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Abstract
In the Bayesian Reinforcement Learning (BRL) setting, agents try to maximise the collected

rewards while interacting with their environment while using some prior knowledge that is

accessed beforehand. Many BRL algorithms have already been proposed, but the bench-

marks used to compare them are only relevant for specific cases. The paper addresses this

problem, and provides a new BRL comparison methodology along with the corresponding

open source library. In this methodology, a comparison criterion that measures the perfor-

mance of algorithms on large sets of Markov Decision Processes (MDPs) drawn from some

probability distributions is defined. In order to enable the comparison of non-anytime algo-

rithms, our methodology also includes a detailed analysis of the computation time require-

ment of each algorithm. Our library is released with all source code and documentation: it

includes three test problems, each of which has two different prior distributions, and seven

state-of-the-art RL algorithms. Finally, our library is illustrated by comparing all the available

algorithms and the results are discussed.

1 Introduction
Reinforcement Learning (RL) agents aim to maximise collected rewards by interacting over a
certain period of time in unknown environments. Actions that yield the highest performance
according to the current knowledge of the environment and those that maximise the gathering
of new knowledge on the environment may not be the same. This is the dilemma known as
Exploration/Exploitation (E/E). In such a context, using prior knowledge of the environment is
extremely valuable, since it can help guide the decision-making process in order to reduce the
time spent on exploration. Model-based Bayesian Reinforcement Learning (BRL) [1, 2] specifi-
cally targets RL problems for which such a prior knowledge is encoded in the form of a proba-
bility distribution (the “prior”) over possible models of the environment. As the agent interacts
with the actual model, this probability distribution is updated according to the Bayes rule into
what is known as “posterior distribution”. The BRL process may be divided into two learning
phases: the offline learning phase refers to the phase when the prior knowledge is used to
warm-up the agent for its future interactions with the real model. The online learning phase,
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on the other hand, refers to the actual interactions between the agent and the model. In many
applications, interacting with the actual environment may be very costly (e.g. medical experi-
ments). In such cases, the experiments made during the online learning phase are likely to be
much more expensive than those performed during the offline learning phase.

Optimal policies in BRL setting are well-researched theoretically but are still computation-
ally intractable [3]. This is why all state-of-the-art BRL algorithms are just approximations,
and to increase their accuracy leads to longer computation times.

In this paper, we investigate how the way BRL algorithms use the available computation
time may impact online performances. To properly compare Bayesian algorithms, we designed
a comprehensive BRL benchmarking protocol, following the foundations of [4]. “Comprehen-
sive BRL benchmark” refers to a tool which assesses the performance of BRL algorithms over a
large set of problems that are actually drawn according to a prior distribution. In previous
papers addressing BRL, authors usually validate their algorithm by testing it on a few test prob-
lems, defined by a small set of predefined MDPs. For instance, SBOSS [5] and BFS3 [6] are vali-
dated on a fixed number of MDPs. In their validation process, the authors select a few BRL
tasks, for which they choose one arbitrary transition function, which defines the corresponding
MDP. Then, they define one prior distribution compliant with the transition function.

This type of benchmarking is problematic because it is biaised by the selection of MDPs.
For the same prior distribution, the relative performance of each algorithm may vary with
respect to this choice. A single algorithm can be the best approach for one MDP, but only the
second best one for another. Nevertheless, this approach is still appropriate in specific cases.
For example, it may happen when the prior distribution does not encode perfectly the prior
knowledge. A task implying human interactions can only be approximated by a MDP and
therefore, a prior distribution cannot be a perfect encoding of this prior knowledge. It would be
more relevant to compare the algorithms with respect to their performance on real human sub-
jects rather than approximated MDPs drawn from the prior distribution.

In this paper, we compare BRL algorithms in several different tasks. In each task, the real
transition function is defined using a random distribution, instead of being arbitrarily fixed.
Each algorithm is thus tested on an infinitely large number of MDPs, for each test case. A simi-
lar protocol has also been used in [7] for MDPs with a discrete and infinite state space and an
unknown reward function rather than an unknown transition function. To perform our experi-
ments, we developed the BBRL library, whose objective is to also provide other researchers
with our benchmarking tool.

This paper is organised as follows: Section 2 presents the problem statement. Section 3 for-
mally defines the experimental protocol designed for this paper. Section 4 briefly presents the
library. Section 5 shows a detailed application of our protocol, comparing several well-know
BRL algorithms on three different benchmarks. Section 6 concludes the study.

2 Problem Statement
This section is dedicated to the formalisation of the different tools and concepts discussed in
this paper.

2.1 Reinforcement Learning

LetM = (X, U, f(�), ρM, pM, 0(�), γ) be a given unknown MDP, where X ¼ fxð1Þ; . . . ; xðnX Þg
denotes its finite state space and U ¼ fuð1Þ; . . . ; uðnU Þg refers to its finite action space. When
the MDP is in state xt at time t and action ut is selected, the agent moves instantaneously to a
next state xt+1 with a probability of P(xt+1|xt, ut) = f(xt, ut, xt+1). An instantaneous deterministic,
bounded reward rt = ρM(xt, ut, xt+1) 2 [Rmin, Rmax] is observed.

