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and ****P ≤
0.0001.
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and has a free-energy curve characterized by a double well with
no significant barrier in the hydrophobic core (Figure 5A).
Ibuprofen accumulates in the center of the bilayer (Figure 5B)
and is characterized by a translocation rate of 0.144 ± 0.003
ns−1 at 440 K (Figure 5C). On entry into the bilayer, ibuprofen
is oriented at an average angle of 30° to the bilayer normal,
with the hydrophilic head group facing away from the
hydrophobic core (Figure 5D−F). On approaching the
hydrophobic core, the molecule rotates to be approximately
parallel to the bilayer (on average 90° to the bilayer normal).
Then, on moving into the lower leaflet, the molecule rotates to
30° from the bilayer normal with the head group region again
facing away from the hydrophobic core. This is an example of
an orientation inversion mechanism.
Temperature Dependence of Translocation Rates. To

assess the temperature dependence of translocation rates and
FES profiles, we performed simulations of selected molecules
from each of the three groups: ethanol (group 1), nicotine
(group 2), and ritalin (group 3). For all three molecules, the
translocation frequency was sufficiently high at 310 K to enable
accurate evaluation within accessible computational times.
Over the temperature range from 440 K down to 310 K, the
main features of the FES profiles were preserved (Figure 6A−
C). For ethanol, as the temperature decreased the main barrier
at the center of the bilayer broadened and a small well
developed (although it was less than kT). In addition, small

energy minima developed in the head group regions. For
nicotine, the double-well shape was preserved at all temper-
atures. For ritalin, a peak emerged (>kT) associated with
partitioning through the polar head group region of the bilayer.
The values of ΔG1, ΔG2, or ΔG3 used to define the three
groups increased monotonically as the temperature was
lowered from 440 to 310 K (Figure 6A−C). To characterize
the temperature dependence of the translocation process, we
considered the largest of the energy barriers in the FES profiles
for each solute: ΔG2 for ethanol, ΔG1 for nicotine, and ΔG3
for ritalin. In all three cases, the maximum energy barrier
followed Arrhenius behavior (Figure 6D−F). At physiological
temperature, the barrier properties of group 3 change
somewhat compared to that at 440 K. In particular, the
hydrophobicity that dominates this group gives rise to a barrier
at the head group region (Figure 6C), which corresponds to
the penalty from partitioning through the polar head group
region of the membrane, but once partitioned, these molecules
have an energy minimum in the lipid tail region, which is in
agreement with our high-temperature simulations.
The translocation rates for ethanol, nicotine, and ritalin also

follow Arrhenius behavior (Figure 6G−I). For ethanol, the
permeability obtained from the simulations (P = k/(2NAAC))
at 310 K was Psim = 3.00 × 10−2 cm s−1. This is an order of
magnitude larger than a reported experimental value, Papp =
1.10 × 10−3 cm s−1.35 However, we note that the experimental

Figure 5. Mechanism of ibuprofen translocation. (A) Free-energy surface profile for ibuprofen at 440 K with a characteristic double minima. (B)
Steady-state concentration (C/C0) relative to initial bulk concentration shows majority of ibuprofen accumulates in a membrane. (C)
Translocation rate (k/NAAC) reaches a steady state after about 200 ns. (D) Images from a single ibuprofen translocation event across the bilayer.
(E) Schematic illustration showing the reference for orientation of ibuprofen. (F) Distribution of ibuprofen orientations in regions I−III of the
bilayer during translocation.
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permeability is not from a transwell measurement but is
inferred from uptake in red blood cells. A recent simulation at
308 K using a mammalian bilayer estimated an ethanol
permeability of 1.2 ± 0.1 × 10−2 cm s−1,36 close to the value
found here.
For nicotine, the permeability obtained from simulations at

