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The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and
proteins. This heterogeneity results mainly from lipid–lipid, protein–protein, and lipid–
protein associations which are orchestrated by the coupled transcription, translation
and insertion of nascent proteins into and through membrane (transertion). Transertion
is central not only to the individual assembly and disassembly of large physically
linked groups of macromolecules (alias hyperstructures) but also to the interactions
between these hyperstructures. We review here these interactions in the context of
the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane
synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell
division.
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Introduction

The laterally heterogeneous distribution of the lipid and the protein components of bacterial
cell membranes is the current paradigm, having replaced the homogeneous distribution of
these components that is assumed in the fluid mosaic membrane model. This heterogeneity
is involved in producing the specific environments needed for membrane proteins to
participate in the many important processes that are associated with cell membranes.
This raises the question of the nature of the mechanisms responsible for membrane
heterogeneity.

One of the main causes of large-scale heterogeneity in bacterial membranes is the coupled
transcription, translation and insertion of nascent proteins into and through membrane, alias
transertion (Norris and Madsen, 1995; Binenbaum et al., 1999; Bakshi et al., 2014; Figure 1).
The tethering of nascent proteins orchestrates interactions that result in the formation of
membrane domains. These interactions include protein–protein interactions and lipid–protein
interactions – and therefore also include lipid–lipid interactions (Vereb et al., 2003). The multitude
of processes in which transertion is implicated has led to it being proposed as a powerful force in
maintaining the nucleoid in expanded state, in the integrative sensing of metabolic activity and
in coupling chromosome segregation to cell division (Norris and Amar, 2012; Fishov and Norris,
2012b).
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FIGURE 1 | (A) Visualization of membrane heterogeneity in Escherichia coli
cells by fluorescent microscopy. Left: image of an E. coli cell division
mutant pbpB(ts) transferred to the non-permissive temperature (time zero,
bacterium at the top), double-stained with DAPI (top half of image) and
FM4-64 (bottom half of image) for visualization of nucleoids and membrane,
respectively; adapted from Fishov and Woldringh (1999), © John Wiley and

Sons. On the right, plots of fluorescence intensity profiles along filaments
(DAPI, blue line; FM4-64, red). (B) The relationship between proteolipid
domains, transertion, and clusters of genes either “looped out” from or
buried within the nucleoid. n1, n2, nascent proteins; m, mRNA; r,
ribosomes; p, RNA polymerase; G, gene clusters; red arrow indicates
division site; adapted from Norris and Madsen (1995), © Elsevier.

It has long been evident that bacteria are highly structured
(for references see Norris et al., 1994). It is now emerging
that this structuring is in the form of hyperstructures which
are large, physically linked, assemblies of macromolecules that
serve specific functions (Norris et al., 2007a). Transertion plays
a central role in the formation of one class of hyperstructures and
also in the dialog between these hyperstructures that determines
the behavior of the cell itself. Here, we review membrane
heterogeneity focussing on transertion hyperstructures and their
relationships with the processes of nutrient sensing, membrane
synthesis, cytoskeletal dynamics, DNA replication, chromosome
segregation, and cell division.

Lipid Domains

Cardiolipin and Other Anionic Phospholipid
Domains
Although the lipids present in the inner membrane of
Escherichia coli will spontaneously separate into domains in
vitro (Zerrouk et al., 2008), until fairly recently, the lipid
molecules in the membranes of bacterial cells were assumed to
be homogeneously distributed, since the fluidity of biological
membranes had become generally accepted following the
publication of the fluid mosaic model (Singer and Nicolson,
1972). However, cell membranes must be laterally polarized to
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produce specific environments for certain membrane proteins,
in particular, chemoreceptor proteins and proteins that promote
polymerization of actin in eukaryotic hosts, as well as proteins
involved in cell division at mid-cell and at asymmetric positions
(Shapiro et al., 2002). Microscopic visualization of membrane
lipids in cells has reinforced the view that bacterial membranes
do possess structural heterogeneity. Uneven distribution of
fluorescent lipophilic dyes and selective staining of septal regions
has been observed in mycobacteria and an uneven distribution
of fluorescence has been observed in lipophilic dye (FM4-
64)-stained E. coli cells (Christensen et al., 1999; Fishov and
Woldringh, 1999; Figure 1).

Unequivocal visualization of cardiolipin (CL) domains in
the septal region and in the poles in the membranes of
E. coli cells has been accomplished by means of the CL-specific
fluorescent dye 10-N-nonyl-3,6-bis(dimethylamino)acridine (10-
N-nonyl-acridine orange: NAO; Mileykovskaya and Dowhan,
2000, 2009; Mileykovskaya, 2007; Figures 2A–C). Time-lapse
microscopy of E. coli cells showed positioning of NAO
stained domains at nascent division sites and their gradual
development into septal domains (Mileykovskaya and Dowhan,
2009; Mileykovskaya and Margolin, 2012; Figure 2D). NAO
only binds to anionic phospholipids owing to an interaction
between its quaternary amine and the phosphate residue of
phospholipids and an intercalation of the hydrophobic acridine
moiety into the membrane bilayer (Petit et al., 1992). The
stoichiometry between NAO and monoacidic phospholipids is
1:1 and the emitted fluorescence is green whilst with CL,
which contains two phosphate groups per molecule, NAO
forms a dimer and the emitted fluorescence of the CL
complex shifts to red due to the metachromatic effect of
acridine molecules (Petit et al., 1994; Mileykovskaya et al.,
2001; Figure 2G). CL domains have also been observed in
Bacillus subtilis cells, both during exponential growth in the
septal region and the poles and during sporulation in the
engulfment and the forespore membranes (Kawai et al., 2004,
2006; Figures 2E,F). Note that in B. subtilis cells PE is also
localized in polar and septal membranes (Nishibori et al., 2005).
The CL localization to the polar membranes in E. coli is consistent
with the increase in the content of CL in the membranes of
minicells, which are rich in polar membranes (Koppelman et al.,
2001).

An E. coli�pgsA mutant lacks phosphatidylglycerophosphate
synthase, which catalyzes the committed step of biosynthesis
of the major acidic phospholipids, and thus lacks
phosphatidylglycerol (PG) and CL (both < 0.01% of total
phospholipids); this mutant, which is viable if it also has an
lpp mutation, accumulates the anionic biosynthetic precursors,
phosphatidic acid (PA) and CDP-diacylglycerol (4.0 and 3.2%,
respectively; Kikuchi et al., 2000; Shiba et al., 2004). PG is
required for modification of prolipoprotein (the precursor of
Braun’s lipoprotein, the product of lpp); cells lacking PG in an
lpp+ background are not viable because the accumulation of
unmodified prolipoprotein in the inner membrane causes a
tight membrane fusion (Suzuki et al., 2002). The viability of a
�pgsA lpp− mutant suggests that the anionic phospholipids can
substitute for one another in essential biological functions that

include (1) the initiation of DNA replication, which depends
on the rejuvenation of the DnaA protein by CL, and (2) the
selection of the division site, which depends on the inhibition
of inappropriate FtsZ polymerization in the polar regions by a
complex, MinCD, with a high affinity for anionic phospholipids
(Matsumoto, 2001; Szeto et al., 2002; Mileykovskaya et al., 2003;
Norris et al., 2004; Mileykovskaya and Dowhan, 2005; Mazor
et al., 2008; Vecchiarelli et al., 2014). In the �pgsA mutant
cells, N-acyl-phosphatidylethanolamine (N-acyl-PE) and PA
have been localized to polar and septal membrane domains
(Mileykovskaya et al., 2009), indicating that these normally
minor anionic phospholipids are segregated, like CL, into
similar anionic lipid domains. Thus, E. coli has a mechanism
for preferential segregation of anionic phospholipids to the
polar and septal regions. One possible segregation mechanism
depends on the shape of lipid molecules. ‘Cone-shaped’ lipid
molecules, in which the cross-sectional area of the polar head
group is less than the cross-sectional area of the hydrophobic
domain, prefer regions of membranes that have a negative
curvature; hence CL and PA are concentrated in negatively
curved regions of the inner leaflet of the bacterial membranes
(Cullis et al., 1983; Gennis, 1989; Seddon, 1990; Renner and
Weibel, 2011; Jouhet, 2013; Renner et al., 2013). Using a
mathematical model, this sensing of membrane curvature –
and consequent positioning in the poles – has been attributed
to stable, conical clusters of CL molecules forming due to the
membrane being pinned to the cell wall, which is itself the
result of the balance between the osmotic-pressure difference
across the membrane and the inward pressure of the cell
wall (Huang et al., 2006; Huang and Ramamurthi, 2010;
Figure 2F).