Benchmarking for Bayesian Reinforcement Learning
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Let ht = (x0, u0, r0, x1, � � �, xt − 1, ut − 1, rt − 1, xt) 2H denote the history observed until time t.
An E/E strategy is a stochastic policy π which, given the current history ht, returns an action
ut* π(ht). Given a probability distribution over initial states pM, 0(�), the expected return of a
given E/E strategy π with respect to the MDPM can be defined as follows:

JpM ¼ E
x0�pM;0ð�Þ

½Rp
Mðx0Þ�;

whereRp
Mðx0Þ is the stochastic sum of discounted rewards received when applying the policy

π, starting from an initial state x0:

Rp
Mðx0Þ ¼

Xþ1

t¼0

gt rt:

RL aims to learn the behaviour that maximises JpM , i.e. learning a policy π
� defined as follows:

p� 2 arg max
p

JpM:

2.2 Prior Knowledge
In this paper, the actual MDP is assumed to be unknown. Model-based Bayesian Reinforce-
ment Learning (BRL) proposes to the model the uncertainty, using a probability distribution
p0Mð�Þ over a set of candidate MDPsM. Such a probability distribution is called a prior distri-
bution and can be used to encode specific prior knowledge available before interaction. Given a
prior distribution p0Mð�Þ, the expected return of a given E/E strategy π is defined as:

Jp
p0
M

ð�Þ ¼ E
M�p0

M
ð�Þ

JpM
� �

;

In the BRL framework, the goal is to maximise Jp
p0
M

ð�Þ, by finding π
�, which is called “Bayesian

optimal policy” and defined as follows:

p� 2 arg max
p

Jp
p0
M

ð�Þ:

2.3 Computation time characterisation
Most BRL algorithms rely on some properties which, given sufficient computation time, ensure
that their agents will converge to an optimal behaviour. However, it is not clear to know before-
hand whether an algorithm will satisfy fixed computation time constraints while providing
good performances.

The parameterisation of the algorithms makes the selection even more complex. Most BRL
algorithms depend on parameters (number of transitions simulated at each iteration, etc.)
which, in some way, can affect the computation time. In addition, for one given algorithm and
fixed parameters, the computation time often varies from one simulation to another. These fea-
tures make it nearly impossible to compare BRL algorithms under strict computation time con-
straints. In this paper, to address this problem, algorithms are run with multiple choices of
parameters, and we analyse their time performance a posteriori.

Furthermore, a distinction between the offline and online computation time is made. Off-
line computation time corresponds to the moment when the agent is able to exploit its prior
knowledge, but cannot interact with the MDP yet. One can see it as the time given to take the
first decision. In most algorithms concerned in this paper, this phase is generally used to initia-
lise some data structure. On the other hand, online computation time corresponds to the time
consumed by an algorithm for taking each decision.
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There are many ways to characterise algorithms based on their computation time. One can
compare them based on the average time needed per step or on the offline computation time
alone. To remain flexible, for each run of each algorithm, we store its computation times
(Bi) − 1�i, with i indexing the time step, and B−1 the offline learning time. Then a feature func-
tion ϕ((Bi)−1�i) is extracted from this data. This function is used as a metric to characterise and
discriminate algorithms based on their time requirements.

In our protocol, which is detailed in the next section, two types of characterisation are used.
For a set of experiments, algorithms are classified based on their offline computation time only,
i.e. we use ϕ((Bi)−1�i) = B−1. Afterwards, the constraint is defined as ϕ((Bi)−1 � i)� K, K> 0 in
case it is required to only compare the algorithms that have an offline computation time lower
than K.

For another set of experiments, algorithms are separated according to their empirical aver-
age online computation time. In this case, �ððBiÞ�1�iÞ ¼ 1

n

P
0�i<nBi. Algorithms can then be

classified based on whether or not they respect the constraint ϕ((Bi)−1�i)� K, K> 0.
This formalisation could be used for any other computation time characterisation. For

example, one could want to analyse algorithms based on the longest computation time of a tra-
jectory, and define ϕ((Bi)−1�i) = max−1�i Bi.

3 A new Bayesian Reinforcement Learning benchmark protocol

3.1 A comparison criterion for BRL
In this paper, a real Bayesian evaluation is proposed, in the sense that the different algorithms
are compared on a large set of problems drawn according to a test probability distribution.
This is in contrast with the Bayesian literature [5–7], where authors pick a fixed number of
MDPs on which they evaluate their algorithm.

Our criterion to compare algorithms is to measure their average rewards against a given
random distribution of MDPs, using another distribution of MDPs as a prior knowledge. In
our experimental protocol, an experiment is defined by a prior distribution p0Mð�Þ and a test
distribution pMð�Þ. Both are random distributions over the set of possible MDPs, not stochastic
transition functions. To illustrate the difference, let us take an example. Let (x, u, x0) be a transi-
tion. Given a transition function f: X × U × X! [0; 1], f(x, u, x0) is the probability of observing
x0 if we chose u in x. In this paper, this function f is assumed to be the only unknown part of
the MDP that the agent faces. Given a certain test case, f corresponds to a unique MDP
M 2 M. A Bayesian learning problem is then defined by a probability distribution over a set
M of possible MDPs. We call it a test distribution, and denote it pMð�Þ. Prior knowledge can
then be encoded as another distribution overM, and denoted p0Mð�Þ. We call “accurate” a
prior which is identical to the test distribution (p0Mð�Þ ¼ pMð�Þ), and we call “inaccurate” a
prior which is different (p0Mð�Þ 6¼ pMð�Þ).

