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Abstract

Background: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a
lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis,
which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces
endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until
the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work
has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional
(macrophages) and non-professional (epithelial) phagocytic cells. However, the mechanism by which cholesterol-enriched
microdomains participate in this process has remained unclear.

Methodology/Principal Finding: In the present work we show that cardiomyocytes treated with MbCD, a drug able to
sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a
decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from
host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome
exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MbCD treated cells led to a
change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably
compromises the intracellular pool of lysosomes necessary for T. cruzi invasion.

Conclusion/Significance: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic
events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The
results also suggest that two different pools of lysosomes are available in the cell and that cholesterol depletion may
modulate the fusion of pre-docked lysosomes at the cell cortex.
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Introduction

Trypanosoma cruzi, the etiological agent of Chagas’ disease, is a

protozoan parasite capable of invading several types of non-

professional phagocytic cells including fibroblasts, endothelial cells,

and myocytes [1,2]. Invasion occurs when parasite attaches to and

stimulates host cell, leading to intracellular calcium signaling

events that culminate with lysosome recruitment and fusion with

the host cell plasma membrane and formation of the parasito-

phorous vacuole [3,4,5]. Several factors, such as parasite

membrane proteins and proteins shed or secreted by the parasite,

are known to interact with host cell membrane receptors during

the T. cruzi entry process into host cells [6,7,8,9,10,11]. Therefore,

host cell plasma membrane plays an important role in T. cruzi

adhesion and internalization, and modulates intracellular signaling

events that are imperative for a successful infection of host cells by

the parasite.

The host cell plasma membrane is a complex structure formed

by a fluid and dynamic lipid bilayer to which various proteins and

ligands with different biological functions are associated [12]. It is

well established that the plasma membrane is not a homogeneous

structure. On the contrary, the plasma membrane not only

presents an asymmetric lipid distribution over its exoplasmic and

cytoplasmic leaflets [13], but also shows inhomogeneities in the
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lateral distribution of lipids. In 1997, these lateral asymmetries

were well described by Simons and Ikonen as sphingolipids and

cholesterol-enriched microdomains known as lipid rafts [14].These

microdomains are likely to be kept together due to lateral

association between carbohydrate heads of glycosphingolipids

and the presence of cholesterol molecules filling the empty area

between those lipids. Several proteins were also identified inside

lipid rafts: e.g., GPI- anchored proteins, transmembrane proteins,

and tyrosin kinases among others [15,16,17]. Due to their specific

characteristics, lipid rafts play several roles in cell signaling,

molecular organization and membrane trafficking [18]. Beyond

these cellular functions, several works show that these micro-

domains are also involved in internalization of pathogens like

virus, bacteria and protozoans [19,20,21]. Recently, two indepen-

dent groups have shown that cholesterol-enriched regions might

be involved in T. cruzi entry into host cells [22,23]. According to

these authors, cholesterol localized in cell membranes contributes

significantly to the infectivity of metacyclic trypomastigotes and

extracellular amastigotes in non-professional phagocytic cells

(Vero and HeLa cells [23]), or to the infectivity of tissue culture

trypomastigotes in professional phagocytic cells [22]. In both

works, methyl-beta cyclodextrin (MbCD) depletion of host cell

membrane cholesterol considerably reduced parasite infectivity.

However, the mechanism by which cholesterol-enriched mem-

brane microdomains contribute to infectivity of T. cruzi was not

elucidated.

It is well established that several proteins and receptors

associated with lipid rafts are responsible for triggering intracel-

lular signaling cascades [24]. T. cruzi interaction with host cells also

evokes various host signaling events that culminate with

recruitment and fusion of lysosomes with the plasma membrane

and the subsequent formation of a viable parasitophorous vacuole,

without which parasites are able to escape from its host cell

[3,4,5,25]. SNARE complex proteins (Soluble N-ethylmaleimide-

sensitive factor Attachment protein Receptor), SNAP-23 (Synaptosome-

Associated Proteins) and Syntaxin 4 at the plasma membrane and

VAMP-7 on lysosomal membranes, have been shown to

coordinate lysosome fusion with plasma membrane [26]. Interest-

ingly, it has been demonstrated that SNARE protein complexes

are preferentially localized in lipid rafts [27,28,29].

Since lysosomal fusion is essential for the successful invasion of

T. cruzi into host cells and signaling proteins, as well as proteins of

the SNARE complex, reside in rafts, we decided to evaluate if

altering the concentration and distribution of cholesterol interferes

with the T. cruzi invasion process and if these changes affected the

lysosomal fusion events during this process. We tested this by

sequestering the cholesterol from cell membranes of primary

mouse cardiomyocytes with MbCD before exposure to T. cruzi

trypomastigotes. Our results show that the diminishment of T.

cruzi entry into host cells after cholesterol sequestration is a

consequence of the reduction in lysosomal recruitment during the

formation of the parasitophorous vacuole. We then demonstrate

that this decrease in lysosome recruitment and fusion during

parasite entry into host cells is a consequence of unregulated

lysosomal exocytosis events, which reduce the number of

lysosomal vesicles that are normally localized near the cell cortex

and available for the formation of the parasitophorous vacuole.

Methods

Ethics statement
All animals were maintained in our animal facilities in

compliance with the guidelines of the UFMG (Universidade

Federal de Minas Gerais) ethics committee for the use of

laboratory animals (protocol 45/2009 approved by CETEA-

UFMG) and are in accordance with CONCEA, the Brazilian

institution that regulates animal husbandry.

Cells and parasites
Primary cultures of murine neonatal cardiomyocytes were

prepared from fifteen neonatal (1–3 day old) Swiss mice. After

euthanization by decapitation hearts were removed aseptically and

kept on ice in Hanks’ balanced salt solution (HBSS) (Sigma-

Aldrich) (pH 7.4). Hearts were washed three times with fresh ice-

cold HBSS, minced into small fragments and washed twice during

mincing. Cardiac tissue was first dissociated overnight at 4uC in an

enzymatic solution containing 0.05% (vol/vol) trypsin-EDTA

0.25% (Sigma-Aldrich) in HBSS and then trypsin was inhibited

with 1 mL of soybean trypsin inhibitor (Sigma-Aldrich), 1 mg/mL

in HBSS. Next, samples were submitted to a second dissociation

step with 5 mL collagenase type 2 (Worthington), 1 mg/mL in

Leibovitz medium (Sigma-Aldrich). The cell suspension was

filtered through a 70 mm cell strainer and then centrifuged at

300 g for 5 minutes. The pellet containing dissociated cells was

resuspended in high-glucose DMEM (Invitrogen), supplemented

with 10% (vol/vol) fetal bovine serum (FBS) and 1% (vol/vol)

penicillin/streptomycin (100 U/mL/100 mg/mL) (Invitrogen).

