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ABSTRACT

Despite exhaustively informing about steady-state
mRNA abundance, DNA microarrays have been used
with limited success to identify regulatory transcrip-
tion factors (TFs). The main limitation of this approach
is that altered mRNA stability also strongly governs
the patterns of expressed genes. Here, we used nuc-
lear run-on assays and microarrays to systematic-
ally interrogate changes in nascent transcription
in cells treated with the topoisomerase inhibitor
camptothecin (CPT). Analysis of the promoters of
coordinately transcribed genes after CPT treatment
suggested the involvement of TFs c-Myb and Rfx1.
The predicted CPT-dependent associations were
subsequently confirmed by chromatin immunopreci-
pitation assays. Importantly, after RNAi-mediated
knockdown of each TF, the CPT-elicited induction
of c-Myb- and/or Rfx1-regulated mRNAs was dimin-
ished and the overall cellular response was impaired.
The strategies described here permit the successful
identification of the TFs responsible forimplementing
adaptive gene expression programs in response to
cellular stimulation.

INTRODUCTION

In mammalian cells, damaging stimuli trigger the stress
response, which is characterized by the coordinate expression
of subsets of genes through both transcriptional and post-
transcriptional mechanisms. Knowledge of stress-triggered
transcriptional regulation has increased vastly in recent years

through the elucidation of the signaling pathways, chromatin
alterations and transcription factors (TFs) involved. Our
understanding of the ensuing changes in expressed mRNAs
has also expanded spectacularly through the utilization of the
microarray technology. However, a systematic identification
of the links between transcriptional regulatory events and the
subsets of expressed transcripts has remained elusive due to
two major obstacles. First, the combinatorial nature of TF
function upon gene promoters. Since several TFs often bind
to the promoters of eukaryotic genes in order to activate
transcription, studying their individual and joint regulation
is generally quite complex (1,2). Second, the strong contribu-
tion of altered mRNA stability in determining the patterns
of expressed genes. Given that changes in mRNA half-life
potently control the collections of expressed mRNAs, altera-
tions in mRNA abundance may reflect changes in mRNA
turnover rates instead of transcription (3-5).

Here, we focus on the analysis of newly transcribed
(nascent) mRNAs in an effort to identify shared regulatory
promoter elements and hence the TFs responsible for coordin-
ating gene expression. Using HeLa cells treated with the
topoisomerase I inhibitor camptothecin (CPT) as model sys-
tem, the transcription of thousands of genes was assessed
simultaneously using the nuclear run-on (NRO) assay and
cDNA arrays. Comparison of the promoters present in the
genes whose transcription was most robustly induced revealed
highly conserved TF-binding sites, including those for c-Myb
and Rfx1. This approach successfully identified TFs that were
pivotal for the cell’s response to genotoxic stress, as supported
by additional studies demonstrating (i) the CPT-dependent
association of c-Myb and Rfx1 with the promoters of predicted
target genes, (ii) the requirement of c-Myb and Rfx1 for
their transcriptional activation and (iii) the critical influence
of Rfx1 and c-Myb on cell proliferation and survival after
CPT treatment.
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MATERIALS AND METHODS

Cell culture, small interfering (siRNA) transfection,
cell toxicity measurements

Human cervical carcinoma HeLa cells were cultured
in DMEM (Gibco) supplemented with 5% fetal bovine
serum. Cells were transfected twice sequentially using
Oligofectamine™ and 200 nM siRNA (Qiagen), treated
with CPT (500 nM) for the times indicated and collected
for the analysis of RNA, DNA or protein. c-Myb siRNA,
AAGAGGUGGAAUCUCCAACUG; Rfx-1 siRNA, AAGA-
CCUUCUGGAGGUACAAC; Ctrl siRNA, AAUUCUCCGA-
ACGUGUCACGU (targeting genes expressed in the fungus
Ustilago maydis and the bacterium Thermotoga maritima).

Hoechst 33342 (1 pg/ml) was added directly to the cell
culture medium and nuclei were visualized and scored
10 min later from >1000 cells; three independent experiments
were performed. To monitor [*H]thymidine incorporation,
cells were seeded in duplicate 6-well cluster plates (in each
experiment, one cluster was used to measure [3H]thymidine
incorporation, the other for counting cells and calculating
DNA concentration), cultured for 20 h and pulsed with
2 uCi/ml [*H]thymidine at 37°C for 1 h. On ice, cultures
were washed once with ice-cold KRB buffer (118 mM NaCl,
25 mM NaHCOs, 5 mM KCI, 1.28 mM CaCl,, 1.18 mM
MgCl, and 1.17 mM KH,PO,) and precipitated by the addition
of 2 ml/well ice-cold KRB containing 5% trichloroacetic acid
(TCA) for 30 min. Samples were rinsed twice with ice-cold
KRB and, following the addition of 1 ml 0.5 M NaOH/
0.5% SDS, lysates were collected into scintillation vials.
[*H]thymidine incorporation was calculated as c.p.m./10°
cells (c.p.m./ug DNA yielded similar results).