A recent report from Weibel’s lab has claimed that there is
no clear preference of NAO for binding to CL compared to
PG and other anionic phospholipids, and that NAO produces
an intense red-shifted fluorescence emission with PG, PA, and
phosphatidylserine (PS) that is comparable to that with CL
(Oliver et al., 2014). They suggested that not only CL but also
PG is concentrated in the polar regions of E. coli cell membranes.
However, they used much higher concentrations of NAO than
previous authors used for bacterial staining (Mileykovskaya and
Dowhan, 2000; Kawai et al., 2004; Romantsov et al., 2007, 2008;
Rosch et al., 2007; Lobasso et al., 2009, 2013; Maloney et al.,
2011; Muchová et al., 2011; Kicia et al., 2012; Tran et al.,
2013). Moreover, PG microdomains, in contrast to CL domains,
cannot sense membrane curvature, since the cross-sectional
area of PG molecule is cylindrical and lamellar structures are
preferred (Cullis et al., 1983; Gennis, 1989; Seddon, 1990). As
Weibel’s lab had already demonstrated that the location of
NAO-stained domains depends directly on membrane curvature
(Renner and Weibel, 2011; Renner et al., 2013), this group
did not propose a specific physical mechanism responsible for
localizing anionic phospholipid domains stained by NAO (Oliver
et al., 2014). In B. subtilis, phospholipid-specific dyes including
FM4-64 are localized in a helical pattern extending along the
long axis (Barák et al., 2008). Helical FM4-64 domains are
missing in cells depleted of MurG, an enzyme involved in
peptidoglycan synthesis, indicating a link between the helical
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FIGURE 2 | Anionic phospholipid domains in E. coli and B. subtilis
cells revealed by NAO staining. (A) Fluorescence microscopy of
cardiolipin (CL)-containing liposomes stained with NAO. Liposomes
composed of CL and phosphatidylcholine (60 mol%/40 mol%). Excitation:
490 nm, emission: 617 nm (a) and 528 (b), DIC (c); modified from
Mileykovskaya (2007), © John Wiley and Sons. (B) Deconvolved images of
an optical section of E. coli W3899 stained with NAO. Cells were grown in
LB media in the presence of 200 nM NAO to OD600 1.5, and then
immobilized on a microscope slide cover glass with poly-L-lysine; modified
from Mileykovskaya and Dowhan (2009), © Elsevier. Excitation is 490 nm
and emission is 617 nm. (C) E. coli cells stained with NAO (red) for CL (a)
and DAPI (blue) for the nucleoid (b). Overlay of images (c) demonstrates
localization of CL at the cell poles and at the division site; scale bar,
2.5 μM; modified from Mileykovskaya and Dowhan (2000), © American
Society for Microbiology. (D) The dynamics of CL domain formation during
the cell cycle of growing E. coli. Arrows of the same color indicate the
progression of the corresponding NAO-stained structures with time;
adapted from Mileykovskaya and Dowhan (2009). (E) Staining of wild type
B. subtilis cells with NAO. Wild type B. subtilis 168 cells were harvested in
exponential growth and sporulation phase (at T2 and T4) and stained with
100 nM NAO for 20 min. Fluorescence images of exponential growth (a)
and sporulation phase cells at T2 (b) and T4 (c). An arrow indicates a
sharp fluorescence band in the center of the cell. Two fluorescence dot

structures in the cell center are indicated by a pair of arrowheads. Regions
of NAO stained nascent poles in the cells that are separating are indicated
with a pair of arrows. Panels are adapted from Kawai et al. (2004), ©
American Society for Microbiology. (F) Osmotic pressure and turgor-induced
localization of lipid clusters during cell division and sporulation. During
exponential growth, high-intrinsic-curvature clusters of CL localize to the
poles of the inner leaflet [green curve (a) or blue clusters in (b)], driven by
differences in membrane curvature. A lower osmotic-pressure differential
across the septal/forespore-engulfing membrane [green area, (c)/(d),
respectively] induces relocalization of the lipid clusters to the septal
membrane; (d) CL clusters migrate along the continuous leaflet consisting
of the inner leaflet of the mother cell and the outer leaflet of the
forespore-engulfing membrane to localize around the spore due to low
osmotic-pressure differential (green circle); modified from Huang et al.
(2006) and Huang and Ramamurthi (2010), © John Wiley and Sons with
permission. (G) The proposed arrangement of CL in the presence of NAO.
A top view of the bilayer in which the hexagonal array of large circles
represents the fatty acid chains is shown. The small internal circles
containing P represent the phosphate groups, hydrogen-bonded tightly by
the hydroxyl of the connecting glycerol, above the two central circles of the
four fatty acid chains of CL (red). This tight array provides room for the
NAO molecules (green) to stack in between the rows of CL head groups;
adapted from Mileykovskaya et al. (2001), © Elsevier.

domains and peptidoglycan synthesis (Muchová et al., 2011). As
the helical structures are absent from the cells with repressed
pgsA expression (in which the levels of PG and CL are much
reduced; Hashimoto et al., 2009), the dyes are considered to
be associated with the anionic phospholipids (Barák et al.,
2008). As the CL-specific NAO dye is located in the septal

regions and the poles of B. subtilis cells (Kawai et al., 2004),
the principal component of the FM4-64 helical structures is
likely to be PG (Barák et al., 2008). It has, however, been
suggested that experiments showing changes in FM 4-64 staining
of B. subtilis cells with repressed pgsA expression cannot serve
as unambiguous evidence of FM 4-64 specificity for PG since,
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first, changes in the distribution of FM 4-64 resulted from the
dissipation of membrane potential by the uncoupler CCCP and,
second, the membrane potential was much lower in B. subtilis
cells with repressed pgsA expression (Strahl et al., 2014). In E. coli
no discernible helical structures were observed with FM4-64
staining (Barák et al., 2008) as reported previously (Fishov and
Woldringh, 1999).

Microdomains that are functionally similar to the lipid rafts
of eukaryotic cells have recently been found in B. subtilis
membranes (Lopez and Kolter, 2010). These microdomains
contain homologues of eukaryotic flotillins, YuaG and YqfA,
referred to as FloT and FloA, respectively (see Heterogeneous
Distribution of Envelope and Envelope-Associated Proteins). The
distribution of these microdomains was in a punctuated pattern
along the cytoplasmic membrane (Donovan and Bramkamp,
2009; Lopez and Kolter, 2010), which differs from the patterns
of FM4-64-stained helices and of CL-domains in the septal
region and the poles. YisP is involved in biofilm formation in
B. subtilis and has been predicted to produce C30 isoprenoids; the
enzyme acts as a phosphatase, catalyzing formation of farnesol
from farnesyl diphosphate (Feng et al., 2014). Inhibition of
formation of these microdomains using zaragozic acid impaired
biofilm formation and protein secretion but not cell viability and
it has been suggested that polyisoprenoids are constituents of
the microdomains (Lopez and Kolter, 2010; Feng et al., 2014;
Bramkamp and Lopez, 2015).

Lipid Synthases and Membrane Domains
The septal and polar locations of specific phospholipids may be
related to the subcellular location of the enzymes involved in
their synthesis. In E. coli, a relationship between the location
of CL (Mileykovskaya and Dowhan, 2009; Mileykovskaya
and Margolin, 2012; see Cardiolipin and Other Anionic
Phospholipid Domains) and that of CL synthase (ClsA) and
phosphatidylglycerolphosphate synthase (PgsA; Tan et al., 2012;
Dowhan, 2013) has yet to be reported. In B. subtilis, green
fluorescent protein (GFP) fusions to ClsA and PssA, a PS synthase
that catalyzes the committed step of biosynthesis of PE, are
located in the septal membranes even when the corresponding
genes are expressed at a low level from their natural promoters
(Nishibori et al., 2005). Thus, ClsA is probably concentrated
in the septal membranes under natural conditions thereby
playing an important role in the septal localization of CL in
B. subtilis (Figure 3). Localizing the enzymes involved in the
synthesis of other lipids has yielded unexpected, interesting
results. GFP fusions to several phospholipid synthases were
localized to the septum in a thick, bright fluorescence band.
These synthases include PgsA, PssA, Psd, which converts PS
into PE, CdsA, which produces CDP-diacylglycerol, MprF, which
transfers lysine to PG to produce lysylPG, and UgtP, which is
responsible for glucolipid synthesis. The dot-pair distribution of
UgtP corresponds to its role in regulating FtsZ assembly and
hence differs from the distribution of the phospholipid synthases

FIGURE 3 | Septal localization of lipid synthases in B. subtilis cells.
Typical florescence images from cells harboring gfp fusions in the amyE locus
cultivated in sporulation medium (DSM) up to late logarithmic growth phase
are shown. Green fluorescence from the GFP-fusions was detected by using
a standard GFP(R)-BP filter unit. For the name of the enzymes and their

catalytic activities refer to the figure of the biosynthetic pathway (Figure 5B).
Panels are from Figures 4 and 5 of Nishibori et al. (2005), © American
Society for Microbiology. GFP-fusions of ClsA and PssA are located in the
septal membranes even when the corresponding genes are expressed from
their natural promoters (see Figure 4 of Nishibori et al., 2005).
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(see Sensing). The locations of these enzymes thus differ from
the cytoplasmic location of GpsA, which catalyzes the production
of G3P (Nishibori et al., 2005; Figure 3), and the uniformly
distributed locations of the membrane proteins AtpC, a subunit
of ATP synthase, and SecY (Matsumoto et al., 2012). It has
also been shown that the enzymes for lipoteichoic acid (LTA)
synthesis, LtaS and YfnI, are septally localized (Schirner et al.,
2009; Matsuoka et al., 2011b), but DG kinase (DgkB), which
converts DG that is produced in LTA synthesis into PA, is not
localized (Matsuoka et al., 2011b).