The cell suspension was pre-plated for 2 hours at 37uC in a 5%

CO2 incubator in order to remove most fibroblasts and other non-

muscle cells. Supernatant enriched in cardiomyocytes was then

collected and seeded at a density of 1,06105 cells/well onto 24-

well plates containing round coverslips pre-treated with fibronectin

(Sigma-Aldrich). Cells were incubated at 37uC in a humidified

atmosphere containing 5% CO2 for 72 hours before experimental

procedures. New cultures were prepared for each experiment.

Tissue culture trypomastigotes from T. cruzi (T. cruzi TCTs), Y

strain, were obtained from the supernatant of infected monolayers

of the LLC-MK2 cell line and purified as described previously

[30].

Author Summary

Trypanosoma cruzi, is the etiological agent of a neglected
tropical malady known as Chagas’ disease, which affects
about 8 million people in Latin America. 30–40% of
affected individuals develop a symptomatic chronic
infection, with cardiomyopathy being the most prevalent
condition. T. cruzi utilizes an interesting strategy for
entering cells: T. cruzi enhances intracellular calcium levels,
which in turn trigger the exocytosis of lysosomal contents.
Lysosomes then donate their membrane for the formation
of the parasitophorous vacuole. Membrane rafts, choles-
terol-enriched microdomains in the host cell plasma
membrane, have also been implicated in T. cruzi invasion
process. Since both plasma membrane and lysosomes
collaborate in parasite invasion, we decided to study the
importance of these membrane domains for lysosomal
recruitment and fusion during T. cruzi invasion into host
cells. Our results show that drug dependent depletion of
plasma membrane cholesterol changes raft organization
and induces excessive lysosome exocytosis in the earlier
stages of treatment, leading to a depletion of lysosomes
near the cell cortex, which in turn compromises T. cruzi
invasion. Based on these results, we propose that
cholesterol depletion leads to unregulated exocytic events
of pre-docked lysosomes, reducing lysosome availability at
the cell cortex and consequently compromising T. cruzi
infection.

Cholesterol, Exocytosis and T. cruzi Entry

www.plosntds.org 2 March 2012 | Volume 6 | Issue 3 | e1583



Cell treatment
For cholesterol depletion from host cell plasma membrane,

cardiomyocytes were washed three times with phosphate buffered

saline containing Ca2+ and Mg2+ (PBS+/+) and incubated in high-

glucose DMEM containing different concentrations of methyl-beta

cyclodextrin (MbCD) (Sigma-Aldrich) for 45 minutes at 37uC.

Alternatively, cells were incubated in high-glucose DMEM

containing different concentrations of hydroxypropyl-gamma

cyclodextrin (HcCD) (Sigma-Aldrich), an inactive analog of

MbCD which does not release cholesterol from cells in significant

amounts as an internal control. After drug treatment, monolayers

were washed three times with PBS+/+ and used in the different

experimental procedures.

Cholesterol repletion was performed by incubating cells,

previously treated with the highest concentration of MbCD, in

high-glucose DMEM containing 0.05 mM of water soluble

cholesterol (WSC) (Sigma-Aldrich), for 30 minutes at 37uC.

Cell invasion assays
Cardiomyocyte cultures pre-treated or not with MbCD were

exposed to purified T. cruzi TCTs ressuspended in high-glucose

DMEM at a multiplicity of infection (MOI) of 50. The infection

was performed for 40 minutes at 37uC. After infection, monolay-

ers were washed at least four times with PBS+/+ and fixed in 4%

(wt/vol) paraformaldehyde (Sigma-Aldrich)/PBS+/+. After fixa-

tion, cells were processed for immunofluorescence or other

labeling.

Immunocytochemistry
After treatment, infection and fixation, coverslips containing

attached cells were washed with PBS+/+, incubated for 20 min

with PBS+/+ containing 2% bovine serum albumin (BSA) (Sigma-

Aldrich) and processed for an inside/outside immunofluorescence

invasion assay as described previously [30]. Briefly, cells were fixed

and extracellular parasites were immunostained using a 1:500

dilution of rabbit anti-T. cruzi polyclonal antibodies in PBS

containing 2% BSA (PBS/BSA) followed by labeling with Alexa

Fluor-546 conjugated anti-rabbit IgG antibody (Invitrogen).

After extracellular parasite staining, cells were permeabilized

using a solution containing 2% BSA and 0.5% saponin (Sigma-

Aldrich) in PBS (PBS/BSA/saponin) for 20 minutes. Host cell

lysosomes were then immunostained using a 1:50 dilution of rat

anti-mouse LAMP-1 hybridoma supernatant (1D4B; Develop-

mental Studies Hybridoma Bank, USA) in PBS/BSA/saponin for

45 minutes followed by labeling with Alexa Fluor-488 conjugated

anti-rat IgG antibody (Invitrogen), as described previously [3].

Subsequently, the DNA of both host cells and parasites were

stained for 1 min with 10 mM of DAPI (Sigma-Aldrich), mounted

with ProLong Gold antifade reagent (Molecular Probes), and

examined on a Zeiss Axioplan microscope equipped with an oil

immersion objective (1006, 1,3 NA) and with an Axiocam HRC

camera controlled by Axiovision Software (Zeiss).

Cell surface area for the different conditions (treated or not with

MbCD or HcCD) was determined using a plasma membrane

labeling agent, CellMask orange plasma membrane stain (Invitro-

gen), according to manufacturer instructions. Briefly, control non-

treated cardiomyocytes, as well as cardiomyocytes treated with

either 15 mM MbCD, 15 mM HcCD or 15 mM MbCD followed

by incubation with 0.05 mM of WSC, were washed with PBS+/+
and incubated with a solution of 5 mg/mL CellMask in DMEM

without serum for 5 minutes, at 37uC. After this period, cells were

fixed in a solution of 4% paraformaldehyde in fresh media for

10 minutes, at 37uC. Coverslips were then washed three times

with PBS+/+ and mounted using antifade medium. Images were

collected immediately afterwards using an Olympus FV300

confocal/WX61WI microscope system (Figure S1).