310 K was 1.09 × 10−1 cm s−1, about 3 orders of magnitude
faster than the reported experimental value from the transwell
assay (Papp = 1.78 × 10−4 cm s−1). Similarly, the permeability
obtained from simulations for ritalin at 310 K was 4.61 × 10−2

cm s−1, also about 3 orders of magnitude faster than the
experimental value (Papp = 2.47 × 10−5 cm s−1).
Since translocation rates follow Arrhenius behavior, we can

consider estimating the translocation rate at 310 K from
extrapolation of high-temperature simulations (at 440 and 400
K). For ethanol, the extrapolated permeability was 1.16 × 10−1

cm s−1, 3-fold higher than the value obtained at 310 K (Psim =
3.00 × 10−2 cm s−1). For nicotine, the extrapolated value at
310 K was 1.18 × 10−1 cm s−1, very close to the simulation
result of 0.99 ×10−3 cm s−1. For ritalin, the extrapolated value
at 310 K was 3.02 × 10−2 cm s−1, close to the simulation result
of 4.00 × 10−2 cm s−1. At temperatures above physiological
temperatures, the kinetic energy of solutes is higher and the
energy barriers for passive diffusion are reduced (Figure 6A−

C), resulting in an increase in translocation rates and implying
that high-temperature MD simulations can be viewed as
physiological with a temperature-dependent bias.21 The results
for these molecules suggest that the extrapolation can be used
to make a comparison of simulation results to experimental
values of Papp at 310 K (Table 2).

■ DISCUSSION

Translocation Pathway. Based on the FES profiles for
translocation, we showed that a library of 24 solutes can be
classified into three groups based on the quantitative values of
energy barriers. The FES profile for each group has a distinct
shape that is characteristic of the translocation pathway. Group
1 solutes are characterized by a large energy barrier located in
the hydrophobic core. These molecules are generally lip-
ophobic (log Poct ≈ 0) and, due to the energy barrier, have a
small residence time in the membrane. For ethanol at lower
temperatures, the energy barrier separates into two peaks,
resulting in a small energy well at the center of the bilayer,
suggesting a metastable state in the region between the two
leaflets.
Group 2 solutes have an energy barrier in the hydrophobic

core of the membrane separated by two energy wells. These
molecules have intermediate lipophilicity (log Poct ≈ 2) and are

Figure 6. Temperature dependence of free-energy surface (FES) profiles and translocation rates for ethanol (group 1), nicotine (group 2), and
ritalin (group 3). (A−C) FES profiles obtained at 310, 330, 350, 400, 440, and 480 K. (D−F) Temperature dependence of FES profiles. (G−I)
Temperature dependence of translocation rates (310−480 K).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05679
ACS Omega 2022, 7, 1100−1112

1106

https://pubs.acs.org/doi/10.1021/acsomega.1c05679?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05679?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05679?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05679?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05679?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


partition into the energy wells that are located just inside the
head group region. The translocation pathway for these
molecules is more complicated compared to group 1, which
primarily involves surmounting a single energy barrier. Group
2 molecules first partition into the energy well of the leaflet
proximal to the solution/membrane interface. From this
energy well, the solute can escape back into bulk solution or
hop to the second energy well. The energy barrier to re-enter
the bulk solution is typically slightly higher (up to 2-fold), and
hence there is generally a slightly higher probability of hopping
to the second energy well. From the second energy well, the
solute can escape across the bilayer (into the cytosol) or hop
back to the first energy well. Since the probability for escape is
typically higher, the solute can oscillate between the two wells.
For these molecules, the attempt frequency is higher and the
residence time longer than for group 1 solutes.
The FES profiles for group 3 solutes are characterized by a

large energy well within the hydrophobic core of the

membrane. These molecules have relatively high lipophilicity
(log Poct ≈ 4) and are partition into the membrane core. The
translocation pathway involves partitioning into the mem-
brane, across the lipid head group region, and then escaping
back into the bulk solution or across the membrane. The
attempt frequency is the highest of the three groups, and the
residence time is the longest due to the large energy well. For
ibuprofen, we found that the trajectory through the bilayer
involves changes in orientation in different regions.
Although the solutes in the three groups have statistically

significant differences in lipophilicity (log Poct), an important
metric in Lipinski’s rule of 5, there was no correlation in
translocation frequency between the three groups. The
different translocation pathways identified in the three groups
have important implications for other processes. For example,
solutes with long residence times have more chance to interact
with membrane proteins, such as efflux pumps, compared to
solutes with low residence time.