How are the lipid synthases targeted to the septal membranes?
These enzymes presumably have specific regions responsible
either directly for their localization or indirectly via interaction
with certain cell division proteins. Selective inactivation of
putative targeting regions has shown that ClsA has regions
of amphipathic α-helices at its COOH-terminus that are
responsible for its septal localization (Kusaka et al., manuscript
in preparation). PgsA has no such amphipathic α-helices at
its COOH-terminus, suggesting that the system for its septal
localization is different from that of ClsA. Many other proteins
with amphipathic α-helices, including MinD (see Lipid–Protein
Interactions), have membrane binding properties that depend on
electrostatic interactions, via their net positive charges, and on
hydrophobicity. In addition, the catalytic domains (or consensus
sequences) of B. subtilis PssA (Saha et al., 1996b) and E. coli
and B. subtilis PgsA (Usui et al., 1994; Matsumoto, 1997) have
an amphipathic α-helix structure which allows them to access
their hydrophilic substrates, serine and G3P, in the cytoplasm
(Matsumoto et al., 2012). The septal location of the phospholipid
synthases in B. subtilis cells implies that most phospholipids
are synthesized at the septal membranes, and, given the septal
location of PE and CL, it is likely that these newly synthesized
lipids are somehow prevented from diffusing into the lateral
membranes (Matsumoto et al., 2006).

Chemical Basis for Generation of Lipid
Domains
What then is the chemical basis for the generation of lipid
domains? How do the lipid molecules form domains in
membranes that are fluid? Both lipid–lipid interactions and
lipid–membrane protein interactions are suspected to induce
the formation of microdomains, which comprise at most some
tens of molecules of a specific lipid (for a review, see Edidin,
1997). The following properties of phospholipid molecules may
account for the formation of microdomains through lipid–lipid
interactions.

Cardiolipin, which is a diphosphatidylglycerol, has a
unique head group, with a tightly locked, surprisingly small
configuration and only one negative charge (Haines and
Dencher, 2002); this result contradicts the previous view
reported in textbooks. The two phosphates in the head group
trap a proton and are locked in a bicyclic array held together
by the hydroxyl residue of the glycerol which connects the two
halves. This small polar head group makes for a tighter packing
of hydrophobic acyl chains between CL molecules by van der
Waals force interactions than is found in lipids with larger polar
head groups. It has also been suggested (Haines and Dencher,

2002) that interaction between adjacent head-groups creates a
compact array of CL molecules, which becomes manifest in the
presence of associated NAO arrays (Mileykovskaya et al., 2001).

Recently, a microtechnology for manipulating bacterial
membrane curvature and quantitatively measuring its effect
on the localization of CL in spheroplasts has been developed
(Renner andWeibel, 2011). CL domains were localized to regions
of high intrinsic negative curvature and MinD was found to
be associated to the region of large negative curvature (see
below). This localization of CL to membranes of highly negative
curvature is ascribable to its cone-like molecular configuration
(Gennis, 1989; Jouhet, 2013; see Cardiolipin and Other Anionic
Phospholipid Domains). Polar localization of PA domains found
in E. coli�pgsA cells lacking both CL and PG can also be
ascribable to the cone-like configuration of PA molecule (Norris
et al., 2002; Mileykovskaya et al., 2009).

Polar head groups of PG molecules interact by an extensive
network of hydrogen bonds, ionic bonds, and coordination
bonds between glycerol hydroxyls and the unesterified phosphate
oxygen both in the anhydrous crystal and the hydrated gel state
(Boggs, 1987; Pascher et al., 1987; Seddon, 1990). In fact, PG
is probably segregated into distinct domains, in both B. subtilis
and E. colimembranes, according to studies using pyrene-labeled
phospholipids (Vanounou et al., 2003). This extensive and tight
network of PGmolecules may cause exclusion of CLmolecules to
produce patches of CL in the membranes (Mileykovskaya et al.,
2001), since the small and tightly locked head group of CL cannot
interact with PG.

The head group of the PE molecule has both a cationic
amine residue and an anionic phosphate residue. Each amine and
unesterified phosphate oxygen can participate in short distance
intermolecular hydrogen bonds. The ethanolamine groups thus
form a linkage between phosphorus groups of adjacent PE
molecules and the tendency to be hydrated must be less than
that of phosphatidylcholine, so producing a very compact,
rigid head-group network of PE molecules (Elder et al., 1977;
Hauser et al., 1981; Boggs, 1987; Seddon, 1990), and giving PE
substantially higher Tm values than phosphatidylcholine which
has an identical acyl chain structure. This compact head-group
network of PE may well suffice to explain the formation of
PE microdomains. Interactions with certain membrane proteins
might then modify the lipid organization and further stabilize
the head-group network, as suggested (Edidin, 1997). Polar and
septal localization of PE in B. subtilis cells (Nishibori et al.,
2005) is likely ascribable to its cone-like molecular shape (see
Cardiolipin and Other Anionic Phospholipid Domains). For
details refer to the previous review (Matsumoto et al., 2006).

The potential role for polyamines in lipid domain formation
is largely unexplored although it has been suggested that
polyamine binding to the acidic groups of phospholipids in
membranes could lead to clusters forming (Schuber, 1989).
Ionic interactions between polyamines and acidic phospholipids
are strongest between the polyamine with the highest positive
charges and the phospholipid with the highest content of negative
groups (Yung and Green, 1986). Interaction with polyamines
is believed to reduce the repulsive forces between negatively
charged membrane components by bridging proteins and lipids
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and by shielding the surface charges (Schuber, 1989). The binding
of ions such as calcium to anionic phospholipids can also result
in domain formation (Haverstick and Glaser, 1987) and for
references see Cannon et al. (2003), but, again, this is relatively
unexplored.

Transertion and Membrane
Heterogeneity

Heterogeneous Distribution of Envelope and
Envelope-Associated Proteins
A heterogeneous distribution of proteins in the cell envelope
of bacteria, despite their size, has been widely demonstrated
(see reviews, Shapiro et al., 2002; Fishov and Norris, 2012b;
Govindarajan et al., 2012). During the course of investigation
of specific biological functions and processes, this heterogeneity
has been revealed mainly by visualization with GFP-fusions
and immunofluorescence to take the form of polar, patchy and
helix-like distributions in the membranes. Examples of proteins
localized to the septal regions include lipid synthases in B. subtilis
(Nishibori et al., 2005; Matsumoto et al., 2012; Takada et al.,
2014; described in Lipid Synthases and Membrane Domains).
Reciprocally, ATP synthase and succinate dehydrogenase are at
low levels in (or absent from) the mid-cell region at the onset
of cell division in B. subtilis, which may reflect an association
with lipid domains elsewhere that are rich in PG or other
lipids rather than with lipid domains in the mid-cell region
(i.e., the division site) where these lipids may be at low levels
(Meredith et al., 2008). Recently, FloT and FloA, homologues
of eukaryotic flotillin proteins found exclusively in lipid rafts
along with proteins involved in signaling and transport have
been localized to discrete microdomains in the membrane of
B. subtilis (see Cardiolipin and Other Anionic Phospholipid
Domains); significantly, these microdomains, which are likely to
be present in many other bacteria, also contain other proteins
involved in signal transduction and cell–cell communication
such as the sensor kinase, KinC, and protein secretion such
as SecY in B. subtilis (Donovan and Bramkamp, 2009; Lopez
and Kolter, 2010; Bach and Bramkamp, 2013; Bramkamp and
Lopez, 2015). Flotillins are believed to play a large part in
maintaining the overall physical heterogeneity of the membrane
since, in their absence, lipid-ordered domains coalesce (Bach
and Bramkamp, 2013; Bramkamp and Lopez, 2015). Cytoplasmic
membrane proteins located in the polar regions of E. coli
cells include ProP, LacY, and MscS (Romantsov et al., 2010)
and the MCPs (methyl-accepting chemotaxis proteins; Alley
et al., 1992; Sourjik and Armitage, 2010) whilst proteins
located at the sites of cell constriction in E. coli include the
components of trans-envelope Tol-Pal complex, TolA, TolQ,
and TolR (in the cytoplasmic membrane), the peptidoglycan-
associated lipoprotein Pal, (anchored to the outer membrane),
and TolB (a soluble periplasmic protein; Gerding et al.,
2007).

Two systematic approaches have been taken to find proteins
that are preferentially located in the poles. Using two-
dimensional gel electrophoresis, Lai et al. (2004) identified

proteins preferentially located in E. coli minicells and created a
catalog of polar proteins; these included the inner membrane
proteins MCPs, AtpA, AtpB, YiaF, and AcrA, the membrane-
associated protein FtsX, and the outer membrane proteins YbhC,
OmpW, Tsx, Pal, FadL, OmpT, and BtuB. In a complementary,
cataloging approach, Li and Young (2012) used FLAG peptide-
tagged Tar, a known polar MCP, to isolate by affinity capture
those inner membrane vesicles that originated from the poles.
These vesicles were enriched in over 30 proteins. Most were
in or associated with the inner membrane and included Aer,
PBP1B, TnaA, DcuA, PutP, TrxA, FliP, AccD, CpxA, FliC, RpsD,
YcbC, GlnP, GroEL, MlaF, NarZ, YqjD, YniB, MCPs, CheA, YijP,
PBP1A, SppA, LepB, NupC, and YiaF, although a few exceptions,
TolC, Pal, and BamA, were in the outer membrane. In following
up the latter catalog by fusing proteins to GFP and expressing
the gene from their own promoters, Aer, TnaA, GroES (rather
than GroEL), YqjD, and YiaF were found to form polar foci
that were distinct from inclusion bodies, thereby suggesting
that these proteins are located in polar membranes in vivo.
Moreover, the MCPs and Pal figure in the polar membrane
class in both cataloges, thus lending some confidence to the
results. Extensions of approaches like these should identify the
remaining proteins with polar preference using the full list of
E. coli proteins, which includes as many as 1,133 predicted
integral inner membrane proteins (Bernsel and Daley, 2009) and
503 peripheral, inner membrane-associated ones (Papanastasiou
et al., 2013).