In practice, the “accurate” case is optimistic in the sense that a perfect knowledge of the test
distribution is generally a strong assumption. We decided to include a more realistic setting
with the “inaccurate” case, by considering a test distribution slightly different from the prior dis-
tribution. This will help us to identify which algorithms are more robust to initialisation errors.

More precisely, our protocol can be described as follows: Each algorithm is first trained on
the prior distribution. Then, their performances are evaluated by estimating the expectation of
the discounted sum of rewards, when they are facing MDPs drawn from the test distribution.

Let J
pðp0

M
Þ

pM be this value:

J
pðp0

M
Þ

pM ¼ E
M�pM

J
pðp0

M
Þ

M

h i
; ð1Þ
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where pðp0MÞ is the algorithm π trained offline on p0M. In our Bayesian RL setting, we want to

find the algorithm π� which maximises J
pðp0

M
Þ

pM for the hp0M; pMi experiment:

p� 2 arg max
p

J
pðp0

M
Þ

pM : ð2Þ

In addition to the performance criterion, we also measure the empirical computation time.
In practice, all problems are subject to time constraints. Hence, it is important to take this
parameter into account when comparing different algorithms.

3.2 The experimental protocol
In practice, we can only sample a finite number of trajectories, and must rely on estimators to
compare algorithms. In this section our experimental protocol is described, which is based on
our comparison criterion for BRL and provides a detailed computation time analysis.

An experiment is defined by (i) a prior distribution p0M and (ii) a test distribution pM. Given
these, an agent is evaluated π as follows:

1. Train π offline on p0M.

2. Sample NMDPs from the test distribution pM.

3. For each sampled MDPM, compute estimate �J
pðp0MÞ
M of J

pðp0MÞ
M .

4. Use these values to compute an estimate �J
pðp0MÞ
pM .

To estimate J
pðp0

M
Þ

M , the expected return of agent π trained offline on p0M, one trajectory is

sampled on the MDPM, and the cumulated return is computed �J
pðp0

M
Þ

Mi
¼ R

pðp0
M

Þ
M ðx0Þ.

To estimate this return, each trajectory is truncated after T steps. Therefore, given an MDP

M and its initial state x0, we observe �R
pðp0

M
Þ

M ðx0Þ, an approximation ofR
pðp0

M
Þ

M ðx0Þ:

�R
pðp0

M
Þ

M ðx0Þ ¼
XT

t¼0

gtrt:

If Rmax denotes the maximal instantaneous reward an agent can receive when interacting
with an MDP drawn from pM, then choosing T as guarantees the approximation error is
bounded by � > 0:

T ¼
log �� ð1�gÞ

Rmax

� �
log g

6664
7775:

� = 0.01 is set for all experiments, as a compromise between measurement accuracy and com-
putation time.

Finally, to estimate our comparison criterion J
pðp0

M
Þ

pM , the empirical average of the algorithm
performance is computed over N different MDPs, sampled from pM:

�J
pðp0

M
Þ

pM ¼ 1

N

X
0�i<N

�J
pðp0

M
Þ

Mi
¼ 1

N

X
0�i<N

�R
pðp0

M
Þ

Mi
ðx0Þ ð3Þ

For each agent π, we retrieve mp ¼ �J pM and σπ, the empirical mean and standard deviation of
the results observed respectively. This gives us the following statistical confidence interval at
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95% for JpM :

JpM 2 �J pM � 2sp

N
; �J pM þ 2sp

N

� �
:

The values reported in the following figures and tables are estimations of the interval within
which JpM is, with probability 0.95.

As introduced in Section 2.3, in our methodology, a function ϕ of computation times is used
to classify algorithms based on their time performance. The choice of ϕ depends on the type of
time constraints that are the most important to the user. In this paper, we reflect this by show-
ing three different ways to choose ϕ. These three choices lead to three different ways to look at
the results and compare algorithms. The first one is to classify algorithms based on their offline
computation time, the second one is to classify them based on the algorithms average online
computation time. The third is a combination of the first two choices of ϕ, that we denote
ϕoff((Bi)−1�i) = B−1 and �onððBiÞ�1�iÞ ¼ 1

n

P
0�i<nBi. The objective is that for each pair of con-

straints ϕoff((Bi)−1�i)<K1 and ϕon((Bi)−1�i)< K2, K1, K2 > 0, we want to identify the best algo-
rithms that respect these constraints. In order to achieve this: (i) All agents that do not satisfy
the constraints are discarded; (ii) for each algorithm, the agent leading to the best performance
in average is selected; (iii) we build the list of agents whose performances are not significantly
different. This list is obtained by using a paired sampled Z-test with a confidence level of 95%,
allowing us to determine when two agents are statistically equivalent (more details in S3 File).