Nuclear run-on array analysis

NRO RNA was prepared and analyzed as described elsewhere
(3,5) with some modifications. Fifty million cells were lysed in
a buffer containing 20 mM Tris—HCI (pH 7.5), 20 mM NaCl,
5 mM MgCl,, 0.25% [v/v] NP-40; the pelleted nuclei were
lifted in suspension buffer [20 mM Tris—HCI (pH 7.5), 20 mM
NaCl, 5 mM MgCl,], layered onto a sucrose cushion [20 mM
Tris—HCI (pH 7.5), 20 mM NaCl, 5 mM MgCl, and 1 M
sucrose], spun at 600 g (4°C, 30 min) and resuspended in
storage buffer [50 mM Tris—HCl (pH 8.3), 5 mM MgCl,,
0.1 mM EDTA (pH 8.0) and 45% [v/v] glycerol]. For the
NRO reaction, thawed nuclei (200 pl aliquots) were mixed
with 200 ul of 2x NRO reaction buffer [10 mM Tris—HCl
(pH 8.0), 300 mM KCI, 5 mM MgCl,, 5 mM DTT,
0.5 mM of each rATP, rUTP and rGTP, and 1.2% sarcosyl]
plus 500 pCi of [(o**PJUTP (3000 Ci/mmol, 10 mCi/ml) and
incubated for 30 min at 30°C with shaking, after which they
were digested with DNase I (RNase-free) for 30 min at 37°C
and then with proteinase K (1 pg/ul) for 1 h at 37°C. Nascent
RNA, purified by filtration using Sephadex G-50 columns
(Pharmacia), typically yielded ~3 x 10® c.p.m. MGC arrays
(Mammalian Genome Collection, [http://www.grc.nia.nih.
gov/branches/rrb/dna/array.htm, containing 9600 genes
(6385 unique) spotted as full-length cDNAs http://mgc.nci.
nih.gov/], were prehybridized for 2 h in Invitrogen Micro-
Hyb™ buffer containing 10 pg Cot DNA and 8 ug poly(A),
then the nascent radiolabeled RNA was added and hybridized
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for 48 h at 55°C. Following washes (2x SSC/0.1% SDS,
2x SSC/0.1% SDS and 1x SSC/0.1% SDS at 55°C), signals
on the array filters were detected using a Phosphorlmager
(Pharmacia) and analyzed using the ArrayPro software
(MediaCybernetics, Silver Spring, MD).

For data analysis, the raw intensities were transformed to
logyo, then used for the calculation of Z-scores, as described
elsewhere (6). Significant changes in gene expression were
calculated in the form of Z-ratios and Z-test values (7).
All of the gene expression changes were assessed through
comparison with untreated cells (time 0). The significance
thresholds used in this study were Z-ratio values of +1.50
and Z-test value of P < 0.01.

Computational analysis of promoters

Proximal promoter sequences for the 58 genes upregulated
transcriptionally were available from the Promoser database
(8). From each gene, 1.2 kb promoter sequences (1.0 kb
upstream and 0.2 kb downstream of the transcription start
site) were studied. The potential binding sites of TFs in
each promoter were detected by scanning against the Transfac
Profesional database (version 9.2) using the software Match
for TF-binding site identification (www.biobase.com). Since
TF-binding sites are short in sequence and many are degen-
erate, random, false positive hits appear frequently. To avoid
this problem, we employed a comparative genomics approach
based on the notion that bona fide promoters/enhancers exhibit
conserved core functional domains and locations. For all of the
up-regulated human genes, the mouse homologous counter-
parts were retrieved from the homologene database of NCBI.
In total, 58 mouse homologous genes were obtained and the
corresponding proximal promoters searched for TF-binding
sites. Using similarity criteria of 0.95 for the core and 0.85
for the matrix (both ranging from O to 1), the top 10% most
frequent TFs were chosen from human and mouse gene lists
and those common between the two species were selected for
further analysis.

Chromatin immunoprecipitation (ChIP) assay
and quantitative PCR (Q-PCR)

Crosslinking of cells (~5 x 10° per treatment group) was
performed in 1% formaldehyde for 10 min at 25°C and was
stopped by adding 0.125 M glycine. Cells were washed twice
with ice-cold PBS, then with ice-cold buffer I (0.25% Triton
X-100, 10 mM EDTA, 0.5 mM EGTA and 10 mM HEPES, pH
7.0) and buffer II (200 mM NaCl, 1 mM EDTA, 0.5 mM
EGTA and 10 mM HEPES, pH 7.0) and were lifted in 300
pl Lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris, pH 8.0
and 1x Roche Protease Inhibitor Cocktail). DNA was sheared
to ~500 bp average size fragments using a Fisher Scientific
Sonic Dismembrator (FS 100 Model, 60% output, 5 pulses,
5 s each). After sonication, insoluble cell debris was removed
by centrifugation (21 000 g, 4°C, 10 min) and supernatants
transferred to fresh 1.5 ml tubes. After assessing DNA con-
centration, DNA was diluted to 2 U (A,go units)/ml using
dilution buffer (0.01% SDS, 1% Triton X-100, 2 mM EDTA,
150 mM NaCl, 20 mM Tris—HCI, pH 8.0 and Ix Roche
proteinase inhibitor cocktail). The diluted samples (500 ul)
were precleared for 4 h at 4°C with agitation by adding 50 pl
of pretreated Protein A/G-Sepharose mixture 50% slurry
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(Amersham). Beads were gently pelleted and the supernat-
ants collected; after setting aside 1/10 vol of precleared
lysate as input DNA, the remainder was divided
equally into two parts for specific-antibody IP and control
IP reactions.