GFP-fusions and immunofluorescence have provided many
examples of specific proteins in polar and helix-like distributions
in the membranes of E. coli and B. subtilis cells; these proteins
include MreB (as well as homologues MreBH and Mbl) and the
Sec translocon (for the list and references see Table 1 in Fishov
and Norris, 2012a). These results have, however, been questioned
due to recent findings showing that artefactual distributions can
be generated by high levels of expression. The translocon in
E. coli includes the SecYEG translocon which can associate with
SecDF–YajC–YidC and SecA to enable protein transport in a
reaction that is stimulated by CL (Gold et al., 2010; Schulze
et al., 2014). The GFP-fusions of SecA and SecY over-expressed
using 1% xylose are helically distributed in B. subtilis (Campo
et al., 2004) whilst expression from the native promoter Psec-
secA gives a peripherally homogeneous and septal distribution
of the fusion products in conditions in which careful high-level
expression controls show helices (Carballido-Lopez et al., 2006-
Supplementary Figure S6; Halbedel et al., 2014). This peripherally
homogeneous distribution of SecA in B. subtilis is different
from that of E. coli GFP-SecE which has a patchy subcellular
distribution (Shiomi et al., 2006). Localization of FlAsH-tagged
SecY and SecE in E. coli also shows quite different patterns
from that of B. subtilis SecA, with helix-like (patchy), polar
dots and a diffuse distribution in cells under conditions of no
induction (Gold et al., 2010); that said, the cells still have higher
levels of tagged products from the high copy number plasmid
pBAD22, even in the absence of the inducer, compared with
those from their native promoter on the chromosome, i.e., single
copy. The translocon distributions in B. subtilis and E. coli also
differ from that of the Streptococcus pyogenes translocon, which
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forms a single microdomain (Rosch and Caparon, 2005; Rosch
et al., 2007) and that of S. pneumonia D39, expressed from the
native chromosomal loci, which localizes dynamically to different
places (Tsui et al., 2011). GFP-fusions of MreB have been shown
to move, as fragmented discrete patches, perpendicular to the
long axis of B. subtilis cells using highly sensitive time-lapse
imaging (Dominguez-Escobar et al., 2011; Garner et al., 2011).
This movement of MreB did not, as one would have expected,
follow a helical pattern. Recent reports and reviews suggest
that the distribution pattern reported for E. coli MreB mainly
resembles that reported for B. subtilisMreB: a punctuated pattern
with pairs of dots or small bands generally described as helical
(van Teeffelen et al., 2011; Chastanet and Carballido-Lopez,
2012; Margolin, 2012; Errington, 2015). Indeed, MreB proteins
form elongated filamentous structures when over-produced or
when observed in late phases of growth. In virtually all older
reports describing MreB localization, inducible, mostly over-
expressed, GFP fusions were used, and observations were often
made during the late exponential stage, when the structures were
easier to visualize. This could be the case for other fusion proteins
showing polar and helix-like distributions under highly expressed
conditions. Thus, it is difficult at present to decide how many of
the proteins do indeed form long-range, helical structures at the
membrane, as noted by Margolin (2012).

Lipid–Protein Interactions
The last stage of transertion (see below) involves interaction of
nascent proteins with the polar head groups of lipids followed
by insertion into non-polar acyl-chain layer of the membrane.
Proteins with a preference for a specific polar head group
interact to form a specific domain in the membrane. Integral
inner membrane proteins with specific lipid preferences could
therefore be located in specific membrane domains (for the list
of proteins see Table 2 in the review of Fishov and Norris,
2012a). In addition, peripheral membrane proteins that associate
weakly with specific lipids could help form specific domains
and, if these proteins bind other proteins, could bring them
into the domain too. Among the peripheral membrane proteins,
there are amphitropic proteins that have two apparent locations:
one form of the protein is in the aqueous compartment of the
cytosol whilst the other form is weakly associated with the cell
membrane. Amphitropic proteins can be classified into three
major categories (Johnson and Cornell, 1999), based on the way
they associate withmembranes. The first class (A) contains motifs
with binding pockets for a lipid monomer, called lipid clamps.
The second class (B) contains lipid covalent anchors embedded
in the lipid bilayer; this class includes lipoproteins such as
the major outer membrane lipoprotein (Braun’s lipoprotein),
LolB, components of Bam complexes and RcsF with an N-
acyl chain and a diacylglyceryl moiety at the NH2-terminus
(Sankaran and Wu, 1994; Matsumoto, 2001; Suzuki et al., 2002;
Okuda and Tokuda, 2011; Shiba et al., 2012; Konovalova et al.,
2014). E. coli has 96 lipoproteins, 58% of which have completely
unknown functions (Brokx et al., 2004). The third class (C)
of amphitropic proteins contains amphipathic α-helices, which
bind to a membrane by partitioning into the membrane bilayer
such that the hydrophobic face of the protein is sequestered

away from water, yet its polar face can contact the aqueous
phase (Johnson and Cornell, 1999). The helix axis lies parallel
to the membrane surface. The weak (reversible) interaction of
the proteins with amphipathic α-helices plays an important
role in regulation of their functions. Representatives of this
class include a family of prokaryotic cytoskeletal proteins such
as MreB, MinD, and FtsA, having an amphipathic α-helix at
their NH2− or COOH-terminus (Szeto et al., 2003; Pichoff
and Lutkenhaus, 2005; Salje et al., 2011; Szwedziak et al., 2012;
Figure 4). Membrane anchoring with amphipathic helices has
yet to be reported for any eukaryotic filament (Salje et al.,
2011). It has been demonstrated recently that the nucleoid
occlusion protein of B. subtilis, Noc, also associates with the
cell membrane via an NH2-terminal amphipathic α-helix. It
occludes assembly of the division machinery by simultaneous
binding to DNA and the membrane (Adams et al., 2015). PgsA,
B. subtilis PssA (Matsumoto, 1997), and the well-understood
mammalian CTP: phosphocholine cytidylyltransferase (CCT)
have an amphipathic α-helical structure in the middle of the
protein (Cornell and Taneva, 2006). The amphipathic α-helices
that were found in DnaA (Garner and Crook, 1996; Makise et al.,
2001) are not involved in membrane association; instead, the
results of membrane retention experiment obtained with various
fragments of the protein indicated that the association is through
a concerted interaction of distant residues forming a surface
(Regev et al., 2012).

MreB is one of the key components of the bacterial
cytoskeleton that lies just underneath the membrane and
organizes the cell wall synthesis machinery. In E. coli, MreB
has an amphipathic α-helix (an 11 amino acid residue sequence
which includes two methionine, two phenylalanine, one leucine
on one face of the helical wheel and three basic residues on the
other face) at its NH2-terminus that is responsible for its location
underneath the membrane. In gram-positive bacteria and the
thermotrophic archaeum Thermotoga maritima, the counterpart
of MreB has no such helix (Salje et al., 2011) and the membrane
binding of T. maritima MreB is mediated by a small insertion
loop that contains leucine and phenylalanine (residue 93 and
94), two other hydrophobic residues, the start methionine and a
leucine (residues 1 and 2; Salje et al., 2011). MinD, plays a key role
in division site selection by protecting the poles from aberrant
positioning of FtsZ ring, and has a small amphipathic α-helix
of 8–12 residues, termed the membrane targeting sequence or
MTS, at its COOH-terminus that is conserved across eubacteria,
archaea, and chloroplasts; this MTS is essential for association
with anionic phospholipid-enriched membrane from which, in
the case of E. coli, it can be easily detached by MinE at the
appropriate time in the Min oscillation cycle (Raskin and de
Boer, 1999; Szeto et al., 2002, 2003; Mileykovskaya et al., 2003;
Vecchiarelli et al., 2014). The actin-like protein FtsA has an
MTS that comprises a conserved COOH-terminal amphipathic
α-helix of 13–14 residues (Pichoff and Lutkenhaus, 2005); FtsA
polymerizes to form an “FtsA ring.” The tubulin-like protein
FtsZ is tethered to FtsA through a COOH-terminal tail of 16
residues to polymerize to form an FtsZ ring underneath the
A-ring (Szwedziak et al., 2012; Figure 4). Work on liposome
division has shown the importance of the MTS in division. ATP
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FIGURE 4 | Crucial role of the COOH-terminal amphipathic α-helix of
FtsA in tethering FtsZ to the membrane. (A) Helical wheel diagrams of the
COOH-terminal domains of FtsA from E. coli, B. subtilis (Pichoff and Lutkenhaus
(2005), © John Wiley and Sons with permission.) and Thermotoga maritima
(prepared using Helixator-TCDB: www.tcdb.org/progs/helical_wheel.php).

Hydrophobic residues are highlighted in yellow and negatively charged residues
are highlighted in gray. (B) FtsA/FtsZ membrane-bound complex of T. maritima.
(C) The Z-ring made of polymerized tubulin-like FtsZ may be attached to the
membrane by an A-ring, made of actin-like FtsA polymers. The two cartoons are
adapted from Szwedziak et al. (2012), © John Wiley and Sons with permission.

is needed not only for the polymerization of FtsA and also for
its attachment via its MTS to lipid monolayers and to vesicle
membranes; this polymerization of FtsA caused vesicle shrinkage,
consistent with the protein facilitating division both indirectly
by interacting with FtsZ and directly by altering the membrane
(Krupka et al., 2014). A fusion of FtsZ-YFP-mts was constructed
with an MTS at its COOH-terminus to tether it directly to the
membrane; this allowed Z-rings to assemble in multi-lamellar
tubular liposomes and to generate a constriction force in the
presence of GTP without the need for any other protein (Osawa
et al., 2008). Uni-lamellar liposomes incorporating FtsA and
FtsZ-YFP produced more natural Z-rings, which constricted
liposomes and in some cases appeared to complete the division
(Osawa and Erickson, 2013). The co-polymerization of FtsZ and
FtsA is proposed to lead to bending, curvature and membrane
constriction because the subunit repeat lengths of FtsZ and FtsA
are different, being roughly 4 and 5 nm, respectively (Szwedziak
et al., 2014; Figure 4).