Filipin and GM1 labeling
After cholesterol depletion and repletion, cells were fixed and

labeled with either Filipin III (Sigma-Aldrich) or subunit B of

cholera toxin-Alexa Fluor 488 (CTXb) (Sigma-Aldrich) for

detection of plasma membrane cholesterol and GM1 ganglioside,

respectively, as described previously [23]. Briefly, after cholesterol

depletion/replenishment cells were washed and fixed with

paraformaldehyde as described above. After fixation, cells were

permeabilized with PGN solution (PBS+/+, 0.15% gelatin and

0.1% sodium azide) containing 0.1% saponin for 15 minutes.

Following permeabilization, cells were labeled with CTXb (1 mg/

mL) diluted in PGN for 30 minutes. Cells labeled with CTXb

were analyzed using the confocal microscope system described

above. Images were collected and analyzed using Fluoview version

5.0. In order to visualize the distribution of cholesterol in cell

plasma membrane, fixed cells were labeled with both Filipin III

(for cholesterol detection) (100 mg/mL in PGN) and DAPI (for

nuclei staining) and examined on a Zeiss Axioplan microscope

equipped with an Axiocam HRC camera controlled by Axiovision

Software (Zeiss). For quantitative assays of cholesterol depletion/

repletion, only Filipin III was stained. Images of 10 fields/coverslip

were collected with an oil immersion objective (1006, 1,3 NA),

using the same CCD exposure time and illumination intensity and

then analyzed using the ImageJ image processing program

(http://rsb.info.nih.gov/ij/) for fluorescence quantification. Four

equal squared areas were chosen in each image and the

fluorescence intensity of each area was determined. These values

were then used to calculate the average fluorescence of each image

and then of each experimental group.

b-hexosaminidase secretion assay
To evaluate the level of lysosomal exocytosis after treatment

with MbCD, a time dependent b-hexosaminidase secretion assay

was performed according to previous work [31]. Briefly cells were

exposed to 10 mM MbCD or HcCD for different incubation

periods in the presence or absence of calcium. In the latter calcium

was substituted by the same concentration of Mg2+ and EGTA

was also added. After drug incubation, 350 mL of extracellular

media was collected and adhered cells were lysed using 1% Triton

x-100 (Sigma-Aldrich) in PBS. Extracellular media and lysates

were incubated with 50 mL of b-hexosaminidase substrate,

6 mM 4-methylumbelliferyl-N-acetyl-B-D-glucosaminide (Sigma-

Aldrich), dissolved in Na-citrate-PO4 buffer (pH 4.5). Reactions

were stopped by adding 100 mL of Stop Solution (2 M Na2CO3-

H2O, 1.1 M glycin) and read at excitation 365 nm and emission

450 nm in a spectrofluorimeter (Synergy 2, Biotek in the Center of

Flow Cytometry and Fluorimetry, Department of Biochemistry

and Immunology, ICB-UFMG).

Cell viability assay
After incubation with either 10 mM MbCD or HcCD for

45 minutes, or with 10 mM Ionomycin for 10 minutes, in the

presence or absence of calcium, cardiomyocytes were trypsinized,

pelleted and incubated with Hypotonic Fluorochrome Solution

(HFS - 50 mg/mL Propidium Iodide (PI) in 0.1% sodium citrate)

for 4 hours at 4uC protected from light. This assay was performed

in order to quantify cell death after drug treatment according to

previous work [32]. The PI fluorescence of 20,000 individual cells

was measured using a Becton Dickinson FACscan (BD Bioscienc-

es, USA) and data were analyzed using the Cell Quest Pro

software (BD Biosciences, USA).

Cholesterol, Exocytosis and T. cruzi Entry
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Lysosomal dispersion analysis
Using a set of images, obtained from treated and non-treated

cells with labeled nuclei and lysosomes, we analyzed the mean

lysosome distance relative to the mean center position in the

respective nuclei. For each image (associated with a specific drug

treatment), we visually selected a number of isolated nuclei, and

using its borders’ positions (i.e., the image’s [X,Y] coordinates), we

computed the mean center position and the mean radius (namely

R) of each nucleus.

A computational code has been written using the IDL

(Interactive Data Language) programming language in order to

assist in these calculations. Subsequently, using the (X,Y) position

of each lysosome distributed around each nucleus, the distances to

the center were calculated. An average distance (namely D) was

computed by using the distances of each lysosome relative to the

center. Lysosomes farther than 2 radii from cell center were

excluded from the computation of this average value. Finally, the

mean lysosome distance (D) relative to the mean nucleus’ radius

(R) was defined as the ratio D/R. This procedure was repeated for

the maximum number of isolated cells available from the image

sets of each drug treatment. The results of this analysis are a

distribution of D/R values associated to each drug treatment, and

are represented as histograms.

Statistical analysis
All experiments were performed in triplicate and repeated at

least three times. For Filipin labeling, one-way ANOVA followed

by post- hoc comparison Newman-Keuls was performed to

evaluate statistically significant differences. For invasion assays, a

minimum of 200 cells was counted per coverslip and analyzed

using the Student’s t-test. For histogram distributions, the

cumulative frequency was calculated and analyzed using the

Kolmogorov-Smirnov statistical test.