IP reactions were carried out for 12 h at 4°C using 5 ug
of specific antibodies (all from Santa Cruz Biotechnology).
For IP of c-Myb, a mixture of rabbit anti-human-c-Myb
(sc-7874x/H-141) and mouse anti-human-c-Myb (sc-8412x/
C-2) antibodies was used; for IP of Rfxl, a mixture of
two goat anti-human-Rfx1 antibodies (sc-10650x/D-19 and
sc-10652x/1-19) was used; specific control IgGs (from mouse,
goat, rabbit) were also from Santa Cruz Biotech. Following
incubation with primary antibodies, 50 pl of pretreated Protein
A/G-Sepharose slurry, 10 pg of sheared salmon sperm DNA
and 50 pug of BSA were added and incubated for an addi-
tional 1 h. Precipitates were washed for 10 min each with
TSE 1 (low-salt buffer, containing 0.1% SDS, 1% Triton
X-100, 2 mM EDTA, 20 mM Tris—HCIl, pH 8.1 and
150 mM NaCl), TSE II (high-salt buffer, containing 0.1%
SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris—HCl,
pH 8.1 and 500 mM NaCl) and buffer III (LiCl buffer, con-
taining 0.25 M LiCl, 1% NP-40, 1% deoxycholate, | mM
EDTA and 10 mM Tris—HCI, pH 8.1). Precipitates were
washed twice with TE buffer and the DNA eluted by incub-
ating beads in 300 pl elution buffer (1% SDS, 0.1 M NaHCO3)
at 25°C for 15 min; after centrifugation at 4500 g (1 min), the
eluted DNA was transfered to fresh tubes. Formaldehyde
crosslinking was reversed by addition of NaCl (0.3 M final
concentration) and 20 pug RNase A (Sigma), then heating at
65°C for 6 h. To purify the DNA fragments, eluates were
digested with 50 pg/ml proteinase K (50°C, 2 h), then extrac-
ted with phenol:chloroform:isoamyl alcohol (25:24:1) and
precipitated for 16 h using glycogen (20 pg) as carrier. The
resulting DNA, dissolved in 100 ul TE, was used for Q-PCR
analysis.

For Q-PCR analysis, all of the fragments were first
amplified bZ regular PCR, purified from agarose gels, serially
diluted (10°-10°) and used in Q-PCRs to prepare standard
curves from which target gene fragment numbers were calcu-
lated in both IP DNA and ‘Input’” DNA (for normalization).
Q-PCRs were performed using SYBR® Green, the oligomers
listed below and the MJ Research Chrom4 thermal Cycler
System (MJ Research Inc., Waltham, MA). Quality-control
tests for the Q-PCR products were routinely performed by
monitoring melting curves and the amplification of single
DNA bands (Supplementary Data).

Oligomers for Q-PCR analysis after ChIP (for detailed pro-
moter sequence information see Supplementary Data)
FANCG, (for both c-Myb and Rfxl IP) CGGGTCTGC-
GAAGCTCTGGGCT (forward) and GGTGTGGCAGCGAG-
GAAGGGC (reverse), yielding a 258 bp fragment; PANX1,
(for both c-Myb and Rfx1 IP) CAAGGCTCTGATTGGGAT-
GGCAG and GCAAGCGACTCTTTCTGTGGATGG, yield-
ing a 293 bp fragment; POLD2, (for c-Myb IP) CCAGCC-
CACCGACCCAGGAG and GGATTAGCGAGTTGCGGC-
GATRG, yielding a 151 bp fragment; (for Rfx1) GAGCCA-
CACCCTCGGTTTCCTG and CGTGTCGCCATCGCTAC-
AAGTG, yielding a 275 bp fragment; TFIP11, (for c-Myb
IP) GGAATCCGCTGAGCCACCTTGG and TACAGGAAT-
CACAGTCTTGACCTTC, yielding a 178 bp fragment;

VAMP3, (for Rfx1 IP) AGGGCATTCTGTAACTGTTT-
GTAACT and GATGTTACTCCAGGACTCTCACTGTT,
yielding a 341 bp fragment.

Total RNA analysis

Total RNA was extracted using STAT-60 (Tel-Test B,
Friendswood, TX). RNA was treated with DNase I (Roche)
to remove any contaminating genomic DNA and cDNA was
synthesized using reverse transcriptase and random hexamers
(Invitrogen). Q-PCR was performed as explained for ChIP-
Q-PCR, using the primer pairs listed below. The abundance of
mRNA was normalized to 18S rRNA.