The results will help us to identify, for each experiment, the most suitable algorithm(s)
depending on the constraints the agents must satisfy. This protocol is an extension of the one
presented in [4].

4 BBRL library
BBRL (standing for Benchmaring tools for Bayesian Reinforcement Learning) is a C++ open-
source library for Bayesian Reinforcement Learning (discrete state/action spaces). This library
provides high-level features, while remaining as flexible and documented as possible to address
the needs of any researcher of this field. To this end, we developed a complete command-line
interface, along with a comprehensive website: https://github.com/mcastron/BBRL.

BBRL focuses on the core operations required to apply the comparison benchmark presented
in this paper. To do a complete experiment with the BBRL library, follow these five steps:

1. We create a test and a prior distribution. Those distributions are represented by Flat Dirich-
let Multinomial distributions (FDM), parameterised by a state space X, an action space U, a
vector of parameters θ, and reward function ρ. For more information about the FDM distri-
butions, check Section 5.2.
./BBRL-DDS --mdp_distrib generation \

--name <name> \
--short_name <short name> \
--n_states <nX> --n_actions <nU> \
--ini_state <x0> \
--transition_weights \
<θ(1)> � � � <θ(nX nU nX)> \

--reward_type “RT_CONSTANT” \
--reward_means \
<ρ(x(1), u(1), x(1))> � � � <ρ(x(nX), u(nU), x(nX))> \

--output <output file>
A distribution file is created.

Benchmarking for Bayesian Reinforcement Learning
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2. We create an experiment. An experiment is defined by a set of NMDPs, drawn from a test
distribution defined in a distribution file, a discount factor γ and a horizon limit T.
./BBRL-DDS --new_experiment \

--name <name> \
--mdp_distribution “DirMultiDistribution” \

--mdp_distribution_file <distribution file> \
--n_mdps <N> --n_simulations_per_mdp 1 \
--discount_factor <γ> --horizon_limit <T> \
--compress_output \
--output <output file>

An experiment file is created and can be used to conduct the same experiment for several
agents.

3. We create an agent. An agent is defined by an algorithm alg, a set of parameters ψ, and a
prior distribution defined in a distribution file, on which the created agent will be trained.
./BBRL-DDS --offline_learning \

--agent <alg> [<parameters ψ>] \
--mdp_distribution “DirMultiDistribution”]

--mdp_distribution_file <distribution file> \
--output <output file> \

An agent file is created. The file also stores the computation time observed during the offline
training phase.

4. We run the experiment. We need to provide an experiment file, an algorithm alg and an
agent file.
./BBRL-DDS --run experiment \

--experiment \
--experiment_file <experiment file> \

--agent <alg> \
--agent_file <agent file> \

--n_threads 1 \
--compress_output \
--safe_simulations \
--refresh_frequency 60 \
--backup_frequency 900 \
--output <output file>

A result file is created. This file contains a set of all transitions encountered during each tra-
jectory. Additionally, the computation times we observed are also stored in this file. It is
often impossible to measure precisely the computation time of a single decision. This is why
only the computation time of each trajectory is reported in this file.

5. Our results are exported. After each experiment has been performed, a set of K result files is
obtained. We need to provide all agent files and result files to export the data.
./BBRL-export --agent <alg(1)> \

--agent_file <agent file #1> \
--experiment \

--experiment file <result file #1> \
. . .

--agent <alg(K)> \
--agent_file <agent file #K> \

Benchmarking for Bayesian Reinforcement Learning
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--experiment \
--experiment_file <result file #K>

BBRL will sort the data automatically and produce several files for each experiment.

• A graph comparing offline computation cost w.r.t. performance;

• A graph comparing online computation cost w.r.t. performance;

• A graph where the X-axis represents the offline time bound, while the Y-axis represents the
online time bound. A point of the space corresponds to set of bounds. An algorithm is asso-
ciated to a point of the space if its best agent, satisfying the constraints, is among the best
ones when compared to the others;

• A table reporting the results of each agent.

BBRL will also produce a report file in LATEX gathering the 3 graphs and the table for each
experiment.

More than 2.000 commands have to be entered in order to reproduce the results of this
paper. We decided to provide several Lua script in order to simplify the process. By completing
some configuration files, which are illustrated by Figs 1 and 2, the user can define the agents,
the possible values of their parameters and the experiments to conduct.

Those configuration files are then used by a script called make_scripts.sh, included
within the library, whose purpose is to generate four other scripts:

• 0-init.sh
Create the experiment files, and create the formulas sets required by OPPS agents.

• 1-ol.sh
Create the agents and train them on the prior distribution(s).

Fig 1. Example of a configuration file for the agents.

doi:10.1371/journal.pone.0157088.g001
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• 2-re.sh
Run all the experiments.

• 3-export.sh
Generate the LATEX reports.

Due to the high computation power required, we made those scripts compatible with work-
load managers such as SLURM. In this case, each cluster should provide the same amount of
CPU power in order to get consistent time measurements. To sum up, when the configuration
files are completed correctly, one can start the whole process by executing the four scripts, and
retrieve the results in nice LATEX reports.