Results

MbCD treatment does reduce the amount of membrane
bound cholesterol

Before investigating the influence of cholesterol removal in

invasion of cardiomyocytes by T. cruzi TCTs, we tested whether

MbCD treatment was able to sequester cholesterol from cultured

murine cardiomyocyte membranes. Cells treated with different

concentrations of MbCD were stained with Filipin III, a sterol-

binding fluorescent polyene, which is able to bind to cholesterol

present in the plasma membrane [33]). Fluorescence microscopy

images of cells pre-treated with 15 mM of MbCD (Fig. 1B) show

decreased staining with Filipin when compared to control cells

(Fig. 1A), confirming the removal of cholesterol upon drug

treatment. Addtionally, if MbCD treated cultures were incubated

with 0.05 mM of water soluble cholesterol (WSC) diluted in serum

free media, causing membrane cholesterol to be replenished,

surface staining with Filipin was recovered (Fig. 1C). Quantitative

assays, using the ImageJ program to quantify fluorescence

intensity, were also performed to measure cell staining with Filipin

III before and after treatment with MbCD, as well as upon

cholesterol depletion and repletion. As was seen for the qualitative

assays, Filipin staining of cholesterol decreased upon treatment

with increasing concentrations of MbCD (Fig. 1D). A small

reduction was observed upon treatment with 5 mM of the drug,

increasing to 30% after treatment with a concentration of 15 mM.

Cholesterol replenishment with WSC reverted the process,

showing an increase in cell staining as a consequence of the

increase in membrane bound cholesterol.

Cholesterol depletion diminishes T. cruzi cell invasion
into primary neonatal murine cardiomyocytes

Previous studies have shown that host cell cholesterol-enriched

microdomains play a significant role in the adhesion and

internalization of T. cruzi TCTs in professional phagocytic cells

[22], as well as T. cruzi metacyclic trypomastigotes or extracellular

amastigotes forms in non-professional phagocytic cells [23]. Since

T. cruzi TCT invasion into non-professional phagocytic cells, such

as cardiomyocytes, is an important event during clinical infection,

in the present work we first investigated whether host cell

cholesterol was also relevant in cell invasion of this T. cruzi form

into cultured, primary neonatal murine cardiomyocytes.

Previously plated cells were incubated with 10 or 15 mM of

MbCD for 45 minutes at 37uC (i.e., conditions known to be

effective in membrane cholesterol removal [31]), followed by a

40 minute exposure to T. cruzi TCTs. As observed before for

macrophages [22], we determined that cholesterol depletion from

murine cardiomyocytes membranes also leads to a reduction in T.

cruzi TCT invasion (Fig. 2A and C). Upon treatment with 10 mM

or 15 mM MbCD, a reduction of 85–90% in T. cruzi cell invasion

was observed (Fig. 2A). As a control for MbCD treatment, cells

were treated with the same concentrations of HcCD, a

cyclodextrin analog of MbCD with low affinity for cholesterol.

HcCD-treated cells did not show any differences in T. cruzi cell

invasion as compared to control non-treated cells (Fig. 2A and C).

Plus, reduction in the number of invading T. cruzi TCTs after

MbCD treatment did not appear to be the result of host cell death

upon drug treatment since the total number of cardiomyocytes per

10 fields in all conditions tested was not statistically different from

each other (Fig. 2A, number above bars).

T. cruzi cell invasion is re-established after membrane
cholesterol replenishment

To address whether the reduced T. cruzi invasion observed after

host cell treatment with MbCD was really due to cholesterol

removal from host cell membrane, cells pre-treated with the drug

were subsequently incubated with WSC, an exogenous source of

cholesterol which replenishes membrane cholesterol, washed with

PBS and then exposed to T. cruzi TCTs. T. cruzi invasion into

cholesterol-replenished cells was similar to that observed for non-

treated control cells (Fig. 2A and C).

Cholesterol depletion diminishes T. cruzi association with
lysosomes during invasion into cardiomyocytes

In order to understand why cholesterol depletion was leading to

a reduction in T. cruzi internalization, we investigate whether

association between host cell lysosomes and T. cruzi was altered by

MbCD incubation since this organelle is crucial for a successful

parasite invasion [3,4,5,25]. Untreated control cells, or cells

treated with MbCD in different concentrations, were exposed to

T. cruzi TCTs for 40 min., washed with PBS, fixed and submitted

to the inside/outside parasite staining method, as well as labeled

with LAMP-1 antibody for lysosomal membrane detection.

Cholesterol removal from host cell membrane upon treatment

with MbCD not only diminished host-cell invasion by the parasite

(Fig. 2A and C), but also reduced the number of internalized

parasites that had acquired lysosomal markers (Fig. 2B and C).

Pre-treatment of cardiomyocytes with 10 mM MbCD caused a

60% reduction in the number of internalized parasites co-

localizing with LAMP-1 (Fig. 2B). Moreover, increasing concen-

tration of MbCD decreased both the number of internalized

parasites (Fig. 2A), as well as the number of parasites co-localizing

with the lysosomal marker in a dose-dependent manner (Fig. 2B).

Cholesterol, Exocytosis and T. cruzi Entry
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15 mM of MbCD led to a reduction of 75% of lysosomal

association with internalized trypomastigotes. Cells treated with

HcCD, the inactive analog of MbCD, on the other hand, showed

no statistically significant difference in T. cruzi invasion (Fig. 2A) or

association of T. cruzi with host cell lysosomes when compared to

control non-treated cells (Fig. 2B and C). Cholesterol replenish-

ment not only re-established the ability of T. cruzi to invade host

cells (Fig. 2A and C), but also elevated T. cruzi association with

host cell lysosomes to values comparable with control non-treated

cells (Fig. 2B and C).

Cholesterol depletion reduces membrane raft labeling in
cardiomyocytes

In order to evaluate how cholesterol depletion affected

membrane raft organization, cardiomyocytes, which had their

membrane cholesterol removed by treatment with 10 or 15 mM of

MbCD, were fixed and labeled with subunit B of cholera toxin

(CTXb). Subunit B of cholera toxin is a homopentamer that binds

to GM1, a ganglioside that resides in membrane rafts, on the

extracellular leaflet of plasma membrane [34,35,36]. Cells treated

with 10 or 15 mM of HcCD or with 15 mM of MbCD, followed

by cholesterol replenishment with 0.05 mM of WSC, were likewise

stained. Cells with intact membrane cholesterol content show a

more intense GM1 labeling, especially of larger lipid rafts (Fig. 3A)

in comparison to cholesterol-depleted cells (Fig. 3B). In cardio-

myocytes treated with HcCD (Fig. 3C), raft labeling was similar to

control cells. In cholesterol-replenished cells (Fig. 3D), some

cardiomyocytes retained a labeling pattern similar to that of

cholesterol-depleted cells (arrows), while others showed a staining

pattern more similar to untreated controls (asterisks). Therefore,

MbCD treatment not only induced cholesterol sequestration from

cell membranes, but also interfered with membrane raft

organization in cardiomyocytes, which could not be totally

recovered by cholesterol replenishment.