Membrane Curvature and Protein Location
In rod-shaped bacterial cells, negatively curved membranes
characterize the poles and parts of the developing septum. In
B. subtilis, it has been suggested that this curvature is sensed by
DivIVA (Lenarcic et al., 2009; Ramamurthi and Losick, 2009),

which is located at the septum and at mature poles and which
is responsible for the polar location of the division inhibitor
MinC/MinD via MinJ, a system different from the Min system
of E. coli (Marston et al., 1998; Bramkamp et al., 2008; Patrick
and Kearns, 2008). In cells with engineered curvature, DivIVA is
indeed located preferentially in regions of high negative curvature
(Renner et al., 2013; Figure 2F). The location of DivIVA
depends on SecA although DivIVA does not contain a signal
sequence (Halbedel et al., 2014). Instead, SecA is considered
to act as a chaperone in the folding of DivIVA, which has
essentially an α-helical structure with several coiled-coil helices
that contribute to the curvature of the DivIVA tetramer (Halbedel
et al., 2014). The crystal structure of this tetramer resembles
the crescent shape of eukaryotic BAR domains which bind
to curved membranes and also introduce curvature (Lemmon,
2008; Oliva et al., 2010; Mim and Unger, 2012). Enzyme I (EI),
which is a part of the phosphoenolpyruvate-phosphotransferase
system (PTS) responsible for the sensing and uptake of many
extracellular sugars, is located in the poles of E. coli and
B. subtilis due, it is proposed, to its affinity for negatively curved
membrane, an affinity shared by DivIVA (Govindarajan et al.,
2013). Conversely, SpoVM, a small peripheral membrane protein
with an amphipathic α-helix, associates with the positively
curved (convex) membrane surfaces of the forespore to form
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the spore coat complex with SpoVA, in the mother cell during
sporulation (Ramamurthi, 2010; Figure 2F). Recently, it has
been suggested that the actual amphipathic α-helix region of
SpoVM (26 aa) is atypical; this region is short with only 13
residues (from 11 to 23), contains only one positively charged
residue (Arg) and three Gly residues, and inserts deeply into
the membrane, unlike many amphipathic α-helix molecules that
only insert shallowly into the membrane (Gill et al., 2015).
The authors hypothesize that deep insertion of SpoVM into
membrane, which involves extensive interactions with acyl chains
to sense packing differences in differently curved membranes and
which may involve cooperative interactions with other SpoVM
proteins, drives its preferential localization onto slightly convex
membranes surface such as the outer surface of the forespore.

Transertion
In the transertion hypothesis, it is proposed that the coupled
transcription-translation of genes encoding membrane proteins
(1) structures the membranes, both physically and chemically,
and (2) positions these genes close to the membrane (Norris
and Madsen, 1995; Woldringh, 2002; Figure 1). Despite early
evidence in its favor (Binenbaum et al., 1999), this hypothesis
lacked further evidence to support it for long time. Recently,
Libby et al. (2012) have shown that the synthesis of membrane
proteins expression affects the position of chromosome loci in
E. coli cells. They observed that two genetic loci, lacY and tetA,
which encode membrane proteins, were rapidly shifted toward
the membrane upon induction whilst the chromosomal locus for
a cytoplasmic protein was not shifted; in addition, antibiotics
that block transcription and translation prevented these shifts
toward the membrane. More recently still, a radial contraction
of the E. coli nucleoids was observed immediately after the
addition of inhibitors of either transcription or translation, again
consistent with transertion normally exerting an expanding force
on the nucleoid (Bakshi et al., 2014). In the case of inhibition of
transcription and hence transertion by Rifampicin, the eventual
expansion of the nucleoid has recently been attributed to the
penetration of the nucleoid by the ribosomal subunits (Bakshi
et al., 2014; Sanamrad et al., 2014). That said, it should be
noted that transcription is the essential source of supercoiling
(particularly at high growth rates when 50–80% of active
RNA polymerases are transcribing rrn genes) which is a major
cause of nucleoid compaction; hence, inhibition of transcription
initiation with Rifampicin results in RNA polymerase run-off,
less supercoiling, and nucleoid expansion; this expansion can
happen even after nucleoid compaction by chloramphenicol
when transertion is absent (for a review, see Jin et al., 2013).

Over 1,100 genes distributed throughout the E. coli genome
are predicted to encode integral inner membrane proteins
(Bernsel and Daley, 2009) and therefore their expression could
maintain the chromosome in an expanded and dynamic state,
consistent with the transertion hypothesis. Significant numbers
of ribosome and RNA polymerase copies have been shown
by superresolution imaging to extend from the nucleoid to
the cytoplasmic membrane (Bakshi et al., 2012), indicating
that transertion exerts a direct radially expanding force on the
nucleoid (Woldringh, 2002; Woldringh and Nanninga, 2006). In

this study, however, few copies of RNA polymerase were found
near the polar caps, indicating that transertion could not occur
in the regions away from the nucleoid (polar caps) and therefore
it might seem that the radially expanding force on the nucleoid
of transertion could not be a direct axially expanding force. Such
axial expansion might, however, result from the penetration of
the nucleoid by the 30S and 50S subunits released from the
70S ribosomes following treatment with inhibitors of translation
(Bakshi et al., 2014; Sanamrad et al., 2014). It should be noted
that although less than 15% of E. coli’s ribosomes are reported
to be available to participate in transertion (Bakshi et al., 2012;
Gahlmann and Moerner, 2014), this figure does not necessarily
reflect the percentage of the ribosomes that are actually engaged
in translation. A higher percentage is likely to be available in
C. crescentus where genes and mRNA have been found to be close
to one another (Llopis et al., 2010).

There are plenty of polar membrane proteins as noted in the
previous section (see Heterogeneous Distribution of Envelope
and Envelope-Associated Proteins). Transertion is unlikely to
be an important factor in directly controlling their location
since, firstly, RNA polymerase is relatively scarce near the polar
caps and, secondly, the Sec machinery responsible for inserting
integral membrane proteins into membranes is not specifically
located in the poles in either B. subtilis (Carballido-Lopez et al.,
2006-Supplementary Figure S6) or E. coli (Shiomi et al., 2006;
Gold et al., 2010; see Heterogeneous Distribution of Envelope and
Envelope-Associated Proteins). Thus, some integral membrane
proteins (e.g., the MCPs) are inserted into the cytoplasmic
membrane around the nucleoid via the Sec machinery and then
freely migrate in the membrane to the polar regions (Shiomi et al.,
2006). One possibility is that integral membrane proteins such as
the MCPs are excluded from the transertion domains around the
chromosome because they have no affinity for the lipids in which
those domains are enriched. The reason for this is that transertion
may create a problem if it leads to the formation of an array of
MCPs of the wrong size in the wrong place. Another, recently
proposed, possibility is that polar localization of the diffused
MCPs occurs independently of the phospholipid composition of
the cytoplasmic membrane and is not be dictated by the curvature
of the cell poles, instead, MCPs interact with components of the
trans-envelope Tol-Pal complex which restricts the diffusion of
MCP arrays (Santos et al., 2014; see Transertion Problems).

In the original transertion hypothesis, the structuring of the
membrane and the tethering of genes was restricted to those
genes encoding proteins inserted into or through membranes.
Although the role of the former class of proteins (i.e., integral
membrane proteins) is easy to imagine, the latter class (i.e.,
secreted and exported proteins) is also of interest. For example,
there could be a role in transertion for Braun’s lipoprotein if the
lipid modification at the NH2-terminus of the lipoprotein were
to occur before the synthesis of the rest of the protein. Moreover,
the transertion hypothesis could be extended to genes encoding
peripheral membrane proteins such as SeqA (Slater et al., 1995;
Shakibai et al., 1998) and DnaA in E. coli (Regev et al., 2012) and
Noc in B. subtilis (Adams et al., 2015).

Finally, it has been proposed recently on entropic grounds that
transertion enables ribosomal subunits to penetrate the nucleoids
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and to initiate the more general process of co-transcriptional
translation (Bakshi et al., 2014). Co-transcriptional translation
would then protect nascent mRNA (Deana and Belasco,
2005; Deneke et al., 2013) and prevent the backtracking of
RNA polymerases (McGary and Nudler, 2013), thereby giving
transertion a key role in the optimization of transcription
and translation (Bakshi et al., 2014). In the context in which
two chemically identical chromosomes are in competition
for the transcriptional and translational apparatuses, such
optimization constitutes a positive feedback that could underpin
differentiation (Norris and Madsen, 1995; Norris and Amar,
2012).

Hyperstructures

A hyperstructure is an assembly of elements (such as genes, RNA,
proteins, small molecules and ions) that performs a function
and that constitutes a substantial proportion of the cellular
material (Norris et al., 2007a; Saier, 2013; Meyer et al., 2014).
The accumulating evidence for their existence allows them to
be classed in several ways (Norris et al., 2007b). In the case
of the membrane, the best known include those involved in
motility (such as the MCPs and flagella), lactose metabolism,
energy generation, and cell division. It has been further proposed
that a dialog between hyperstructures determines the phenotype
of the cell (Norris et al., 2014a). Here we focus on some of the
hyperstructures involved with the membrane.