Table 2. Translocation Frequency and Permeability at 310 K Obtained from Values at 440 and 400 K, and Experimental
Values of In Vitro Permeability (Papp) from Transwell Measurements

molecule group k (ns−1) 310 K Psim,310 K (cm s−1) Papp (cm s−1) log Psim,310 K − log Papp

glycerol 1 2.05 × 10−3 2.00 × 10−2 9.50 × 10−6 3.32
temozolomide 1 3.19 × 10−3 3.12 × 10−2 1.86 × 10−6 4.22
caffeine 1 3.34 × 10−3 3.27 × 10−2 2.10 × 10−5 3.19
ethanol 1 1.62 × 10−2 1.58 × 10−1 1.10 × 10−3 2.53
propanol 1 3.13 × 10−2 3.06 × 10−1 3.30 × 10−3 2.23
doxorubicin 1 4.78 × 10−3 4.68 × 10−2 1.00 × 10−7 5.67
ethosuximide 1 2.45 × 10−2 2.40 × 10−1 9.00 × 10−6 4.43
atenolol 2 4.79 × 10−7 9.38 × 10−6 1.30 × 10−6 2.37
diazepam 2 5.21 × 10−5 5.10 × 10−4 4.60 × 10−5 1.56
nadolol 2 1.28 × 10−6 1.25 × 10−5 3.30 × 10−7 3.02
lacosamide 2 1.87 × 10−4 2.61 × 10−3 1.60 × 10−5 3.02
risperdal 2 3.40 × 10−6 3.33 × 10−5 3.00 × 10−5 1.31
rhodamine-123 2 8.49 × 10−5 8.31 × 10−4 0.80 × 10−7 4.80
dilantin 2 2.36 × 10−6 2.31 × 10−5 2.70 × 10−5 1.12
ketoprofen 2 4.43 × 10−6 8.68 × 10−5 8.00 × 10−5 1.17
naproxen 2 1.17 × 10−6 2.30 × 10−5 3.90 × 10−5 1.15
nicotine 2 1.10 × 10−2 2.16 × 10−1 1.78 × 10−4 3.55
ibuprofen 3 1.48 × 10−7 1.45 × 10−6 2.70 × 10−5 0.54
effexor 3 9.91 × 10−7 9.70 × 10−6 6.00 × 10−5 0.65
ritalin 3 2.75 × 10−4 2.69 × 10−3 2.47 × 10−5 2.77
sertraline 3 1.25 × 10−9 1.22 × 10−8 2.10 × 10−6 −1.60
duloxetine 3 4.97 × 10−8 4.86 × 10−7 1.66 × 10−5 0.21
bupropion 3 1.21 × 10−7 1.18 × 10−6 4.75 × 10−5 0.09

Figure 7. Comparison of permeabilities from simulations (Psim) and values obtained from in vitro experiments (Papp) or in situ brain perfusion
(P3D). (A) Permeability obtained from simulations at 440 K (Psim,440 K) versus in vitro permeability (Papp) at 310 K. (B) Permeability obtained from
simulations at 310 K (Psim,310 K) versus permeability obtained from in vitro permeability (Papp). (C) Permeability obtained from simulations at 310
K (Psim,310 K) versus permeability (P3D) obtained from in situ brain perfusion (red: group 1; white: group 2; blue: group 3).
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Translocation Rate and Permeability. To determine
translocation frequencies for all solutes, including those with
low permeabilities, simulations were performed at 440 K.
Comparison of simulated permeabilities at 440 K and in vitro
permeabilities (310 K) (Figure 7A) shows that simulated
values are consistently higher than in vitro experimental values
by 4−5 orders of magnitude, although there is a general
correlation between values (r2 = 0.50). The correlation for
group 3 solutes was highest (r2 = 0.78) compared to groups 1
and 2 (r2 = 0.57 and 0.08, respectively), further supporting
differences in the translocation mechanism between groups.
To compare permeabilities for all solutes at 301 K, values