Figure 1. MbCD treatment is effective in sequestering cholesterol from the plasma membrane. (A) Control, (B) 15 mM MbCD treated and
(C) 15 mM MbCD followed by 0.05 mM WSC treated cardiomyocytes show significant changes in Filipin labeling. Cholesterol-depleted cells (B) reveal
very little Filipin labeling, whereas cholesterol-replenished cells show strong labeling for cholesterol, similar to control cells. (D) Cardiomyocytes
treated with 5, 10 or 15 mM of MbCD reveal a substantial decrease in Filipin labeling in a dose-dependent manner whereas cholesterol replenishment
with 0.05 mM of WSC returns Filipin fluorescence to control values. Normalized data are shown as mean of triplicates 6SD. Asteriks indicate
statistically significant differences (* p , 0.05 and ** p , 0.01, One way ANOVA followed by Newman-Keuls) between control and treated cells. Scale
bar: 10 mm.
doi:10.1371/journal.pntd.0001583.g001

Cholesterol, Exocytosis and T. cruzi Entry

www.plosntds.org 5 March 2012 | Volume 6 | Issue 3 | e1583



Figure 2. T. cruzi invasion of cells and association with LAMP-1 in cardiomyocytes decreases after cholesterol depletion.
Cardiomyocytes pre-treated or not with different cyclodextrins were washed and challenged with T. cruzi trypomastigotes at a M.O.I of 50, for
40 minutes at 37uC, then fixed and processed for immunofluorescence detection of total intracellular parasites, as well as intracellular parasites
associated with LAMP-1 (a lysosomal marker). Both T. cruzi internalization (A) and association with host LAMP-1 (B) diminishes after incubation with
10 and 15 mM of MbCD but not after treatment with 10 and 15 mM of HcCD. Cholesterol replenishment after treatment with 15 mM MbCD reverts
the effect of the drug on parasite cell invasion (A), and at least partially on LAMP-1 association (B). The average number of cardiomyocytes 6SD per
10 counted fields in each coverslip is shown above the bars (A). Data are shown as mean of triplicates 6SD. Asteriks indicate statistically significant
differences (p , 0.05, Student’s t test) between control and treated cells. (C) Representative panels of T. cruzi invasion and association with host cell
lysosomes, revealed by immunocytochemistry. Total cell and parasite nuclei, as well as parasite kinteoplast DNA were labeled with DAPI; lysosomes
were labeled with anti-LAMP 1 antibody followed by secondary IgG labeled with Alexa Fluor 488; extracellular parasites in the field were labeled with
anti-T.cruzi antibody followed by secondary IgG labeled with Alexa Fluor 546. From top to bottom: control cells, 15 mM MbCD treated cells, 15 mM
HcCD treated cells and 15 mM MbCD treated cells followed by incubation with 0.05 mM of WSC. Blue arrows show total T. cruzi trypomastigotes in
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Cholesterol depletion causes lysosomal exocytosis in
cardiomyocytes

Lysosomal fusion with the plasma membrane (lysosomal

exocytosis), which occurs during T. cruzi entry into host cells, is

an event regulated by calcium and proteins from the SNARE

complex, in a mechanism similar to the fusion of synaptic vesicles

with the pre-synaptic membrane [26,37]. Depletion of cholesterol

from the membrane has been shown to alter synaptic vesicle fusion

with the plasma membrane leading to unregulated events of vesicle

exocytosis [38]. In order to verify the behavior of lysosomal

exocytosis in cholesterol-depleted cells, we performed a time-

dependent assay in which the activity of beta-hexosaminidase, an

enzyme resident within lysosomes, was measured in the extracel-

lular media of cultured cells. Cardiomyocytes were incubated with

10 mM of either MbCD or HcCD and both the extracellular

media and cell lysates of treated cells were incubated with a

fluorescent substrate of beta-hexosaminidase. Non-treated and

Ionomycin (an ionophore, which allows calcium influx into cells

and induces lysosomal exocytosis [39]) treated cells were used as

negative and positive controls, respectively. Experiments were

performed in the presence or absence of calcium. Figure 4 shows

that cardiomyocytes treatment with MbCD leads to lysosomal

exocytosis events. As early as 10 minutes after the addition of the

drug, in the presence of calcium, the rate of lysosomal exocytosis in

cardiomyocytes was 3.5 times higher than control non-treated cells

(Fig. 4). The levels were even higher the longer the incubation

period with the drug. After 20 or 40 minutes of exposure with the

drug the exocytosis level was about 5.5 times higher than control

non-treated cells (Fig. 4). On the other hand, treatment with

HcCD, the control drug, did not induce expressive exocytosis of

the field, yellow ellipsoids show lysosomal associated trypomastigotes, red triangles points out extracellular trypomastigotes and the last column
shows the merge of the three previous. Scale bar: 10 mm.
doi:10.1371/journal.pntd.0001583.g002

Figure 3. Treatment with MbCD leads to changes in membrane raft organization of cardiomyocytes. Confocal images of control (A) and
cardiomyocytes pre-treated with 10 mM MbCD (B) or HcCD (C). Cells were washed, fixed and then labeled with CTXb-Alexa 488, which recognizes
GM1, a raft marker. In comparison to control cells, which show a homogenous strong labeling for GM1, cholesterol-depleted cardiomyocytes reveals a
more discrete labeling. Cells treated with HcCD show GM1 labeling similar to control cells whereas cholesterol-replenished cells (D) exhibit both
patterns of cholesterol-depleted (arrows) as well as control (asterisks) GM1 labeling. Scale bar: 0.9 mm.
doi:10.1371/journal.pntd.0001583.g003
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lysosomal vesicles in cardiomyocytes (Fig. 4). To test whether these

events were occurring spontaneously without calcium regulation,

as was the case for synaptic vesicles, the same assay was performed

in the absence of calcium and presence of the same concentration

of magnesium. The extracellular calcium chelator, EGTA, did not

inhibit lysosomal exocytosis induced by the incubation with

MbCD. On the contrary, it seemed to slightly enhance exocytosis

(Fig. 4).