It is worth noting that there is no computation budget given to the agents. This is due to the
diversity of the algorithms implemented. No algorithm is “anytime” natively, in the sense that
we cannot stop the computation at any time and receive an answer from the agent instantly.
Strictly speaking, it is possible to develop an anytime version of some of the algorithms consid-
ered in BBRL. However, we made the choice to stay as close as possible to the original algo-
rithms proposed in their respective papers for reasons of fairness. In consequence, although
computation time is a central parameter in our problem statement, it is never explicitly given
to the agents. We instead let each agent run as long as necessary and analyse the time elapsed
afterwards.

Another point which needs to be discussed is the impact of the implementation of an algo-
rithm on the comparison results. For each algorithm, many implementations are possible,
some being better than others. Even though we did our best to provide the best possible imple-
mentations, BBRL does not compare algorithms but rather the implementations of each algo-
rithms. Note that this issue mainly concerns small problems, since the complexity of the
algorithms is preserved.

5 Illustration
This section presents an illustration of the protocol presented in Section 3. We first describe
the algorithms considered for the comparison in Section 5.1, followed by a description of the
benchmarks in Section 5.2. Section 5.3 shows and analyses the results obtained.

5.1 Compared algorithms
In this section, we present the list of the algorithms considered in this study. The pseudo-code
of each algorithm can be found in S1 File. For each algorithm, a list of “reasonable” values is
provided to test each of their parameters. When an algorithm has more than one parameter, all
possible parameter combinations are tested, even for those which do not use the offline phase

Fig 2. Example of a configuration file for the experiments.

doi:10.1371/journal.pone.0157088.g002
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explicitly. We considered that tuning their parameters with an optimisation algorithm chosen
arbitrarily would not be fair for both offline computation time and online performance.

5.1.1 Random. At each time-step t, the action ut is drawn uniformly from U.
5.1.2 �-Greedy. The �-Greedy agent maintains an approximation of the current MDP and

computes, at each time-step, its associated Q-function. The selected action is either selected
randomly (with a probability of � (1	 �	 0), or greedily (with a probability of 1 − �) with
respect to the approximated model.

Tested values:

• � 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

5.1.3 Soft-max. The Soft-max agent maintains an approximation of the current MDP and
computes, at each time-step, its associated Q-function. The selected action is selected ran-
domly, where the probability to draw an action u is proportional to Q(xt, u). The temperature
parameter τ allows to control the impact of the Q-function on these probabilities (τ! 0+:
greedy selection; τ! +1: random selection).

Tested values:

• τ 2 {0.05, 0.10, 0.20, 0.33, 0.50, 1.0, 2.0, 3.0, 5.0, 25.0}.

5.1.4 OPPS. Given a prior distribution p0Mð:Þ and an E/E strategy space S (either discrete or
continuous), the Offline, Prior-based Policy Search algorithm (OPPS) identifies a strategy p� 2
S which maximises the expected discounted sum of returns over MDPs drawn from the prior.

The OPPS for Discrete Strategy spaces algorithm (OPPS-DS) [4, 8] formalises the strategy
selection problem as a k-armed bandit problem, where k ¼ jSj. Pulling an arm amounts to
draw an MDP from p0Mð:Þ, and play the E/E strategy associated to this arm on it for one single
trajectory. The discounted sum of returns observed is the return of this arm. This multi-armed
bandit problem has been solved by using the UCB1 algorithm [9, 10]. The time budget is
defined by a variable β, corresponding to the total number of draws performed by the UCB1.

The E/E strategies considered by Castronovo et. al are index-based strategies, where the
index is generated by evaluating a small formula. A formula is a mathematical expression, com-
bining specific features (Q-functions of different models) by using standard mathematical
operators (addition, subtraction, logarithm, etc.). The discrete E/E strategy space is the set of all
formulas which can be built by combining at most n features/operators (such a set is denoted
by Fn).

OPPS-DS does not come with any guarantee. However, the UCB1 bandit algorithm used to
identify the best E/E strategy within the set of strategies provides statistical guarantees that the
best E/E strategies are identified with high probability after a certain budget of experiments.
However, it is not clear that the best strategy of the E/E strategy space considered yields any
high-performance strategy regardless the problem.

Tested values:

• S 2 fF2 ðk ¼ 12Þ; F3 ðk ¼ 43Þ; F4 ðk ¼ 226Þ; F5 ðk ¼ 1210Þ; F6 ðk ¼ 7407Þg,
• β 2 {50, 500, 1250, 2500, 5000, 10000, 100000, 1000000}.

5.1.5 BAMCP. Bayes-adaptive Monte Carlo Planning (BAMCP) [7] is an evolution of the
Upper Confidence Tree (UCT) algorithm [11], where each transition is sampled according to
the history of observed transitions. The principle of this algorithm is to adapt the UCT princi-
ple for planning in a Bayes-adaptive MDP, also called the belief-augmented MDP, which is an
MDP obtained when considering augmented states made of the concatenation of the actual
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state and the posterior. The BAMCP algorithm is made computationally tractable by using a
sparse sampling strategy, which avoids sampling a model from the posterior distribution at
every node of the planification tree. Note that the BAMCP also comes with theoretical guaran-
tees of convergence towards Bayesian optimality.