Oligomers for Q-PCR to assess mRNA levels (each pair
listed as forward and reverse); the specific positions of
the primers and the fragments amplified are listed in the
Supplementary Data. FANCG, ATGCCAGAAAAGGAACC-
AAGGAAC and TTACATCCCTGCTCACAGTTGAAAG,
yielding a 201 bp fragment; PANX1, CCATTCCGACAG-
AAGACAGATGTTC and CCAAGGTTTGTCAGGAGTA-
GCATTG, yielding a 221 bp fragment; POLD2, GGCTGT-
TAAGATGCTGGATGAGATC and GCTGCTGTATCGGA-
AAATGTCACTC, yielding a 250 bp fragment; TFIP11,
CCAAATCTTTCATGGACTTCGGCAG and GCTTCTT-
CCTCTGAGTCAACCACAG, yielding a 235 bp fragment;
VAMP3, CAAGTAGATGAGGTGGTGGACATAATG and
GCAGTTTTGAGTTCCGCTGGTTC, yielding a 267 bp
fragment; 18S, GCTCCAATAGCGTATATTAAAGTTGCT
and CCTCAGTTCCGAAAACCAACAAAATAG, yielding
a 276 bp fragment.

Western blot analysis

For the detection of c-Myb, Rfx1, cleaved PARP, GAPDH and
B-tubulin, whole-cell lysates were prepared in RIPA buffer
and 10 pg aliquots were size-fractionated by SDS-PAGE
for western blot analysis. Primary antibodies recognized
c-Myb (Upstate Biotechnology), Rfx1 (Santa Cruz Biotech-
nology), GAPDH (Abcam), cleaved PARP (Cell Signaling
Technology) or B-tubulin (Santa Cruz Biotechnology). Fol-
lowing secondary antibody incubations, signals were detected
by enhanced chemiluminescence.

RESULTS AND DISCUSSION

En masse identification of newly transcribed genes
by NRO and cDNA arrays

We present an approach (Figure 1) to identify specific TFs
mediating the transcriptional control of gene expression based
on the systematic analysis of de novo (nascent) transcription.
The assessment of newly synthesized mRNA (using NRO)
was chosen in order to circumvent the problematic influence
of mRNA turnover on the pools of expressed mRNAs, since
NRO analysis would allow the direct identification of bona
fide transcriptionally regulated genes. The subsequent com-
parison of the corresponding promoter regions of these genes
would then be used to elucidate the putative TFs involved. To
test the validity of this approach, HeLa (human cervical car-
cinoma) cells were treated with the topoisomerase I inhibitor
CPT [reviewed in Ref. (9)], a drug that elicited rapid, robust
and consistent changes in gene transcription. The ensuing
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Figure 1. Schematic representation of the study. The goal of this investigation
is to develop an approach that permits the identification of specific TFs govern-
ing the transcription of subsets of DNA damage-inducible genes. We sought to
identify such regulatory TFs in HeLa cells following treatment with the topoi-
somerase I inhibitor CPT (500 nM, 2 h). Newly synthesized (nascent) mRNA
was labeled by carrying out NRO reactions in the presence of [**P]JUTP and the
relative levels of each nascent transcript in both untreated and CPT-treated
populations were assessed by hybridization of cDNA arrays. A subset of genes
was found to be transcriptionally upregulated using stringent statistical criteria
and their promoters (1.0 kb upstream, 0.2 kb downstream of the transcriptional
start site) were further studied by identifying the TF-binding sites present in
them. TFs c-Myb and Rfx1 were found to be widely shared by almost all of the
CPT-upregulated genes. To test the hypothesis that the identified TFs, c-Myb
and Rfx1, were important regulators of gene expression following CPT treat-
ment, their levels were silenced by RNAI. In the TF-knockdown cultures, the
effect of c-Myb and Rfx1 on the response to CPT was investigated by the four
additional analyses shown (i) performing NRO coupled with cDNA array
analysis to monitor altered transcription rates of the putative target genes,
(ii) carrying out ChIP to examine changes in the association of promoter
DNA sequences with c-Myb and/or Rfx1, (iii) monitoring changes in total
mRNA abundance, and (iv) assessing differences in the cellular response to
CPT (specifically proliferation and survival).

transcriptional changes were systematically assessed by isol-
ating nuclei from each cell population and carrying out NRO
analysis, whereby individual RNA polymerase II molecules
were allowed to resume on-going synthesis of endogenous
transcripts in the presence of [o-"P]JUTP. The resulting
radiolabeled nascent RNA products were then studied through
hybridization of cDNA arrays, using methodologies described
previously (3,6,7,10) and in Materials and Methods. For most
genes, transcription remained unaltered following CPT treat-
ment, as determined by monitoring NRO signals on the arrays,
but a distinct subset of genes was transcriptionally upregulated
and another subset was transcriptionally downregulated after
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Figure 2. Transcriptional changes in untreated relative to CPT-treated popula-
tions. The relative transcriptional rates in untreated and CPT-treated popula-
tions, as assessed by monitoring signal intensities obtained from NRO arrays
(Z-scores), were represented. Transcriptionally upregulated (red) and
downregulated (green) RNA subsets are indicated.