Transertion Hyperstructures
The coupled transcription-translation-insertion of membrane
proteins (transertion) has been proposed to tether networks
of nascent proteins, mRNAs and genes to the cytoplasmic
membrane thereby attaching DNA dynamically to the
bacterial cell envelope (Norris, 1995; Norris and Madsen,
1995; Woldringh, 2002; Figure 1). This means that the high
level expression of a gene encoding a membrane protein
could lead to the formation of a domain in the membrane
enriched by the nascent proteins, possibly specific lipids, and
translocon complexes, along with an adjacent, highly structured
cytoplasm to give a transertion hyperstructure (Norris, 1995;
Norris and Madsen, 1995; Binenbaum et al., 1999; Woldringh,
2002).

The lac operon is an obvious candidate for giving rise to
a transertion hyperstructure. In E. coli, full induction of this
operon has been calculated to give 23 RNA polymerases on
lacZ and 5 or 6 on lacY and lacA with the ensemble of the
nascent, full length and decaying mRNAs being translated by
several hundred ribosomes (Kennell and Riezman, 1977). lacY
encodes the membrane-bound permease with an average of four
ribosomes calculated as translating the corresponding full length
mRNA (Kennell and Riezman, 1977). LacZ-encoding mRNA has
been shown to remain close to the lacZYA locus, consistent with
both transcription and translation occurring in the same place
(Llopis et al., 2010). Expression of the lac operon brings the
locus closer to the membrane and this movement depends on
the presence in the operon of lacY, consistent with transertion

(Libby et al., 2012). Hence, calculations and experiments suggest
that a transertion hyperstructure exists that comprises the lac
genes dynamically attached to tens of nascent mRNAs and to
100s of ribosomes and the nascent enzymes some of which
would be inserted into the membrane. This does not, of course,
mean that the Lac proteins once synthesized remain within the
transertion hyperstructure. Indeed, a tagged version of LacY –
albeit expressed from a plasmid – was localized to the poles
(Romantsov et al., 2010).

RNA degradation may also play a part in the dynamics of
transertion hyperstructures. Using epifluorescence microscopy
and molecular dynamics simulation, RNase E, the backbone of
the RNA degradosome, was shown to diffuse over the entire
inner membrane of E. coli to form, along with other proteins,
short-lived hyperstructures (Strahl et al., 2015). The existence
of these hyperstructures depends on the presence of the RNA
substrate (Strahl et al., 2015) so they may be considered as
functioning-dependent structures, that is, structures that form
due to their activity (Norris et al., 2007a). It should be noted
that such separation of the degradosomes from the sites of
transcription would favor nascent transcripts being translated by
polyribosomes, that is, would favor the coupling of transcription
and translation over the separation of these processes (Strahl
et al., 2015).

Transertion Problems
Transertion is not only a likely solution to many of the problems
that confront cells but also a source of potential problems. One
problem would occur if a transertion hyperstructure were to
determine, inappropriately, the size, position or composition
of another class of hyperstructure. Consider, for example, the
importance in signal transduction of the distribution of theMCPs
and related proteins into many small clusters or into one giant
cluster (Bray et al., 1998). These distribution confer different
sensitivities but this relationship could be lost if transertion were
to dominate by creating a large chemosignaling hyperstructure.
In E. coli, part of the solution may be that the genes that encode
chemotaxis proteins are located on the chromosome so that their
transertion associates them with another major hyperstructure,
that of the flagellum; it is then conceivable that differences in the
affinities of the chemotaxis and flagellar proteins for the chemical
or physical properties of lipids are responsible for the chemotaxis
proteins relocating from the flagellar hyperstructure(s) to the
poles (Cabin-Flaman et al., 2005). Consistent with this, Tar-GFP
does diffuse away from the sites where this MCP is synthesized to
the poles (Shiomi et al., 2006). It has been recently found that this
polar localization of the diffusedMCPs does not depend on either
the phospholipid composition of the cytoplasmic membrane
or the curvature of the cell poles; instead, MCPs interact
with components of the trans-envelope Tol-Pal complex which
restricts the diffusion of MCP arrays (Santos et al., 2014). The
Tol-Pal complex is also part of the cell division hyperstructure, to
which it is recruited by FtsN so as to play a role in the invagination
of the outer membrane during division (Gerding et al., 2007).

A second problem would arise if the lipid preferences of the
constituents of the transertion hyperstructure were to menace
the planar, bilayer structure of the cytoplasmic membrane. The
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reality of this danger is evident from the proteo-lipid structures
that result from the overproduction of peripheral and integral
membrane proteins (Weiner et al., 1984; Arechaga et al., 2000;
van den Brink-van der Laan et al., 2003; Eriksson et al., 2009).
In mitochondria, the bioenergetic supercomplexes are indeed in
specific membrane structures whilst in bacteria such as E. coli,
fluorescent fusions suggest that the complexes are spatially
dispersed in mobile 100–200 nm domains containing 10s–100s
of complexes (Erhardt et al., 2014; Llorente-Garcia et al., 2014).
A possible solution would be for an abundant structure such as
the ATP synthase to have subunits with complementary lipid
preferences (Arechaga et al., 2000) since even overproduction
of all eight subunits results in morphological changes (von
Meyenburg et al., 1984). Extending this argument, one might
expect different proteins to have preferences for different lipids,
which may help explain why cells have so many different lipids.
An alternative or complementary solution would be the creation
by a large, dynamic hyperstructure of many mobile domains with
an affinity for ATP synthase.

Finally, problems due to the formation of an inappropriate
transertion hyperstructure might be avoided by reducing the
time during its synthesis in which the nascent protein interacts
with the membrane; this might be achieved if, for example,
evolution were to have selected for the membrane-interacting
sequences (such as amphipathic helices) to be located at the
COOH-terminus rather than at the NH2−terminus.

Sensing
The membrane is the final frontier between the cell and its
environment so membrane-based hyperstructures are in the
right place to sense and to respond to environmental changes.
This task is not trivial. Not only do new mRNAs and proteins
have to be made but many existing mRNAs and proteins must
be degraded. There are, for example, probably over a 1000
membrane proteins in E. coli (Bernsel and Daley, 2009) and a
similar number in B. subtilis (Hahne et al., 2008; Otto et al.,
2010; van Dijl et al., 2012) and the functioning of these proteins
must be coordinated; this task is particularly difficult when major
changes in the protein composition of the membrane must
occur as during changes in growth conditions. On the entry of
B. subtilis to stationary phase, the levels of the many proteins
that increase include those involved in the uptake of glycerol,
ribose, lactate, nucleoside, succinate, fumarate and zinc whilst
the levels of those that decrease include transporters of malate,
Fe3+ citrate, Fe3+ hydroxamate, and hydroxymethylthiamine
(HMP)/thiamine transport (Otto et al., 2010). In E. coli cells
supplemented with glucose, which is the preferred carbon and
energy source, the transcriptional levels of the many genes that
increase include those involved in the import of polyamines,
inorganic phosphate and Mg2+ whilst the levels of those that are
repressed (in other words, upregulated upon glucose–starvation),
are of transporters and periplasmic receptor proteins related to
the import of alternative carbon and carbon–nitrogen sources,
which include amino acids, carbohydrates, lactate, glycerol,
peptides, dipeptides, and nucleotides (Gutierrez-Ríos et al., 2007).
This transcriptome pattern is consistent with the consequences
of carbon catabolite repression exerted by glucose (Saier et al.,

1996). The phosphoenolpyruvate-dependent PTS controls the
uptake of a large number of energetically preferred sugars.
It comprises proteins, EI and HPr, which are common to
all substrates, as well as sugar-specific permeases, enzymes II
(EIIs). Interestingly, EI and HPr are mainly located near the
poles of E. coli cell (Patel et al., 2004; Lopian et al., 2010;
Govindarajan et al., 2012). Upon addition of the sugar to the
growth medium, HPr is phosphorylated by EI; HPr-P produced
is released from the polar membranes and distributes in the cell,
though EI remains located near the poles of negatively curved
sites (Govindarajan et al., 2013; see Membrane Curvature and
Protein Location). A fraction of HPr-P gets near the membrane
to phosphorylate the permeases, allowing them to transport the
sugars into the cell and to phosphorylate them (Govindarajan
et al., 2012).

Common affinities for molecules and ions within and between
hyperstructures may help in this task of coordination. These
molecules include polyamines, poly-(R)-3-hydroxybutyrate,
polyphosphate and, of course, lipids (Norris et al., 2014b).
Polyamines, for example, bind to nucleic acids, ribosomes and
porins, and stimulate the synthesis of around 300 proteins
in E. coli that include the sigma factors RpoS, FecI, RpoN,
and related RNA polymerase omega subunit RpoZ, Cya, Cra,
Fis, H-NS and SpoT (Igarashi and Kashiwagi, 2006). These
multiple actions may allow polyamines to play an important,
coordinating, role in the survival of E. coli in the transition to
stationary phase (Terui et al., 2012; Norris et al., 2014b) and
during osmotic changes (Munro et al., 1972).