from simulations were obtained by extrapolation of values at
higher temperatures. Comparison of simulations for ethanol,
nicotine, and ritalin at temperatures from 310 to 440 K (Figure
6) suggests that this approach is reasonable. The permeability
values from simulations at 310 K (Psim,310 K) show no
correlation with in vitro (Papp) (Figure 7B) or in vivo (P3D)
(Figure 7C) values, with differences of several orders of
magnitude (Table 2). However, four molecules show excellent
agreement between Psim,310 K and Papp (dilantin, ketoprofen,
naproxen, risperdal: all group 1), and four molecules are within
10-fold (effexor and ritalin in group 3, and atenolol and
diazepam in group 1). The difference between simulation and
in vitro permeabilities may be derived from the simulations or
the experimental methods, which we consider in more detail
below. These results suggest that experimental permeabilities
are in many cases not limited by simple passive diffusion but
are dependent on other factors associated with transport.
The brain penetration of solutes can be estimated using a

number of in vivo and in vitro methods.15 In the in vitro
transwell assay, the permeability is determined from the time-
dependent amount of solute crossing a confluent monolayer of
endothelial cells supported on a porous membrane and is
determined by an appropriate analytical method.8,15,37 Values
of solute permeability can also be obtained from in vivo
experiments, typically from in situ brain perfusion in a rat
model (P3D).

16,17 In this model, a solute of interest is
introduced into one hemisphere of the brain by interarterial
injection, and the amount in that hemisphere is determined by
mass spectroscopy following removal of blood and homoge-
nization. These in vivo measurements require estimates for the
luminal area of the vasculature and the vascular volume.
Experimental values of permeability derived from the 2D

transwell assay (Papp) are widely used to predict brain
penetration of small molecules.15 However, there are many
implicit simplifying assumptions associated with transwell
measurements. A study of 50 solutes found a modest
correlation (Pearson correlation coefficient = 0.82) between
P3D and Papp for solutes with log Poct ≤ 3 but no correlation for
drugs with log Poct ≥ 3.18 Typically, values of P3D were between
1 and 100 times faster than values obtained from the transwell
assay. The differences were, in part, correlated with the
unbound fraction of the solute in the brain. These results
highlight the variability in measurements of permeability and
indicate that there is no gold standard for benchmarking
permeability. Understanding the origin of these differences will
be key to the development of future neuropharmaceuticals.
The average differences between simulated and in vitro

permeabilities (log Psim,310 K − log Papp) for the solute library
varied from about 5 orders of magnitude faster to about 3
orders of magnitude slower (Table 2 and Figure 8A).
However, the difference was dependent on the solute group

(Figure 8B−D). The average values of log Psim,310 K − log Papp
were 3.57 (3000-fold) for group 1 solutes, 1.2 (15-fold) for
group 2, and −1.0 (10-fold) for group 3 (Table 2 and Figure
8A). The differences between simulated and in vivo
permeabilities (log Psim,310 K − log P3D) were 4.27 (15 000-
fold) for group 1, 2.27 (158-fold) for group 2, and −1.04 (10-
fold) for group 3 (Table 3).
Molecules with simulated permeabilities at 310 K within