In practice, the BAMCP relies on two parameters: (i) Parameter K which defines the num-
ber of nodes created at each time-step, and (ii) Parameter depth which defines the depth of the
tree from the root.

Tested values:

• K 2 {1, 500, 1250, 2500, 5000, 10000, 25000},

• depth 2 {15, 25, 50}.

5.1.6 BFS3. The Bayesian Forward Search Sparse Sampling (BFS3) [6] is a Bayesian RL
algorithm whose principle is to apply the principle of the FSSS (Forward Search Sparse Sam-
pling, see [12] algorithm to belief-augmented MDPs. It first samples one model from the poste-
rior, which is then used to sample transitions. The algorithm then relies on lower and upper
bounds on the value of each augmented state to prune the search space. The authors also show
that BFS3 converges towards Bayes-optimality as the number of samples increases.

In practice, the parameters of BFS3 are used to control how much computational power is
allowed. The parameter K defines the number of nodes to develop at each time-step, C defines
the branching factor of the tree and depth controls its maximal depth.

Tested values:

• K 2 {1, 500, 1250, 2500, 5000, 10000},

• C 2 {2, 5, 10, 15},

• depth 2 {15, 25, 50}.

5.1.7 SBOSS. The Smarter Best of Sampled Set (SBOSS) [5] is a Bayesian RL algorithm
which relies on the assumption that the model is sampled from a Dirichlet distribution. From
this assumption, it derives uncertainty bounds on the value of state action pairs. It then uses
those bounds to decide how many models to sample from the posterior, and how often the pos-
terior should be updated in order to reduce the computational cost of Bayesian updates. The
sampling technique is then used to build a merged MDP, as in [13], and to derive the corre-
sponding optimal action with respect to that MDP. In practice, the number of sampled models
is determined dynamically with a parameter �. The re-sampling frequency depends on a
parameter δ.

Tested values:

• � 2 {1.0, 1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5, 1e − 6},

• δ 2 {9, 7, 5, 3, 1, 1e − 1, 1e − 2, 1e − 3n1e − 4, 1e − 5, 1e − 6}.

5.1.8 BEB. The Bayesian Exploration Bonus (BEB) [14] is a Bayesian RL algorithm which
builds, at each time-step t, the expected MDP given the current posterior. Before solving this

MDP, it computes a new reward function rðtÞ
BEBðx; u; yÞ ¼ rMðx; u; yÞ þ b

c
ðtÞ
<x;u;y>

, where cðtÞ<x;u;y>

denotes the number of times transition< x, u, y> has been observed at time-step t. This algo-
rithm solves the mean MDP of the current posterior, in which we replaced ρM(�, �, �) by
rðtÞ
BEBð�; �; �Þ, and applies its optimal policy on the current MDP for one step. The bonus β is a
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parameter controlling the E/E balance. BEB comes with theoretical guarantees of convergence
towards Bayesian optimality.

Tested values:

• β 2 {0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 8, 16}.

5.1.9 Computation times variance. Each algorithm has one or more parameters that can
affect the number of sampled transitions from a given state, or the length of each simulation.
This, in turn, impacts the computation time requirement at each step. Hence, for some algo-
rithms, no choice of parameters can bring the computation time below or over certain values.
In other words, each algorithm has its own range of computation time. Note that, for some
methods, the computation time is influenced concurrently by several parameters. We present a
qualitative description of how computation time varies as a function of parameters in Table 1.

5.2 Benchmarks
In our setting, the transition matrix is the only element which differs between twoMDPs drawn
from the same distribution. For each< state, action> pair< x, u>, we define a Dirichlet distri-
bution, which represents the uncertainty about the transitions occurring from< x, u>. A Dirich-
let distribution is parameterised by a set of concentration parameters að1Þ<x;u> > 0; . . . ; aðnX Þ

<x;u> > 0.

We gathered all concentration parameters in a single vector θ. Consequently, our MDP dis-
tributions are parameterised by ρM (the reward function) and several Dirichlet distributions,
parameterised by θ. Such a distribution is denoted by prM ;θð�Þ. In the Bayesian Reinforcement
Learning community, these distributions are referred to as Flat Dirichlet Multinomial distribu-
tions (FDMs).

We chose to study two different cases:

• Accurate case: the test distribution is fully known (p0Mð:Þ ¼ pMð:Þ),
• Inaccurate case: the test distribution is unknown (p0Mð:Þ 6¼ pMð:Þ).

In the inaccurate case, we have no assumption on the transition matrix. We represented this
lack of knowledge by a uniform FDM distribution, where each transition has been observed
one single time (θ = [1, � � � , 1]).

Sections 5.2.1, 5.2.2 and 5.2.3 describes the three distributions considered for this study.

Table 1. Influence of the algorithm and their parameters on the offline and online phases duration.

Offline phase
duration

Online phase duration

Random Almost instantaneous. Almost instantaneous.

�-Greedy Almost instantaneous. Varies in inverse proportion to �.
Can vary a lot from one step to another.

OPPS-DS Varies proportionally to
β.

Varies proportionally to the number of features implied in the
selected E/E strategy.

BAMCP Almost instantaneous. Varies proportionally to K and depth.