Similar global regulatory roles can be ascribed to CL and an
increase in CL levels has been proposed as a general physiological
response that protects microorganisms from lysis due to osmotic
stress (Catucci et al., 2004) and, in line with this, an increase
in osmolality leads to transcriptional activation of the cls gene
in E. coli (Romantsov et al., 2007). This increase in CL and its
distribution to the poles was correlated with the polar distribution
of the osmosensory transporter ProP which actively transports
osmo-protectants into the cell (Mileykovskaya, 2007; Romantsov
et al., 2007). In such coordination of lipid metabolism with
the environment, the formation of a hyperstructure containing
membrane components may help. Acyl carrier protein (ACP),
a small protein of 9 kDa, interacts with diverse proteins
associated with many biosynthetic pathways, including enzymes
involved in synthesis of fatty acid in the cytoplasm as well
as enzymes on or in the membrane involved in phospholipid
or LPS synthesis; the latter assocations could account for
the partial localization of ACP with E. coli membranes. Two
enzymes involved in phospholipid synthesis, PlsB, a sn-glycerol-
3-phosphate acyltransferase and PssA, a PS synthase, have
been shown to interact with ACP and YbgC, an acyl-CoA
thioesterase involved in fatty acid synthesis, using a tandem
affinity purification method (Gully and Bouveret, 2006). E. coli
PssA, which has a preference for acidic phospholipids, exists as
both a membrane-associated active form and a cytoplasmic latent
form and is at the heart of a cross-feedback regulation of the
synthesis of zwitterionic (PE) and acidic phospholipids (Shibuya,
1992; Okada et al., 1994; Saha et al., 1996a; Matsumoto, 1997;
Rilfors et al., 1999; Figure 5A). Bacterial two-hybrid analysis has
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shown that the enzymes in the phospholipid synthetic pathway,
PlsB-PssA and ACP, form a complex in/on the inner membrane
and further that YbgC, a fatty acid synthesis enzyme, and PlsB,
form a complex in association with ACP (Gully and Bouveret,
2006). Thus, physical interactions between many of the enzymes
responsible for fatty acid synthesis and phospholipid synthesis
could form a hyperstructure to help coordinate lipid metabolism.

Sensing changes in nutrient availability entails bacteria
transmitting this information to flagella hyperstructures to
perform chemotaxis (see Transertion Problems) and to the
division apparatus to regulate their size, grow faster and become
larger when they are grown in nutrient-rich media. UgtP, a
glucosyltransferase responsible for the synthesis of glucosylated
diacylglycerols, one of which is the anchor of LTA synthesis, is
localized, in a dot-pair structure similar to that of the open ring of
FtsZ, to the division site in B. subtilis (Nishibori et al., 2005). UgtP
is a division inhibitor, which prevents assembly of FtsZ andwhich
results in an increase in the length of the cells under nutrient-
rich conditions (Shiomi and Margolin, 2007; Weart et al., 2007;
Figure 5). It has been proposed that UDP-glucose acts as a
proxy for nutrient availability and modulates the equilibrium
between the UgtP–UgtP oligomer and the UgtP-FtsZ complex
thereby serving as a molecular rheostat to help ensure that cell
size is precisely co-ordinated with growth rate and nutrient
availability (Chien et al., 2012). OpgH, a glucosyltransferase, is
an integral membrane protein in the inner membrane of E. coli
that is involved in the synthesis of osmoregulated periplasmic
glucans, OPG (MDO); recently, OpgH has been localized to
the division ring and shown to inhibit FtsZ assembly in the
presence of UDP-glucose so as to delay the timing of cell
division (Hill et al., 2013; Figure 5A). These two, very different,
bacteria employ unrelated glucosyltransferases – a peripheral
membrane enzyme for LTA synthesis in B. subtilis and an integral
inner membrane enzyme for OPG synthesis in E. coli – that
both have the second, “moonlighting,” function of coupling
nutrient availability to cell division by regulating FtsZ assembly
(Hill et al., 2013). Disruptions of the moonlighting function of
UgtP not only affect cell length: ugtP null mutants, which lack
glucolipid products of the UgtP-catalyzed reaction, membrane
glucolipids, are rounder (Price et al., 1997) and abnormally bent
and distended (Lazarevic et al., 2005; Matsuoka et al., 2011a).
Moreover, the extracytoplasmic function (ECF) σ factors, σM,
σV, and σX are constitutively activated (Salzberg and Helmann,
2008; Matsuoka et al., 2011a; Hashimoto et al., 2013), consistent
with glucolipids directly influencing anti-σM and anti-σV factors
by stabilizing conformations that sequester the respective ECF σ

factors (Seki et al., 2015).
A two-hybrid-based investigation of interactions between the

components of cell division machinery (27 proteins) and the
enzymes involved in lipid synthesis (12 enzymes) in B. subtilis has
revealed that FtsA interacts with PlsX (Takada et al., 2014). PlsX
is an acyl-ACP:phosphate acyltransferase that synthesizes acyl-
phosphate, an essential substrate for lysophosphatidic acid (LPA)
production by PlsY, an acyltransferase that uses acyl-phosphate
for the first acylation of sn-glycerol-3-phosphate (G3P); these
are novel enzymes in a unique LPA synthesis pathway found
in prokaryotic but not in eukaryotic cells (Lu et al., 2006;

FIGURE 5 | Lipid biosynthetic pathways and interactions of
phospholipid synthases and proteins involved in cell division.
(A) Phospholipid biosynthetic pathway in E. coli. The gene product catalyzing
each step is indicated. Abbreviations used are: G3P, glycerol-3-phosphate;
LPA, lysophosphatidic acid; PA, phosphatidic acid; acyl-PO4, acylphosphate;
acyl-ACP, acyl acyl-carrier protein; CDP-DG, (d)CDP-diacylglycerol; PS,
phosphatidylserine; PE, phosphatidylethanolamine; PGP,
phosphatidylglycerophosphate; PG, phosphatidylglycerol; CL, cardiolipin;
OPG, osmoregulated periplasmic glucans (or MDO); UDP-gluc, UDP-glucose;
DG, diacylglycerol; Lpp, major outer membrane lipoprotein; proLpp,
prolipoprotein. Trace activities of PlsX-PlsY for LPA synthesis in E. coli (Lu
et al., 2006/Hara et al., 2008) were indicated with thin letters and dotted
arrows, different from those of the major pathway in B. subtilis. For Cls
homologues, ClsA and ClsB, refer to Tan et al. (2012). Interaction of OpgH (a
glucosyltransferase) and FtsZ indicated with thick arrow is from Hill et al.
(2013); see Sensing). Activation of phosphatidylserine synthase, PssA, with
acidic phospholipids indicated with thick dotted arrow is adapted from
Shibuya (1992) and Matsumoto (1997). Interaction of PlsB and PssA is from
Gully and Bouveret (2006), but to avoid apparent complexity the interactions
between PlsB, ACP and YbgC, an Acyl-CoA thioesterase, shown by the
authors, are not depicted. (B) Biosynthetic pathways for phospholipids,
glucolipids and LTA in B. subtilis. Abbreviations used are: lysylPG,
lysylphosphatidylglycerol; MGDG, monoglucosyldiacylglycerol; DGDG,
diglucosyldiacylglycerol; TGDG, triglucosyldiacylglycerol; LTA, lipoteichoic
acid; DHAP, dihydroxyacetone phosphate. For other abbreviations refer to (A)
for E. coli. The pathway is adapted and compiled from Jerga et al. (2007) and
Matsuoka et al. (2011b). For LtaS homologues (YflE, YfnI, YqgS and YvgJ)
refer to Gründling and Schneewind (2007), Matsuoka et al. (2011b) and

(Continued)
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FIGURE 5 | Continued

Hashimoto et al. (2013). Interactions of FtsA and PlsX, and PlsY, both indicated
with thick arrows, are from Hara et al. (2008) and Takada et al. (2014),
respectively, but to avoid apparent complexity the interaction of PlsX with EzrA,
DivIA and others, shown by the authors, are not depicted. Interaction of UgtP
(a glucosyltransferase) and FtsZ indicated with thick arrow is from Weart et al.
(2007) and Chien et al. (2012); see Sensing).

Paoletti et al., 2007; Yoshimura et al., 2007, and Hara et al.,
2008; Figure 5B). In vivo cross-linking shows that PlsX interacts
with cell division proteins (EzrA, DivIVA), cytoskeletal proteins
and several metabolic enzymes, in addition to FtsA. PlsX is
in a punctuated pattern in the peripheral membrane and is
present at potential division sites independently of FtsA and FtsZ.
Inactivation of PlsX leads to aberrant Z-ring formation. Thus,
the key enzyme for phospholipid metabolism interacts with the
cell division machinery in order to complete septum assembly
(Takada et al., 2014). Although PlsX interacts with PlsY, many
other enzymes involved in phospholipid synthesis, which localize
in the septal region (Nishibori et al., 2005), do not interact with
it, except MprF that synthesizes lysylPG (Takada et al., 2014).
Depletion of PlsX leads to the cessation of both fatty acid and
phospholipid biosynthesis (Paoletti et al., 2007; Yao and Rock,
2013).