CPT treatment (Figure 2). Control hybridizations conducted
using samples from cells that had been treated with actino-
mycin D (an inhibitor of RNA polymerase II) indicated that
the signals on the arrays were indeed derived from RNA poly-
merase I activity (Supplementary Data). Among the 85 genes
that were transcriptionally upregulated, the proximal pro-
moters (arbitrarily set at 1.0 kb upstream and 0.2 kb down-
stream of the transcription initiation site) were available for
58 genes and were thus chosen for further study.

Shared TF-binding sites in the promoters of
transcriptionally upregulated genes

Table 1 lists the genes whose nascent transcription was
upregulated by CPT; Z-ratio >1.5 [empirically found to cor-
respond to >3-fold differences in signal intensity (data not
shown)] and P < 0.01 values were chosen. There was some
overlap between these genes and those identified as CPT-
regulated in other high-throughput studies [including
CDKNI1A and DDB2 (11,12)], despite differences in cell
lines employed, treatment conditions, array platforms and
parameters measured (nascent RNA versus steady-state
mRNA). The promoters corresponding to the genes in
Table 1 were then analyzed using the PromoSer database (8).
By considering similarity scores for TF-binding sites in these
58 promoters (with similarity values =0.95 and =0.85 for the
core and matrix of each TF site, respectively), the presence (+)
or absence (—) of binding sites on each promoter region for
each TF were examined. Several TF sites that were either
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Table 1. Genes transcriptionally upregulated by treatment with CPT

Frequency of shared TF binding sites

High Medium Low
Symbol Z-ratio P-value RefSeq c-Myb Rfxl AP-1 AREB6 Nkx2-5 Ik-1 Oct-1 Ets-1(p54) Lmo2 NF-KB c-Rel USF AHR Pax-3 E2F
ABCF2 1.55 0.0001 NM_007189 + + + + + + + + + + — — - -
AMPD2 1.75 0.0000 NM_004037 + + + + + + + + + — + + — — —
AP2M1 1.51 0.0006 NM_004068 + + + + + + + + + — — — - — —
APMCF1 2.17 0.0000 NM_021203 + + + + + + + — + — - - - — —
ASC 4.25 0.0000 NM_013258 — + + + — + + + + + — — — — —
BC-2 1.51 0.0008 NM_014453 + + + + + + + + + — + — — - -
CDCA4 1.72  0.0007 NM_017955 + + + + + + + + + + + + — - —
CDKNIA 4.68 0.0000 NM_078467 + + + + + + + + + + + + — - —
CDKN2D 1.58 0.0000 NM_001800 + + + + + + + + + — + + — — -
CHRNA3 1.59 0.0001 NM_000743 + + + + + + + + - + + + + — —
CIZ1 1.56 0.0012 NM_012127 + + + + + + + + —+ + + + — — —
CTXL 1.77  0.0032 NM_014312 — + + + + + + + + + + - - - -
DDX38 2.33 0.0000 NM_014003 + + + + + + + + + — - - — — —
DGCRS8 1.73 0.0000 NM_022720 + + + + + + + + + + + — — - -
EGFR-RS 1.55 0.0000 NM_022450 + + + + + + + + + + + — — - -
EIF3S4 3.11 0.0000 NM_003755 + + + + + + + + + — - + — - —
FANCG 1.81 0.0001 NM_004629 + + + + + + + + + + — — - -
FCER2 3.02 0.0000 NM_002002 + + + + + + + + + — + + — — —
GBA 1.77  0.0000 NM_000157 — + + + + + + + + + + — - - —
GEMIN4 2.01 0.0000 NM_015721 + + + + + + — + — — — + — — +
GPAA1 1.94  0.0045 NM_003801 — - + + + + + + + + + + — - -
GPCRI1 2.55 0.0000 NM_014373 + + + + + + + + + — — — — — —
GPR30 1.54  0.0000 NM_001505 + + + + + + + + + — + + — — -
GRN 1.71  0.0000 NM_002087 + + + + + + - + + + — + — - —
HARS 1.60  0.0004 NM_002109 + + + + + + + + + + + — — - -
HSU79303 1.60 0.0001 NM_013301 + + + + + + o+ + - + + - - — —
HYAL3 1.66 0.0001 NM_003549 + + + + + + + + + — + + — — —
1SG20 2.45 0.0000 NM_002201 + + + + + + + + + + — — - - —
LOC51193 1.59  0.0000 NM_016331 + + + + — + - + + + + + - + -
MADHS5 1.62 0.0000 NM_005903 + + + + + + + + + + - + — — —
MARS 1.52 0.0000 NM_004990 + + + + + + + + + + + — — - -
MATP 350  0.0000 NM_016180 + + + + + + o+ + — + — + - - —
MRPL10  1.77 0.0106 NM_148887 — + + + + -+ + + — — _ — _ _
NCK1 2.33 0.0000 NM_006153 + + + + + + + + + + — — - - —
NEUGRIN 1.83 0.0000 NM_016645 — + + + + + + + + — — + — — —
NICNI1 1.85 0.0000 NM_032316 + + + + + + + + + — + + - — -
NSPC1 2.00 0.0000 NM_032673 + + + + + + — + + + — + — + —
Nup37 1.65 0.0003 NM_024057 + + + + + + + + + + + — - - —
0GGl1 1.83  0.0002 NM_016819 + + + + + + o+ + + + + + — - —
PANX1 1.93  0.0000 NM_015368 + + + + + + o+ + + + + + - - —
PB1 2.39 0.0000 NM_018165 — + + + + + + + + — + - — — —
POLD2 1.67 0.0009 NM_006230 + + + + + + + + + + + + — — -
POLG2 2.09  0.0000 NM_007215 + + + + + + o+ + - — + + - — —
PPP1CA 1.95 0.0001 NM_002708 + + + + + + + + + + + + — — —
PVR 2.94  0.0000 NM_006505 + + + + + + + + + — — + - — —
RNAHP 3.69 0.0000 NM_007372 + + + + + + + + + + + + — - -
RPS5 1.73 0.0000 NM_001009 + + + + + + + + + — + + — — —
RRM2 1.67 0.0004 NM_001034 + + + + + + + + + + + + — — +
SH3GLB2 1.59  0.0000 NM_020145 + + + + + + o+ + - + — + - — —
SNX5 1.67 0.0000 NM_152227 + + + + + + + + + — — + — — —
SRP 3.49 0.0000 NM_033199 + + + + + + + + + — — + — — —
STK16 1.55 0.0014 NM_003691 + + + + + — + + + — — — — — +
TAPBP-R 2.77 0.0000 NM_018009 — + + + + + + + + + + + — — —
TCEA2 1.68 0.0087 NM_003195 + + + + + + + + + — - + - — —
TFIP11 1.85 0.0048 NM_012143 + + + + + + + + + — - — — — —
TNFRSF7 3.96 0.0000 NM_001242 + + + + + + + + + — — + — — —
UQCR 1.51 0.0000 NM_006830 + + + + + + + + + + + + — - -
VAMP3 1.99 0.0000 NM_004781 + + + + + + + + + — — — — — —