BFS3 Almost instantaneous. Varies proportionally to K, C and depth.

SBOSS Almost instantaneous. Varies in inverse proportion to � and δ.
Can vary a lot from one step to another, with a general decreasing
tendency.

BEB Almost instantaneous. Constant.

doi:10.1371/journal.pone.0157088.t001
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5.2.1 Generalised Chain distribution ðprGC ;θGC ð�ÞÞ. The Generalised Chain (GC) distribu-
tion is inspired from the five-state chain problem (5 states, 3 actions) [15]. The agent starts at
State 1, and has to go through State 2, 3 and 4 in order to reach the last state (State 5), where
the best rewards are. The agent has at its disposal 3 actions. An action can either let the agent
move from State x(n) to State x(n+1) or force it to go back to State x(1). The transition matrix is
drawn from a FDM parameterised by θGC, and the reward function is denoted by ρGC. Fig 3
illustrates the distribution and more details can be found in S2 File.

5.2.2 Generalised Double-Loop distribution ðprGDL ;θGDLð�ÞÞ. The Generalised Double-
Loop (GDL) distribution is inspired from the double-loop problem (9 states, 2 actions) [15].
Two loops of 5 states are crossing at State 1, where the agent starts. One loop is a trap: if the
agent enters it, it has no choice to exit but crossing over all the states composing it. Exiting this
loop provides a small reward. The other loop is yielding a good reward. However, each action
of this loop can either let the agent move to the next state of the loop or force it to return to
State 1 with no reward. The transition matrix is drawn from an FDM parameterised by θGDL,
and the reward function is denoted by ρGDL. Fig 4 illustrates the distribution and more details
can be found in S2 File.

5.2.3 Grid distribution ðprGrid ;θGrid ð�ÞÞ. The Grid distribution is inspired from the Dear-
den’s maze problem (25 states, 4 actions) [15]. The agent is placed at a corner of a 5x5 grid (the
S cell), and has to reach the opposite corner (the G cell). When it succeeds, it returns to its ini-
tial state and receives a reward. The agent can perform 4 different actions, corresponding to the

Fig 3. Illustration of the GC distribution.

doi:10.1371/journal.pone.0157088.g003

Fig 4. Illustration of the GDL distribution.

doi:10.1371/journal.pone.0157088.g004
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4 directions (up, down, left, right). However, depending on the cell on which the agent is, each
action has a certain probability to fail, and can prevent the agent to move in the selected direc-
tion. The transition matrix is drawn from an FDM parameterised by θGrid, and the reward
function is denoted by ρGrid. Fig 5 illustrates the distribution and more details can be found in
S2 File.

5.3 Discussion of the results
5.3.1 Accurate case. As it can be seen in Fig 6, OPPS is the only algorithm whose offline

time cost varies. In the three different settings, OPPS can be launched after a few seconds, but
behaves very poorly. However, its performances increased very quickly when given at least one
minute of computation time. Algorithms that do not use offline computation time have a wide
range of different scores. This variance represents the different possible configurations for
these algorithms, which only lead to different online computation time.

On Fig 7, BAMCP, BFS3 and SBOSS have variable online time costs. BAMCP behaved
poorly on the first experiment, but obtained the best score on the second one and was pretty
efficient on the last one. BFS3 was good only on the second experiment. SBOSS was never able
to get a good score in any cases. Note that OPPS online time cost varies slightly depending on
the formula’s complexity.

If we take a look at the top-right point in Fig 8, which defines the less restrictive bounds, we
notice that OPPS-DS and BEB were always the best algorithms in every experiment. �-Greedy
was a good candidate in the two first experiments. BAMCP was also a very good choice except
for the first experiment. On the contrary, BFS3 and SBOSS were only good choices in the first
experiment.

If we look closely, we can notice that OPPS-DS was always one of the best algorithm since
we have met its minimal offline computation time requirements.

Moreover, when we place our offline-time bound right under OPPS-DS minimal offline
time cost, we can see how the top is affected from left to right:

Fig 5. Illustration of the Grid distribution.

doi:10.1371/journal.pone.0157088.g005
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Fig 6. Offline computation cost Vs. Performance (accurate case).

doi:10.1371/journal.pone.0157088.g006
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Fig 7. Online computation cost Vs. Performance (accurate case).

doi:10.1371/journal.pone.0157088.g007
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Fig 8. Best algorithms w.r.t offline/online time periods (accurate case).

doi:10.1371/journal.pone.0157088.g008
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GC: (Random), (SBOSS), (BEB, �-Greedy), (BEB, BFS3, �-Greedy),

GDL: (Random), (Random, SBOSS), (�-Greedy), (BEB, �-Greedy),
(BAMCP, BEB, �-Greedy),

Grid: (Random), (SBOSS), (�-Greedy), (BEB, �-Greedy).

We can clearly see that SBOSS was the first algorithm to appear on the top, with a very
small online computation cost, followed by �-Greedy and BEB. Beyond a certain online time
bound, BFS3 emerged in the first experiment while BAMCP emerged in the second experi-
ment. Neither of them was able to compete with BEB or �-Greedy in the last experiment.