Cell Cycle
Transertion may help provide solutions to the problems of
coupling growth to the cell cycle, of triggering chromosome
replication, and of coupling chromosome segregation spatially
and temporally to cell division. The first problem, the way in
which growth is coupled to the cell cycle, has been a mystery that
has lasted for over half a century (Schaechter et al., 1958; Osella
et al., 2014). Many different metabolic processes occur during
growth and these processes are needed for the synthesis of RNA,
proteins and lipids. These processes come together in transertion,
which is therefore well-placed to integrate metabolic information
(Fishov and Norris, 2012b). Moreover, transertion is a primary
determinant of the structure and composition of the membrane,
which is central to the initiation of DNA replication, segregation
and cell division, as well as to the structure of the chromosome,
which is kept in an expanded state (Woldringh et al., 1995;
Libby et al., 2012). Hence transertion is also well-placed to
couple growth to the cell cycle. Consistent with this, major
effects of transertion on the microviscosity of the membrane
have been shown via inhibition of transcription and translation
(Binenbaum et al., 1999). The second problem, the nature of
the mechanism that initiates chromosome replication, is another
long-standing mystery (Eliasson and Nordström, 1997; Wang
et al., 2011). This mechanism in E. coli is generally attributed
to the relative proportions of the DnaA ‘initiator’ protein in the
ATP-DnaA form, which is active in initiation, and the ADP-
DnaA, which is inactive (Castuma et al., 1993). The reasons
to invoke lipids in a DnaA-based control of initiation include
the involvement of unsaturated fatty acids in initiation (Fralick
and Lark, 1973), the promotion of formation of ATP-DnaA in
vitro by anionic phospholipids (Castuma et al., 1993) and the

association of 10% of the DnaA in a cell with the membrane
(Regev et al., 2012). Given its role in determining membrane
dynamics, transertion may well lie at the heart of the initiator
mechanism and act via DnaA and, more generally, via promoting
strand separation (Norris and Amar, 2012).

The third problem, the coupling between chromosome
segregation and cell division, is essentially a membrane problem
in the sense that the cell must arrange for the membrane to
invaginate and separate segregated chromosomes. One role for
transertion may be to create membrane domains in a particular
physico-chemical state around the segregating chromosomes
such that a different, ‘septal’ domain forms by default between
them (Norris, 1995; Woldringh, 2002; Norris et al., 2004). This
septal domain might then generate tubular or other structures
that would recruit and activate division proteins. This hypothesis
is supported by evidence for cell cycle variations in the lipid
composition of E. coli (Mozharov et al., 1985) and in the spatial
distribution of the lipids of Micrococcus luteus (Welby et al.,
1996), for the CL-rich domains at the division sites of E. coli
(Mileykovskaya and Dowhan, 2000; Koppelman et al., 2001)
and B. subtilis (Kawai et al., 2004), and the septal location
of the polyunsaturated fatty acid eicosapentaenoic acid of
Shewanella livingstonensis Ac10 (Sato et al., 2012). Significantly,
distinct domains appear around and between the segregating
chromosomes at a very early stage of the cell cycle in E. coli
and these domains disappear when translation – and hence
transertion – is abolished (Fishov andWoldringh, 1999). Division
is inhibited by the Min system and lipids are again important
(Suefuji et al., 2002; Kretschmer and Schwille, 2014). The NH2-
terminal domain of MinC perturbs the interactions between FtsZ
monomers within an FtsZ polymer, while the COOH-terminal
domain perturbs the lateral association of FtsZ protofilaments
as well as interacting with MinD, for references see Kretschmer
and Schwille (2014); MinD is a peripheral membrane-binding
protein with an ATPase activity that is activated byMinE and that
triggers the detachment of MinD from the membrane to prevent
MinCD from inhibiting division; MinE may self-assemble on the
membrane via an N-terminal helix that acts as an MTS. The idea
is that, in E. coli, MinD binds cooperatively to the membrane
at one pole with MinE forming an “E-ring” on the rim of this
MinD zone that induces its disassembly leading to the diffusion
of MinD and MinE and repetition of this assembly disassembly
process at the other pole; MinC follows these oscillations ofMinD
andMinE to inhibit division (Rowlett andMargolin, 2013; Zheng
et al., 2014 and references therein). In vitro and in vivo, MinD
interacts with anionic lipids, which determine its distribution
(Mileykovskaya et al., 2003), as does MinE (Vecchiarelli et al.,
2014). In the case of the E. coli MinD introduced into B. subtilis,
MinD makes spirals that coincide with the spirals of what
are probably anionic phospholipids (Pavlendova et al., 2010).
Moreover, MinD can convert phospholipid vesicles into tubes
(Hu et al., 2002), consistent with the possible importance of
phospholipid structures in nucleating division (Norris et al.,
2004; Li et al., 2011). Finally, in spherical E. coli cells, FtsZ
is associated with intracellular membraneous structures and
MinD accumulates and oscillates between the places where these
structures form (Bendezú and de Boer, 2008).
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The 2 min or dcw cluster includes 16 genes, such as ftsZ,
involved in peptidoglycan synthesis and cell division, and the
promoter at the start of the cluster probably contributes to the
transcription of the whole cluster, leading to the synthesis of
a quite long mRNA (Hara et al., 1997; Mengin-Lecreulx et al.,
1998; Vicente et al., 1998). Transertion of this cluster may
therefore be an important factor in the spatio-temporal control
of division. Transertion structures not only the membrane
but also the cytoplasm thereby raising the possibility that
chromosome segregation is accompanied by a phase separation
in the cytoplasm that affects membrane dynamics and drives cell
division. Hence, it is significant that phase separation of dextran
and polyethylene glycol within giant vesicles leads to tubes of
membrane forming at their interface (Li et al., 2011).

If transertion from the dcw cluster is indeed important, what
is the consequence of having transertion from two clusters
(one per segregating chromosome)? Are the lipid preferences
of the secretion machinery different from those of the proteins
encoded by this cluster so that the domain-producing potential of
transertion is reduced? In bacterial L-forms, which lack a cell wall,
it might be supposed that the requirement for many of the dcw
genes would be reduced and less transertion would occur. This
would be consistent with the findings that, in L-forms of E. coli,
some of the genes were mutated (Siddiqui et al., 2006) and the
levels of FtsZ were fivefold lower (Onoda et al., 2000) whilst in an
L-form of B. subtilis FtsZ could be eliminated altogether (Leaver
et al., 2009).

Discussion

The different ways of making membrane domains include
lipid–lipid, lipid–protein, protein–protein, and polyamine–lipid
interactions. By integrating these interactions, transertion plays a
central role in the organization of the bacterial cell. It might even
be argued that transertion helps provide a conceptual context
for thinking about a plethora of intracellular events, structures
and processes including the regulation and execution of the cell
cycle, hyperstructure dynamics and the origins of life. In 1989, the
term ‘nucleoid occlusion’ was coined to describe the inhibitory
effect of the nucleoids on cell division (Cook et al., 1989) and
it was suggested that nucleoid occlusion “may be related to a
transcription or translation activity of the nucleoid” (Mulder and
Woldringh, 1989). A few years later, it was proposed that the
coupled transcription-translation-insertion of nascent proteins
into and through membrane (i.e., transertion) is the mechanism
responsible for nucleoid occlusion (Norris, 1995; Norris and
Madsen, 1995; Woldringh, 2002). In this proposal, transertion
creates membrane domains at the right times and in the right
places not only to control chromosome replication, segregation
and cell division but also to create the positive feedback needed
for differentiation (Norris, 1995; Norris and Madsen, 1995;
Binenbaum et al., 1999; Norris et al., 2004; Norris and Amar,
2012). Recently, it has been suggested that the role of transertion
in nucleoid occlusion is complemented by the recruitment of Noc
nucleoprotein complexes and associated DNA to the membrane
(Adams et al., 2015).

Transertion can generate hyperstructures (Norris et al., 2007a;
Llopis et al., 2010). Such transertion hyperstructures form a
large class that, along with the other classes of hyperstructures,
constitute the bacterial cell. The exact conformation of
transertion hyperstructures is unknown but could be very
important in bacterial cell physiology if, as proposed, interactions
between hyperstructures were to be the primary determinants of
the phenotype (Norris et al., 2007a). For example, interactions
based on the condensation and decondensation of ions
(Manning, 2007) might enable transertion hyperstructures
containing membrane domains and/or linear assemblies of
macromolecules to drive the cell cycle (Norris and Amar, 2012)
whilst the kinetics of the reactions in the vicinity of a membrane
domains are likely to be different from elsewhere, possibly due to
the structuring of water (Wichmann et al., 2003).

Transertion may help explain the controversial existence
of many spiral hyperstructures (Errington, 2015). Suppose
a particular protein has a tendency to form a spiral via
protein–protein and protein–lipid interactions. In the absence
of transertion, this tendency may result in a spiral whereas, in
the presence of transertion, the high concentration of nascent
proteins and associated lipids in a circular membrane domain
may compete effectively for the mature proteins and thereby
prevent a spiral forming. Alternatively, transertion might help
generate a protein spiral if the ensemble of gene, nascent RNA
(and perhaps mature RNA) were constrained to be essentially
linear via RNA–RNA interactions etc. Given the potential of a
transertion hyperstructure for altering the morphology of the
membrane or for directing a protein to the wrong location,
avoidance of these inappropriate results of transertion may act
as a powerful factor in evolution that affects both the position
in a protein of membrane-interacting sequences and the type of
translocon with which the nascent protein interacts.

Finally, several coupled processes in addition to transertion
exist inmodern bacteria. These include transcription-translation-
assembly as in the case of ribosome synthesis (Woldringh and
Nanninga, 1985; French and Miller, 1989; Norris et al., 2007a;
Cabrera et al., 2009) and transcription-replication as in the case
of initiation of DNA replication and DNA repair (Kogoma,
1997; McGlynn, 2010). It might therefore be expected that these
processes in their coupled forms would have played a role in the
origins of the first cells. This has been suggested for transertion
based on its force-generating properties, which are responsible
for expanding the nucleoid in modern bacteria (Woldringh et al.,
1995; Cabrera et al., 2009; Libby et al., 2012; Bakshi et al., 2014): in
this scenario, transertion would have helped maintain membrane
integrity in early cells and have been of selective value even
without the advantages of coding (Norris et al., 1999).
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