Following treatment of HeLa cells with CPT for 2 h at 500 nM, nuclei were isolated for NRO analysis to detect nascent transcription using cDNA arrays (Materials and
Methods). Promoter sequences were available for 58 transcriptionally upregulated genes (those genes showing Z-ratios >1.5 when comparing CPT-treated with
untreated groups, and P-values <0.01); the analysis of these promoters revealed the presence of common binding sites for various TFs present at high, medium and low
abundance. A TF-binding site was positive if the promoter sequence matched the consensus sequence with score values =0.95 for the core and =0.85 for the matrix of
each TF. Plus, one or several TF-binding sites predicted; minus, no TF-binding sites predicted.
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Figure 3. RNAi-mediated knockdown of c-Myb and Rfx1 in HeLa cells.
Western blot analysis (20 ng protein per lane) to monitor the expression of
c-Myb, Rfx1 and loading control GAPDH. HeLa cells (70% confluence) were
transfected sequentially with Oligofectamine™ and siRNAs (200 nM) targeting
either c-Myb or Rfx1 or with a control (Ctrl.) siRNA (Materials and Methods).

GAPDH

extensively shared (e.g. c-Myb through Lmo2), moderately
shared (e.g. NF-xB, c-Rel, USF) or minimally shared (e.g.
AHR, Pax-3, E2F) among the corresponding promoters are
indicated. The potential binding sites of TFs in these pro-
moters were also identified in the mouse orthologous genes
(the complete lists for both species are available from the
authors), showing extensive sharing of many TFs for these
58 genes, suggesting their evolutionary conservation and their
possible co-regulatory function upon CPT-induced genes.

To test whether this approach could adequately identify
shared regulatory TFs, we further assessed the influence of
TFs Rfx1 and c-Myb [described in Refs (13—-15)], for which
binding sites were predicted on almost all of these promoters,
on the expression of the predicted target genes. siRNA was
employed to reduce the levels of Rfx1 or c-Myb to <15% of the
levels seen in control (Ctrl.) populations (Figure 3); a simul-
taneous reduction of c-Myb and Rfx1 was not possible due to
high toxicity seen after transfection to silence both TFs in the
same cell (data not shown). NRO reactions and array analyses
were then performed from each transfection group (untreated
or treated with CPT for 2 h). Out of 58 genes 19 were found to
be highly induced by CPT in the control siRNA transfection
group, but were less induced in the c-Myb siRNA transfection
group, the Rfx1 siRNA transfection group or both groups
(Figure 4). Interestingly, in most of the genes examined,
the binding sites of Rfx1 are adjacent to those of c-Myb
(within 10 bp) and this distance was conserved in human
and mouse homologous gene promoters, although the signi-
ficance of this observations awaits further study. In addition to
Rfx1 and c-Myb, binding sites of AREB6, AP-1, c-Ets-1(p54),
Nkx2-5, Ik-1, Oct-1 and Lmo2 (Table 1) as well as Gfi-1,
HNF-3beta, HFH-3, FOXJ2 and TGIF (data not shown)
were highly frequent in both human and mouse gene lists.
The transcription of the remaining two-thirds of the genes
was unchanged despite the silencing of c-Myb or Rfx1, sug-
gesting that their transcriptional increase after CPT treatment
was regulated by other TFs. Taken together, these findings
suggest that c-Myb, Rfx1 or both proteins were required for
maximal transcriptional induction of a sizeable group of genes
(19 out of 58) which had the corresponding TF-binding sites
in their promoters (Table 1).