To confirm that the high levels of beta-hexosaminidase

observed in the extracellular media of MbCD treated cells were

the result of triggered lysosomal exocytosis and not a consequence

of cell injury upon treatment, a cell viability assay was performed.

Cardiomyocytes treated or not with MbCD/HcCD were

trypsinized and incubated with HFS solution, containing PI

(propidium iodide), a nuclei dye impermeable to cell membranes.

Negative controls (untreated cardiomyocytes) and positive controls

(ionomycin treated cells) were also analyzed. Figure 5 shows that

treatment with MbCD did not interfere with cell viability either in

the presence or in the absence of calcium (Fig. 5). As expected,

treatment with HcCD also did not lead to cell death.

Cholesterol depletion changes lysosomal distribution in
cardiomyocytes

In order to understand the effect of exocytosis triggered by

cholesterol removal from cell membranes on lysosomal distribu-

tion, images from cells submitted or not to treatment with MbCD,

HcCD or MbCD + WSC and labeled with both DAPI (nuclei dye)

and anti-LAMP-1 (lysosomal marker) were collected. Representa-

tive images of each condition are shown in figure 6. Qualitative

analyses of the images revealed a more restricted distribution of

lysosomes, closer to the cell nuclei, in cells treated with 10 mM or

15 mM MbCD (Fig. 6B and C), in comparison to control non-

treated cells (Fig. 6A) or cells treated with HcCD, the MbCD

inactive analog (Fig. 6D and E). Cholesterol replenishment after

MbCD treatment seemed to revert the distribution of lysosomes to

a pattern similar to the control non-treated cells (Fig. 6F). In order

to precisely determine these differences, the same images were

used to perform a quantitative assay of lysosomal dispersion

(Fig. 7). First, for each isolated nucleus, the mean radius (R). was

calculated. The next step was to select each lysosome associated

with its respective nucleus and to measure the mean distance

between a lysosome and cell center (D). Finally, the mean

lysosome distance (D) relative to the mean nucleus’ radius (R) was

defined as the ratio D/R, where values closer to one indicate

lysosomes are closer to perinuclear region whereas the opposite

indicate lysosomes are more frequent at cell borders. This ratio D/

R was measured for several groups of lysosomes associated with

each nucleus in the different treatments. The results of this analysis

are distributions of D/R values associated to each drug treatment,

and are represented as histograms in Figure 7. Gaussian fits from

control cells show that the majority of lysosomes are preferentially

localized at ratio 1.3 from cell center whereas the peak of Gaussian

fits from 10 mM MbCD treated cells show a ratio of 1.2 (Fig. 7A).

The same pattern is seen upon treatment with higher concentra-

tions of the drug (Fig. 7B). Moreover, lysosomes at higher ratios, in

other words more distant from the cell nuclei, are mostly found in

control non-treated cells, with none or only a few found in MbCD

treated cells (Fig. 7A and B). On the other hand, no difference in

lysosomal distribution was observed when cells were treated with

10 or 15 mM of HcCD as compared to control non-treated cells

(Fig. 7C and 7D). Finally, cholesterol replenishment after MbCD

treatment was able to, at least in part, revert lysosomal dispersion

to a pattern more similar to control cells (Fig. 7E). Cumulative

frequencies of lysosomes (Fig. 7F) from the histograms of figures 7A

to E were plotted and analyzed using Kolmogorov-Smirnov

statistical test. Statistically significant differences were only

observed between 10 or 15 mM of MbCD treated and control

non-treated cells. 10 and 15 mM HcCD or 15 mM of MbCD +
WSC treated cells presented cumulative frequencies similar to

control non-treated group. In order to prove that this rearrange-

ment in lysosome distribution was not a consequence of cell

surface area decrease upon cholesterol removal from plasma

membrane, cells were treated or not with MbCD or its inactive

Figure 4. MbCD but not HcCD cell incubation leads to
lysosomal exocytosis in cardiomyocytes. Cardiomyocytes were
exposed to either 10 mM MbCD or HcCD for 10, 20 or 40 minutes at
37uC, in the absence (white bars) or presence (black bars) of calcium.
Both extracellular media and lysates were collected and exposed to 4-
methylumbelliferyl-N-acetyl-B-D-glucosaminide, the fluorescent sub-
strate of beta-hexosaminidase, an enzyme resident within lysosomes.
Results are shown as ratio between b-hexosaminidase activity in
extracellular media and total b-hexosaminidase activity (extracellular
media over extracellular media plus b- hexosaminidase cell lysate
hexosaminidase activity). Cells treated with 10 mM Ionomycin (Calbio-
chem) for 10 minutes were used as lysosomal exocytosis positive
control. Data are shown as mean of triplicates 6SD. Asteriks indicate
statistically significant differences (p , 0.05,Student’s t test) between
control and treated cells.
doi:10.1371/journal.pntd.0001583.g004

Figure 5. Lysosomal exocytosis events after cholesterol
depletion are not due to cell death. After treatment with MbCD
or HcCD, in the absence (white bars) or presence (black bars) of calcium,
cardiomyocytes were trypsinized, collected and incubated with HFS
solution, containing propidium iodide (PI). Cells that became inviable
after drug treatment acquired PI labeling in their nuclei due to
membrane permeability, and were counted as dead cells by flow
cytometer. Data are shown as mean of triplicates 6SD.
doi:10.1371/journal.pntd.0001583.g005
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analog, HcCD, as well as MbCD + WSC, and labeled with the

plasma membrane stain, CellMask (Invitrogen). Images were

collected and cell surface area measured using the ImageJ

software. No difference in cell surface area was found among the

distinct groups (Supplementary Fig. 1).

Discussion

Two different groups have previously demonstrated the

participation of cholesterol and membrane rafts as ‘‘hot spots’’

for T. cruzi entry into host cells [22,23]. In 2007 Fernandes and co-

workers showed that cholesterol and membrane rafts participate in

the internalization of metacyclic trypomastigotes and extracellular

amastigotes from two different strains, CL and G, into non-

professional phagocytic cells. In this same year, Barrias and co-

workers verified the participation of membrane rafts in the

internalization of T. cruzi TCTs in phagocytic cells (murine

peritoneum macrophages). However, in both studies it was not

clear how cholesterol and/or rafts participated in the process of

parasite entry into host cells. In the present work we show the

participation of cholesterol in T. cruzi TCT entry into non-

professional phagocytic cells and, most importantly, the mecha-

nism by which plasma membrane cholesterol interferes with

parasite invasion into non-professional phagocytic cells.