100-fold of the experimental in vitro permeabilities are
propanol (group 1), diazepam (group 2), nadolol (group 2),
risperdal (group 2), dilantin (group 2), ketoprofen (group 2),
naproxen (group 2), and effexor (group 3). Comparison of the
differences between simulated and in vivo permeabilities
(Figure 8A) shows that group 3 solutes are typically faster in
simulations, but that group 1 and 3 solutes are typically slower,
although, on average, group 2 solutes are closest to
experimental values (Figure 8A,B). In addition, group 2
solutes show the smallest difference between in vitro (Papp) and
in vivo (P3D) measurements, although the result is not
statistically significant.
In relating the translocation frequency from simulations to

permeability (Papp), it is assumed that to enter the brain, a
solute must cross both luminal and abluminal membranes, and
that transport inside the cell is fast in comparison to
translocation across the bilayer. In this situation, the
permeability is directly related to the translocation frequency
(i.e., P = k/(2NAAC)). This simple model also assumes that
the solute is not sequestered in the glycocalyx or within the
cell, the solute does not dissociate or undergo enzymatic
degradation, and there is no efflux.38,39 All of these processes

Figure 8. Difference between permeabilities obtained from simu-
lations (Psim,310 K) and in vitro (Papp) and in vivo (P3D) values for the
three groups. (A) Difference in permeability (log Psim,310 K − log Papp)
for each solute at 310 K, color coded by group (red: group 1; white:
group 2; blue: group 3). (B) Difference between simulations and in
vitro permeabilities (log Psim,310 K − log Papp). (C) Difference between
simulations and in vivo permeabilities (log Psim,310 K − log P3D). (D)
Difference between in vitro and in vivo permeabilities (log Papp −
log P3D). Bars represent mean ± SE.
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can result in a lower apparent permeability in in vitro
experiments compared to the ideal case where the slow step
is passive diffusion across cell membranes. Therefore, one
reason for the simulations being faster than experiments is that
the experimental assumptions are not satisfied, i.e., the
permeability cannot be modeled by simple passive transport
across two bilayer membranes. The simulated permeabilities
for group 1 and 2 solutes are typically the same or faster than
experimentally reported in vitro values, suggesting that
transport cannot be modeled as simple passive diffusion across
a lipid bilayer. This suggests that these solutes are more
susceptible to sequestration, dissociation, degradation, and/or
efflux. In contrast, the permeabilities in simulations were
typically slower than experimental values for group 3 solutes.
Group 3 solutes have high lipophilicity, and, as described
above, a previous study found no correlation between in vitro
and in vivo permeabilities for solutes with lipophilicity >3.18

The reason for this difference remains to be established.

■ CONCLUSIONS
The transport of small molecules across the BBB is complex
and poorly understood. Empirical predictions of brain
penetration are inconsistent, and there is considerable
disagreement between in vitro and in vivo measurements of
permeability. Atomistic simulations have the potential to
unravel these inconsistencies and enable new mechanistic
insight into solute transport into the brain. The work reported
here provides the foundations for developing more complex
models that incorporate other processes, such as solute
interactions with the cell membrane, sequestration within the
cell, efflux, dissociation, or enzymatic degradation, all processes
that are ignored in the simple passive diffusion model and are
difficult to study experimentally.

■ MATERIALS AND METHODS
Simulation Details. Unbiased atomic detail molecular

dynamics (MD) simulations were performed using GRO-
MACS (www.gromacs.org)40 in combination with the
CHARMM general force field for molecular solutes and the
TIP3P water model as a solvent.41 Lipid parameters were taken
from the CHARMM36 all-atom force field.42 Electrostatic
interactions were computed using particle-mesh-Ewald
(PME),43 and a cutoff of 10 Å was used for van der Waals
interactions. Bonds involving hydrogen atoms were restrained
using LINCS44 to allow a 2 fs time step. Neighbor lists were
updated every five steps. All simulations were performed in the
NPT ensemble, with water, lipids, and drug molecules coupled
separately to a heat bath with temperatures in the range of
310−440 K using a time constant τT = 0.1 ps in combination

with the velocity rescaling algorithm.45 An atmospheric
pressure of 1 bar was maintained using the Berendsen semi-
isotropic pressure coupling with compressibility κz = κxy = 4.6
× 10−5 bar−1. Production runs were performed with the
Parrinello−Rahman semi-isotropic pressure coupling with
compressibility κz = κxy = 4.6 × 10−5 bar−1 and time constant
τP = 20 ps.46 To capture diffusion events at sufficiently high
resolution, trajectories were recorded every 1 ps, such that each
1 ms of trajectory comprises a data set of 1 × 107 observations.