Soft-max was never able to reach the top regardless the configuration.
Fig 9 reports the best score observed for each algorithm, disassociated from any time mea-

sure. Note that the variance is very similar for all algorithms in GDL and Grid experiments. On
the contrary, the variance oscillates between 1.0 and 2.0. However, OPPS seems to be the less
stable algorithm in the three cases.

5.3.2 Inaccurate case. As seen in the accurate case, Fig 10 also shows impressive perfor-
mances for OPPS-DS, which has beaten all other algorithms in every experiment. We can also
notice that, as observed in the accurate case, in the Grid experiment, the OPPS-DS agents
scores are very close. However, only a few were able to significantly surpass the others, contrary
to the accurate case where most OPPS-DS agents were very good candidates.

Surprisingly, SBOSS was a very good alternative to BAMCP and BFS3 in the two first exper-
iments as shown in Fig 11. It was able to surpass both algorithms on the first one while being
very close to BAMCP performances in the second. Relative performances of BAMCP and BFS3
remained the same in the inaccurate case, even if the BAMCP advantage is less visible in the
second experiment. BEB was no longer able to compete with OPPS-DS and was even beaten by
BAMCP and BFS3 in the last experiment. �-Greedy was still a decent choice except in the first
experiment. As observed in the accurate case, Soft-max was very bad in every case.

In Fig 12, if we take a look at the top-right point, we can see OPPS-DS is the best choice in
the second and third experiment. BEB, SBOSS and �-Greedy share the first place with
OPPS-DS in the first one.

If we place our offline-time bound right under OPPS-DS minimal offline time cost, we can
see how the top is affected from left to right:

GC: (Random), (Random, SBOSS), (SBOSS), (BEB, SBOSS, �-Greedy),
(BEB, BFS3, SBOSS, �-Greedy),

GDL: (Random), (Random, SBOSS), (BAMCP, Random, SBOSS),
(BEB, SBOSS, �-Greedy), (BEB, BFS3, SBOSS, �-Greedy),
(BAMCP, BEB, BFS3, SBOSS, �-Greedy),

Grid: (Random),
(Random, SBOSS), (BAMCP, BEB, BFS3, Random, SBOSS),
(�-Greedy).

SBOSS is again the first algorithm to appear in the rankings. �-Greedy is the only one which
could reach the top in every case, even when facing BAMCP and BFS3 fed with high online
computation cost. BEB no longer appears to be undeniably better than the others. Besides, the
two first experiments show that most algorithms obtained similar results, except for BAMCP
which does not appear on the top in the first experiment. In the last experiment, �-Greedy suc-
ceeded to beat all other algorithms.

Fig 13 does not bring us more information than those we observed in the accurate case.
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5.3.3 Summary. In the accurate case, OPPS-DS was always among the best algorithms, at
the cost of some offline computation time. When the offline time budget was too constrained
for OPPS-DS, different algorithms were suitable depending on the online time budget:

• Low online time budget: SBOSS was the fastest algorithm to make better decisions than a
random policy.

Fig 9. Best algorithms w.r.t Performance (accurate case).

doi:10.1371/journal.pone.0157088.g009
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Fig 10. Offline computation cost Vs. Performance (inaccurate case).

doi:10.1371/journal.pone.0157088.g010
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Fig 11. Online computation cost Vs. Performance (inaccurate case).

doi:10.1371/journal.pone.0157088.g011
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Fig 12. Best algorithms w.r.t offline/online time periods (inaccurate case).

doi:10.1371/journal.pone.0157088.g012
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• Medium online time budget: BEB reached performances similar to OPPS-DS on each
experiment.

• High online time budget: In the first experiment, BFS3 managed to catch up BEB and
OPPS-DS when given sufficient time. In the second experiment, it was BAMCP which has

Fig 13. Best algorithms w.r.t Performance (inaccurate case).

doi:10.1371/journal.pone.0157088.g013
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achieved this result. Neither BFS3 nor BAMCP was able to compete with BEB and OPPS-DS
in the last experiment.

The results obtained in the inaccurate case were very interesting. BEB was not as good as it
seemed to be in the accurate case, while SBOSS improved significantly compared to the others.
For its part, OPPS-DS obtained the best overall results in the inaccurate case by outperforming
all the other algorithms in two out of three experiments while remaining among the best ones
in the last experiment.

6 Conclusion
We have proposed a BRL comparison methodology which takes into account both perfor-
mance and time requirements for each algorithm. In particular, our benchmarking protocol
shows that no single algorithm dominates all other algorithms on all scenarios. The protocol
we introduced can compare any time algorithm to non-anytime algorithms while measuring
the impact of inaccurate offline training. By comparing algorithms on large sets of problems,
we provided a fair comparison reflecting the efficiency of each algorithm to exploit the prior
knowledge. We have also considered an “inaccurate” case, which allows us to identify which
algorithms recover quickly from errors in the prior distribution. Our methodology is associated
with an open-source library, BBRL, and we hope that it will help other researchers to design
algorithms whose performances are put into perspective with computation times, that may be
critical in many applications. This library is specifically designed to handle new algorithms eas-
ily, and is provided with a complete and comprehensive documentation website.
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