The identified TFs bind to the promoters of putative
target genes and regulate mRNA abundance

Further verification of this regulatory scheme was undertaken
by ChIP followed by real-time Q-PCR analysis to examine
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Figure 4. Impaired transcriptional upregulation of CPT-induced genes follow-
ing c-Myb or Rfx1 knockdown. siRNA-transfected HeLa cells were either left
untreated or treated with CPT (500 nM) for 2 h, whereupon nascent transcripts
were prepared by NRO and assessed by array analysis (Materials and Methods).
Shown are the Z-ratios of the nascent transcript signals (CPT-treated versus
untreated) in each siRNA group. The genes on the graph have significant
Z-ratios in the Ctrl. siRNA transfection group (=1.5) and lower Z-ratios in
either the c-Myb siRNA transfection group, the Rfx1 siRNA transfection group
or both.

whether c-Myb, Rfx1 or both proteins physically associated
with the promoters of target genes. Cells were crosslinked with
formaldehyde to preserve the association of proteins with
target DNA sequences, whereupon the DNA was sheared
into ~500 bp fragments by sonication (Materials and Methods
and Supplementary Data). Specific [TF-target DNA] com-
plexes were subsequently immunoprecipitated using anti-
bodies against c-Myb or Rfx1. Q-PCR was then employed
to detect the presence of given promoter sequences in the
ChIP material. As shown in Figure 5, the promoters of the
predicted target genes FANCG, PANX1 and POLD2 were
effectively immunoprecipitated in the control group, but not
in populations with reduced c-Myb (c-Myb siRNA) or reduced
Rfx1 (RfxI siRNA). Moreover, CPT induced the association of
c-Myb and Rfx1 with the target gene promoters, but this inter-
action was unchanged or reduced in the c-Myb and Rfx1
siRNA groups. Similar observations were made when assess-
ing the TFIP11 promoter, which was predicted to be primarily
a target of c-Myb and with the VAMP3 promoter, which was
predicted to preferentially associate with Rfx1 (Figures 4
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Figure 5. Quantitative ChIP analysis. ChIP analysis was performed essentially
as described elsewhere (36). Following transfection (with Ctrl., c-Myb, Rfx1
siRNAs) cells were treated with CPT (2 h, 500 nM) and collected for analysis.
Immunoprecipitations were carried out using anti-c-Myb, anti-Rfx1, or control
IgG, whereupon Q-PCR was performed to amplity FANCG, PANX1, POLD2,
TFIP11 or VAMP3 promoter regions (details in Materials and Methods). The
absolute number of molecules amplified was calculated by carrying out parallel
amplification curves with known substrate input quantities. Data are shown as
the means from three independent biological triplicates and the SEMs.

and 5). An additional nine gene promoters were tested; among
them, APGI12L, ILF3, HSU79303 and NDUFB2 failed to
show the expected enrichment in the c-Myb or Rfx1 IPs,
while five did not yield any measurable promoter regions
after Q-PCR, even after attempting to amplify multiple inde-
pendent promoter segments for each gene. As anticipated, in
control IgG IPs performed in parallel, no measurable promoter
regions were amplified (data not shown).

Next, the influence of Rfx1 and c-Myb on the expression of
the target genes was assessed directly by monitoring the
steady-state levels of the corresponding mRNAs. In keeping
with the notion that c-Myb and Rfx1 contributed to inducing
target transcript levels following CPT treatment, Q-PCR ana-
lysis revealed that the levels of mRNAs encoding FANCG,
PANX1, POLD2, TFIP11 and VAMP3 were elevated follow-
ing CPT treatment, but this induction was attenuated or
delayed if either c-Myb or Rfx1 were reduced (Figure 6). It
is important to note that the assays used to obtain the results
shown in Figures 4-6 measure different parameters (nascent
transcription, association of a TF to a promoter region, accu-
mulation of a given mRNA in the cell), so the magnitude of the
changes could not be expected to match precisely; however,
the trends are indeed consistent with one another on
a qualitative level.

It is also important to recognize that the NRO methodology
has significant limitations, including the facts that NRO data
are semiquantitative and can have low sensitivity, specificity
or both (whether derived from arrays or from traditional
spotted nucleic acids). In addition, endogenous antisense
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Figure 6. Quantitative mRNA analysis. Total RNA was extracted from the
indicated siRNA groups at the times indicated following CPT treatment and
mRNA levels calculated by Q-PCR using sequence-specific oligomer pairs
and normalized to 18S rRNA levels (details in Materials and Methods).
The absolute number of molecules amplified was calculated by carrying out
parallel amplification curves with known substrate input quantities. Data
are shown as the means and the SEM from three independent biological tri-
plicates. Following c-Myb or Rfx1 silencing, the basal levels of these genes
were either unchanged or modestly altered (up or down by 2-fold or less):
FANCG mRNA was up by 2-fold (both siRNA interventions), PANX1 mRNA
was slightly down and 2-fold up (after silencing c-Myb and Rfx 1, respectively),
POLD2 was unchanged and 2-fold down (after silencing c-Myb and Rfx1,
respectively), TFIP11 mRNA was slightly down after silencing c-Myb, and
VAMP3 was slightly elevated after silencing Rfx1.

transcripts can hybridize to the double-stranded cDNAs spot-
ted on the arrays, while oligomer arrays might theoretically be
used to circumvent this problem, it is technically impossible to
achieve the sensitivity and specificity required with the tools
presently available. These issues must be taken into consid-
eration when interpreting NRO array data, since all of them
have thus far been generated using cDNA arrays (3,5,16—18).