Lipid Bilayer Model of Human Brain Microvascular
Endothelial Cells (BMECs). An atomic detail molecular
model of the apical BMEC lipid bilayer was constructed by
replicating physiological lipid compositions.21 The BMEC
bilayer model with 96 lipids (48 per leaflet) in an area of about
25 nm2 was set up using the composition for polarized
endothelial cell membranes,14,29,30 which contain a high
content of sphingolipids (SM),28 cholesterol (CH), and
phosphatidylcholine (PC),29,30 as well as phosphatidylethanol-
amine (PE), phosphatidylinositol (PI) lipids (see the
Supporting Information for details).31 Information about the
lipid distribution in the individual leaflets was not available and
was not incorporated in the model. Physical bilayer parameters
were determined to assess bilayer stability with temperature
and were compared to experimental measurements. In
particular, the average lipid diffusion coefficient in the plane
of the membrane (DL(T)) and the area-per-lipid (APL) were
validated to reference parameters. DL(T) was calculated by
averaging the diffusion of heavy atoms for all lipid species in
the bilayer for the lipids POPC, SAPE, SOPE, and cholesterol.

Compound Library of the CNS Drug Space. A library of
molecular solutes (N = 24; Table S1 and molecular structures
in Figure S1) was chosen to be sufficiently broad and
representative of CNS drugs, spanning a range of perme-
abilities (from 10−7 to 10−3 cm s−1), charge (neutral, cationic,
anionic, and zwitterionic), and lipophilicity (log Poct values
from −1.8 (polar) to 5.10 (nonpolar)). Solute transport is
dependent, in part, on the choice of solute force field.19,23,27

Force-field parameters were obtained in a standardized fashion
using the CGenFF program47,48 (version 2.0) to obtain
bonded and nonbonded parameters via the automated
parameter assignment tool (Paramchem)49 of CGenFF. The
quality of similarity assignment for bonded and nonbonded
parameters was monitored by penalty scores (Table S2).

Simulations of Solute Translocation. The standard
simulation system contains 2913 water molecules, 96 lipids,
and 20 solute molecules distributed randomly with PACK-
MOL.50 The standard box areas were approximately 25 nm2

(310 K) to 33 nm2 (440 K), with total volumes of
approximately 175 nm3 (310 K) to 220 nm3 (440 K). The

Table 3. Translocation Frequency at 310 K Obtained from Values at 440 and 400 K, and Experimental Values of Permeability
from In Situ Brain Perfusion (P3D)

molecule group k (ns−1) at 310 K Psim,310 K (cm s−1) P3D (cm s−1) log Psim,310 K − log P3D

caffeine 1 3.34 × 10−3 3.27 × 10−2 2.22 × 10−5 3.17
doxorubicin 1 4.78 × 10−3 4.68 × 10−2 2.00 × 10−7 5.37
diazepam 2 5.21 × 10−5 5.10 × 10−4 2.00 × 10−6 2.92
risperdal 2 3.40 × 10−6 3.33 × 10−5 9.44 × 10−5 0.81
dilantin 2 2.36 × 10−6 2.31 × 10−5 5.00 × 10−5 0.85
nicotine 2 1.10 × 10−2 2.16 × 10−1 2.02 × 10−5 4.48
effexor 3 9.91 × 10−7 9.70 × 10−6 1.88 × 10−4 0.15
sertraline 3 1.25 × 10−9 1.22 × 10−8 4.88 × 10−4 −2.81
bupropion 3 1.21 × 10−7 1.18 × 10−6 1.69 × 10−4 −0.46
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water volumes were approximately 83 nm3 (310 K) to 100 nm3