In order to investigate the participation of cholesterol in T. cruzi

TCT invasion of non-professional phagocytic cells, we pre-treated

cells with different concentrations of MbCD followed by invasion

assays with T. cruzi. Cyclodextrins, like MbCD, are oligosaccha-

rides constituted by glucopyranose units that are linked by a-(1-4)

bonds [40]. These compounds are broadly used as liposoluble

Figure 6. Cholesterol depletion leads to changes in lysosomal distribution within cells. Representative panels of lysosomal distribution in
control cardiomyocyte (A) and cardiomyocytes pre-treated either with 10 mM (B) or 15 mM MbCD (C), 10 mM or (D) 15 mM HcCD (E), or 15 mM
MbCD followed by 0.05 mM WSC (F). MbCD treated cardiomyocytes show significant changes in lysosomal dispersion in cell cytoplasm. After drug
treatment, cells were washed and incubated with T. cruzi TCTs, M.O.I. of 50 parasites per cell for 40 minutes at 37uC. After cell invasion, cells were
washed, fixed and immunostained for LAMP-1 (green) DAPI (blue) and analyzed under fluorescence microscope. In comparison to untreated
cardiomyocytes (A), which exhibit homogenous and well distributed LAMP-1 labeling, MbCD treated cardiomyocytes, (B) and (C), show a
heterogeneous LAMP-1 labeling with lysosomes localized predominantly near cell nuclei. On the other hand, HcCD treated cardiomyocytes and
cholesterol-replenished cells, (E), (F) and (D), present lysosomal distribution similar to control cells. Scale bar: 10 mm.
doi:10.1371/journal.pntd.0001583.g006
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drug carriers since they are soluble in water and have a

hydrophobic core in which non-soluble substances are transported

[41]. b-cyclodextrins, especially MbCD, present a higher affinity

for cholesterol as compared to the a and c cyclodextrins, [42].

Labeling MbCD treated cardiomyocytes with Filipin III (a

fluorophore with high affinity for cholesterol) confirmed the ability

of the drug to remove cholesterol from cell membranes.

As previously shown for the metacyclic trypomastigotes and

extracellular amastigotes forms of T. cruzi, we showed that a

reduction in host cell surface cholesterol decreases the rate of

invasion of non-professional phagocytic cells by T. cruzi TCTs,

even though these forms of the parasite present different surface

molecules and consequently stimulate cells by distinct mechanisms

[43]. This effect on TCT host cell entry was indeed due to

cholesterol removal from host cell plasma membrane, since

invasion assays with cells previously treated with HcCD, an

inactive analog of MbCD which presents very low affinity for

cholesterol, did not change the parasite invasion profile in

comparison to control untreated cells. Also, host cell viability

was not compromised after treatment as shown by a cell viability

assay, confirming that the observed reduction in host cell invasion

levels was not a result of cell loss due to drug treatment. Moreover,

cholesterol replenishment after cell treatment with MbCD re-

established invasion to control levels. Together, these results

Figure 7. MbCD but not HcCD cell treatment leads to diminishment in lysosomal distribution near cell cortex. Quantitative analysis of
lysosomal distribution, relative to cell nuclei, in 10 mM MbCD (A), 15 mM MbCD (B), 10 mM HcCD (C), 15 mM HcCD (D) or 15 mM MbCD followed by
incubation with 0.05 mM WSC (E), treated cardiomyocytes in comparison to control non-treated cells. The mean distance between a lysosome and its
respective cell center is represented by letter (D) and the mean lysosome distance (D) relative to the mean nucleus’ radius (R) was defined as the ratio
D/R. Ratio values closer to one indicate lysosomes are close to perinuclear region whereas the opposite indicate lysosomes are more frequent at cell
borders. This ratio D/R was measured for several groups of lysosomes associated with each nucleus in the different treatments. The results of this
analysis are distributions of D/R values associated to each drug treatment, and are represented as histograms. The histogram for each specific drug
treatment is represented with a blue dashed line, which is superposed to the control (non-treated) lysosomal distribution, represented with a red
solid thick line. Overlaid Gaussian fits to each distribution were added in order to highlight the main statistical trend of each diagram. The x-axis of
each graph represents the ratio D/R whereas the y-axis represents the percentage of analyzed nuclei from each treatment normalized by total cell
number. (F) Cumulative frequency of the histograms. Purple plus signs represent MbCD 10 mM treated cells, dark green rectangles represent MbCD
15 mM treated cells, blue crosses represent HcCD 10 mM treated cells, light green circles represent HcCD 15 mM treated cells, brown diamonds
represent cells replenished with cholesterol after previous depletion and red continuous line represent control untreated cells. The Kolmogorov-
Smirnov (KS) statistical test was performed to compare the cumulative frequency distributions. Statistically significant differences were obtained for
MbCD 10 mM 0.02% (p = 0.0002) or MbCD 15 mM 0.03% (p = 0.0003) treated cells in relation to control, but not for HcCD 10 mM 79.49% (p = 0.7949),
HcCD 15 mM 86.03% (p = 0.8603), or MbCD 15 mM + WSC 6.44% (p = 0.0644) treated cells in relation to control.
doi:10.1371/journal.pntd.0001583.g007
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undoubtedly show that cholesterol is also important for T. cruzi

TCT entry into cardiomyocytes and that this model can be used to

investigate the role of cholesterol in this process. We found that the

low invasion rate of T. cruzi into cholesterol-depleted cells was

accompanied by a diminishment in lysosome recruitment, which is

required for the formation of the parasitophorous vacuole.