Taken together, these findings reveal that the analysis of
nascent transcripts uniquely permits the identification of TFs
which coordinate the expression of subsets of genes. Rfx1 and
c-Myb, elucidated by this approach, were found to play critical
roles in the cellular response to the genotoxic agent CPT. They
were shown to associate with the promoters of the predicted
target genes, binding was influenced by CPT treatment and
knockdown of Rfx1 or c-Myb suppressed the CPT-induced
expression of target genes. The varying degree of inhibition
for the transcripts tested (Figure 4) likely depends on the
influence of additional TFs independently acting upon the
promoters and also on the possible effects of c-Myb and/or
Rfx1-interacting proteins (19-21). It is important to note that
c-Myb and Rfx1 have also been shown to operate as a tran-
scriptional repressors (22,23). This regulatory function was
not investigated here, although a number of genes were found
to be upregulated in the Rfx1 siRNA treatment group (data not
shown).
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Figure 7. Influence of Rfx1 and c-Myb on the cellular response to CPT.
(A) Forty-eight hours after each siRNA transfection, one million cells per
transfection group were either left untreated or treated with CPT and the num-
bers of live cells were determined 24 h later by using a hemacytometer and
trypan blue. (B) Cells that were transfected and treated with CPT as described in
(A) were incubated for 1 h at 37°C with [3H]thymidine (2 uCi/ml) and isotope
incorporation was quantified. (C) Cells were transfected and treated with CPT
as explained in (A) and 24 h later they were stained with Hoechst 33342
(1 pg/ml) for visualization and scoring of apoptotic (condensed or fragmented)
nuclei. In (A-C), the data are shown as the means and SEMs from three
independent biological triplicates.

Essential roles of c-Myb and Rfx1 in the
cellular response to CPT

Finally, the influence of c-Myb and Rfxl on the overall
cellular response to CPT was evaluated by monitoring changes
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in cellular division, DNA replication and apoptosis of each
population. As shown, c-Myb appeared to suppress prolifera-
tion slightly, since knocking down c-Myb resulted in increased
cell numbers; however, silencing either c-Myb or Rfx1 signi-
ficantly reduced cell numbers following CPT treatment
(Figure 7A). Similarly, populations in which c-Myb or
Rfx1 were knocked down incorporated significantly less
[H]thymidine, suggesting that c-Myb and Rfx1 contributed
to maintaining elevated levels of DNA replication in response
to CPT treatment (Figure 7B). Moreover, apoptosis increased
significantly after Rfx1 knockdown, even in cultures that
were left without additional treatment (U populations) and
was further elevated after CPT treatment in both c-Myb and
Rfx1 siRNA groups, as monitored both by counting apoptotic
(condensed or fragmented) nuclei and by assessing the levels
of cleaved PARP (Figure 7C). Together, these findings suggest
that Rfx1 and c-Myb exert a growth-regulatory, anti-apoptotic
influence on HeLa cells exposed to CPT. The finding that
c-Myb and Rfx1 are required for the optimal survival of
CPT-treated HeLa cells is in keeping with the documented
proto-oncogenic effects of c-Myb (24-27) and Rfx1 (28-31).

Perspectives

Most of our current understanding of the dynamics of
expressed mRNA in mammalian systems comes from studies
looking at steady-state mRNA abundance. However, a
heightened interest in elucidating the TFs that regulate gene
expression is driving the development of genome-wide meth-
odologies to directly and systematically assess gene transcrip-
tion and TF function. Indeed, the past few years have seen the
development of powerful array-based and other high-
throughput methods for ChIP and gene transcription analyses
(16-18,32-35). The high-throughput, ChIP-derived strategies
have the advantage of identifying all bound DNA at a genomic
level, including previously unknown target regulatory regions,
but have two significant limitations: they require prior know-
ledge of the involvement of a specific TF in a given response,
and they provide little information on the functional con-
sequences of the TF acting upon the particular genes (i.e.
whether transcription is elevated, reduced or unaffected).
The NRO array methodologies provide genome-wide informa-
tion on transcriptional changes and do not require prior know-
ledge of the TFs involved, but fail to identify the factors that
orchestrate the altered gene transcription programs. Here, we
have reported a strategy which employs elements from both of
these approaches. By obtaining en masse transcription data as
a starting point, and coupling it to the analysis of the corres-
ponding promoters, the TFs that drive transcriptional changes
in response to a given stimulus can be systematically identi-
fied. We propose that the approaches described here can be
widely applied to the identification of other TFs that orches-
trate adaptive gene expression programs and shape the ensuing
cellular responses.
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