(440 K). Solute translocation across the BMEC lipid bilayer
model was validated by computing the permeability at different
solute concentrations (N = 1−20) for ethanol, when varying
the lipid bilayer area (96 lipids, 192 lipids, 384 lipids; Figure
S2), and when varying the water volume (2913 water
molecules and 7372 water molecules). Simulations of solute
translocation were performed at temperatures from 310 to 440
K. Simulations at elevated temperatures were necessary to
enable accurate determination of the translocation frequency
for solutes with low permeability. This high-T MD method-
ology is applicable to lipid membranes in conjunction with
small-molecule solutes that do not denature at 440 K ≥ T >
310 K.21 The use of nonpolarizable water models, such as
TIP3P, at high temperatures carries limitations. While high-
temperature simulations are well established in the field of MD
simulation, the water models do not accurately describe the
phase transitions associated with heating (or cooling).
However, since we are not aiming to describe transport
properties in water, we hold that the methodology is applicable
to solute translocation across low dielectric media, such as a
lipid bilayer.
Quantifying Solute Translocation across the Lipid

Bilayer. There are two general approaches for calculating
permeability in simulations: Fick’s law counting-based
methods (used in this work) and methods based on the
inhomogeneous solubility-diffusion (ISD) equation.51 The ISD
model is more complex since it requires accurate determi-
nation of the diffusion coefficient and free-energy surface at
each location (i.e., position in the bilayer), both of which are
challenging.52−55 Here, we use direct observation from
simulations to identify individual translocation events.
The solute translocation frequency (k) across the bilayer is

the number of translocation events per unit time. A
translocation event is defined when a solute molecule moves
from bulk solution on one side of the lipid bilayer, across the
bilayer, and crosses a plane 1.0 nm beyond the bilayer on the
opposite side. In the simulations, we define the steady-state
translocation k frequency as the average value when the
derivative is less than a threshold value: i.e., dk/dt = [(k(i + 1)
− k(i))/Δt] < 0.004.
Free-Energy Surfaces (FES) and Grouping of Solutes.

FES profiles were calculated by first binning the z-positions of
a solute to generate a one-dimensional probability distribution
P(z). The free energy, F(z), was calculated by Boltzmann
reweighting of the probability distribution (see the Supporting
Information for details).
Statistics. The statistical significance of parameters

between groups of solutes was determined using analysis of
variance (ANOVA) with a posthoc Tukey HSD (Honestly
Significant Difference) test.56

Experimental Values of Permeability. Experimental
values of permeability from in vitro transwell experiments
and from in vivo in situ brain perfusion experiments used for
comparison to simulation results are provided in the
Supporting Information (Table S2), along with the source
references. The in vitro data comes from various cell lines,
Madin−Darby Canine Kidney (MDCK), human colorectal
adenocarcinoma cells (Caco-2), and stem cell-derived brain
microvascular endothelial cells, as well as inferences from red
blood cell (RBC) or the parallel artificial membrane
permeability assay (PAMPA). In vivo data were obtained
from rat brain perfusion, involving the cannulation of the

carotid artery and infusing whole blood, physiological buffer, or
saline to determine solute uptake.
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■ GLOSSARY
Papp &#x2013;experimental permeability from the transwell
assay (cm s−1)
P3D &#x2013;permeability from in situ brain perfusion (cm
s−1)
Psim,T &#x2013;permeability from simulations at temper-
ature T (cm s−1)
k &#x2013;translocation frequency (s−1)
A &#x2013;area (of lipid bilayer) (cm−2)
C &#x2013;concentration of solute in bulk water (mol
cm−3)
Natt &#x2013;attempt frequency for solute translocation
(ns−1)
Poct &#x2013;octanol−water partition coefficient
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