Lysosome recruitment and fusion has been shown to be essential

not only for inducing parasite internalization, but also for holding

T. cruzi inside host cells [3,44]. Fusion of lysosomes with host cell

plasma membrane induced by T. cruzi leads to a compensatory

endocytic pathway that drives parasites into cells [44]. Parasites

are known to tightly interact with parasitophorous vacuolar

membrane, probably through lysosomal integral membrane

proteins such as LAMP [45,46]. Membrane fusion events, such

as synaptic vesicle and lysosomal exocytosis as well as other types

of vesicle secretion, are regulated by calcium and occur through a

mechanism dependent on proteins from the SNARE complex

[26,47,48]. It is well known from microscopy studies that these

proteins concentrate in submicrometre-sized, cholesterol-depen-

dent clusters, such as membrane rafts, at which sites vesicles fuse

[27,28]. Since membrane rafts are cholesterol-enriched micro-

domains (about 50% of total cellular cholesterol) located in cell

plasma membrane [42] and cholesterol removal from cell

membranes induces changes in raft organization and function

[49,50,51], it is possible that the effect of cholesterol removal on T.

cruzi entry was a consequence of the disruption of these

microdomains. GM1 labeling, a known raft marker, has

demonstrated that MbCD treatment of cardiomyocytes leads to

changes in raft organization in these cells, suggesting a role not

only for cholesterol but also for membrane raft microdomains in

TCT’s invasion of non-professional phagocytic cells. Raft

disorganization, on the other hand, could alter membrane fusion

events, by changing SNARE proteins distribution and/or

function, disturbing the exocytic events regulated by these

proteins. In fact, cholesterol removal led to massive non-regulated

lysosomal exocytosis events, which occurred in the absence of

calcium, suggesting that disruption of raft organization de-

regulates lysosomal exocytosis. Corroborating this idea, it has

been demonstrated for neuronal exocytosis that SNARE localiza-

tion in rafts work as negative regulators of secretion and reducing

SNAP 23 partitioning to raft sites enhanced vesicle exocytosis [52].

Interestingly, SNAP 23 is one of the SNARE complex proteins

involved in lysosomal fusion events [26]. Similar exocytic events,

triggered by treatment with MbCD, have already been demon-

strated in other animal models. Zamir and Charlton (2006) [53],

analyzing neuromuscular junctions in crayfish, realized that

treatment with 10 mM MbCD induced a 5-fold increase in the

rate of spontaneous miniature excitatory post synaptic potentials

(mEPSPs), as a consequence of unregulated, calcium independent,

synaptic vesicle fusion events. Other authors have also shown

changes in vesicle secretion upon cholesterol removal from plasma

membrane [38,54,55,56]. Recently, Chen and co-workers study-

ing cells derived from a mouse model of Niemann-Pick disease (a

disorder characterized by a massive accumulation of lipids,

including cholesterol, in the endosomal/lysosomal system) have

shown that treatment with hydroxypropyl-b-cyclodextrin (HPb-

CD), a cyclodextrin similar to MbCD, leads to lysosomal

exocytosis, as early as 15 minutes post exposure to the drug

[57]. This result corroborates our data since cell incubation with

MbCD also led to lysosomal exocytosis at early time points.

However, contrary to what was observed by these authors,

lysosomal exocytosis triggered by incubation with MbCD in

cardiomyocytes is independent of extracellular calcium. It is still

possible though that intracellular calcium is responsible for these

exocytic events. Another possibility, since HPb-CD and MbCD

differ in their efficiency of extracting cell membrane cholesterol, is

that the effect of these drugs on exocytosis might be different [42].

In fact, it has been shown that the effect of MbCD on spontaneous

release of synaptic vesicles, generating mEPSPs in neuromuscular

junctions, occurs in the absence of intracellular and extracellular

calcium [53].

Finally, since our data shows that lysosomal exocytosis

happened in the early stages of MbCD treatment, one could

assume that a significant reduction in lysosomal reservoir occurred

during the period of drug incubation. Quantitative analysis of

lysosomal distribution in cells before and after cholesterol

depletion showed that control cells have their lysosomal pool well

distributed throughout the cell cytosol, with vesicles around the

perinuclear and cell cortex area (Fig. 6A, qualitative image).

However, when cholesterol is sequestered by MbCD, only the

lysosomes near the perinuclear area remain (compare Fig. 6A and

B), without a change in cell surface area upon treatment (Figure

S1). Based on these results it is plausible to assume that cholesterol

depletion evokes exocytosis of docked lysosomes localized near the

cell cortex. Taken together, these data suggest the existence of two

independent lysosomal pools (one near the cell surface and another

in the perinuclear area), which might be differentially regulated.

The docked lysosomes near the cell surface would then represent

the pool triggered by T. cruzi and therefore involved in the exocytic

events that initiate its internalization process. Without enough

lysosomes available at the cell surface for fusion and formation of

the parasitophorous vacuole, T. cruzi entry is compromised.

We cannot discard however that reduction in membrane

cholesterol content and its consequent raft disorganization may

also affect intracellular signaling pathways [58,59,60]. Therefore,

receptors present in membrane rafts, which might be important

for recognition and signal transduction during T. cruzi interaction

and internalization into host cells, may have their functions

attenuated or compromised and consequently affect parasite

invasion rates. In this sense the diminishment in T. cruzi

association with lysosomes observed upon treatment with MbCD

could be also partly due to the compromised function of these

receptors. Studies are being carried out to evaluate these

possibilities.

Supporting Information

Figure S1 Cholesterol depletion does not change the cell
area of cardiomyocytes. (A) Representative figure of control,

15 mM MbCD, 15 mM HcCD and cholesterol-replenished cells

labeled with CellMask Orange plasma membrane stain. Briefly,

cardiomyocytes were treated with the cyclodextrins, washed and

incubated with a 5 mg/mL solution of CellMask in fresh medium

for 5 minutes, at 37uC. After that period, cells were fixed for

10 minutes, at 37uC, washed and mounted with antifade medium

and analyzed immediately in a confocal microscope. (B)

Histograms showing distributions of cell areas for different

treatments (MbCD 15 mM- black squares line; HcCD 15 mM-

blue square-traces line and MbCD 15 mM followed by 0.05 mM

WSC- green rectangles line in comparison to control cells (red

continuous line). In the cumulative frequence distributions,

statistical KS test results shows that control vs MbCD 15 mM is

14.8% (p = 0.148); control vs HcCD 15 mM is 14.3% (p = 0.143)

and control vs WSC treated cells is 55.5% (p = 0.555). Altogether

this statistical analysis shows that there are no differences between

areas in control or cyclodextrin treated cells.

(TIF)
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