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ABSTRACT: The large design space of the sorbents’ structure and the associated capability of tailoring properties to match process
requirements make adsorption-based technologies suitable candidates for improved CO2 capture processes. This is particularly of
interest in novel, diluted, and ultradiluted separations as direct CO2 removal from the atmosphere. Here, we present an equilibrium
model of vacuum temperature swing adsorption cycles that is suitable for large throughput sorbent screening, e.g., for direct air
capture applications. The accuracy and prediction capabilities of the equilibrium model are improved by incorporating feed-forward
neural networks, which are trained with data from rate-based models. This allows one, for example, to include the process
productivity, a key performance indicator typically obtained in rate-based models. We show that the equilibrium model reproduces
well the results of a sophisticated rate-based model in terms of both temperature and composition profiles for a fixed cycle as well as
in terms of process optimization and sorbent comparison. Moreover, we apply the proposed equilibrium model to screen and
identify promising sorbents from the large NIST/ARPA-E database; we do this for three different (ultra)diluted separation
processes: direct air capture, yCOd2

= 0.1%, and yCOd2
= 1.0%. In all cases, the tool allows for a quick identification of the most

promising sorbents and the computation of the associated performance indicators. Also, in this case, outcomes are very well in line
with the 1D model results. The equilibrium model is available in the GitHub repository https://github.com/UU-ER/
SorbentsScreening0D.

■ INTRODUCTION
In Samuel Beckett’s play “Waiting for Godot”,1 two characters,
Vladimir and Estragon, manage to keep the audience’s attention
while nothing happens: indeed, Godot never arrives. Few would
disagree that the play somehow represents the story of CO2
capture and storage (CCS): since the early 2000s, CCS has
taken on a role in key climate mitigation technology but has so
far failed to deliver the required CO2 capture capacity. However,
as we keep burning fossil fuels to match the increasing energy
demand,2 a timely and cost-effective decarbonization will be
relying more and more on CCS.3 In order to limit global

warming to 2 °C, the amount of CO2 captured needs to increase
from the current 40 Mt per year to 1070 in 2030 and 7600 in
2050.2 Notably, 70 Mt per year in 2030 and 630 Mt per year in
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2050 need to be removed from the air using engineered
technologies, for example, via direct air capture (DAC). While
these figures may seem daunting, it is clear that the role of CCS
in the energy system is becoming more and more essential. Even
if the under performance of CCS is just remotely connected to
technical reasons, one could say that CO2 separation processes
are complex but also offered commercially with warranties by a
few companies, it is important to keep improving CO2 capture
technologies; the scale of deployment simply asks us for it. This
is particularly true when considering gases with (ultra)diluted
CO2 concentrations, e.g., DAC. Not surprisingly, the academic
and industrial interest in DAC is growing significantly.4−10 If we
look at the DAC industrial and scientific landscape, separation
based on solid sorbents has so far attracted most of the attention
and has been successfully demonstrated at the relevant scale.11,12

Moreover, significant scientific efforts are directed toward the
development of new, better performing sorbents for
DAC.10,13,14 At the same time, adsorption-based technologies
are being developed and researched for CO2 capture from point
sources, from flue gas to syngas to steel work gases.15,16

While several studies investigate, from a process and material
perspective, the development of better performing sorbents for
CO2 capture from point sources, there are no works, to the best
of our knowledge, that do so in the realm of diluted CO2 sources,
e.g., DAC.
The choice of the adsorbent is indeed a key factor for the

optimal design of a capture process, and several research groups
have developed computational techniques to design new
sorbents and to characterize their thermodynamic (and
transport) properties.17−19 Hundreds of thousands of theoreti-
cal sorbent materials have been simulated and could in principle
be synthesized, provided the right experimental processes are
available and the theoretical crystal is stable. On the other hand,
the availability of all these theoretical materials requires a
suitable screening procedure, which needs to be fast and
accurate enough to provide a reliable ranking. To this end,
different approaches exist. A first, simple approach is the
calculation of characteristic parameters, like the working
capacity or the heat of adsorption, on the basis of the isotherm
data of the materials.20−22 While this analysis can be extremely
fast, the results only provide a rough overview about the
suitability of the materials. For a more reliable understanding, a
process-based analysis is required.23−26 Ideally, for every
sorbent, a detailed process simulation combined with process
optimization is carried out; however, such a framework is
computationally expensive and may take up to several days per
sorbent.27,28 Two main alternatives exist to speed up the
screening. On the one hand, a rigorous process simulation can be
coupled to machine learning techniques, for example, in the
convergence to cyclic steady state. Recently, Pai et al.29

developed a generalized data-driven surrogate model that well
reproduces a PSA/VSA process. The framework makes use of a
dense feed forward neural network and can significantly reduce
the simulation and optimization time while showing a high
accuracy. The data-driven model is trained using the simulation
results of different sorbents and operating conditions and can be
used as a screening tool, as long as the CO2 and N2 adsorption
isotherm of the material can be described by the implemented
numerical adsorption model. This approach shows great
potential for bridging the simulation, optimization, and sorbent
screening; however, it requires a large representable data set for
training and testing the algorithms. The second, more traditional
approach is to simplify rate-based process simulations using

equilibrium. In this case, simpler models are used to solve the
material and energy balances. A few key works are available in
the literature that demonstrate the potential of equilibrium-
based simulations. In their seminal work, Maring and Webley30

developed a simplified pressure/vacuum swing adsorption (P/
VSA) model for a binary mixture. They adopted a well-mixed
bed approach for the cycle, consisting of three steps: blow-down,
repressuration, and adsorption. To further simplify the model,
they assumed adiabatic operation and equilibrium between the
adsorbed and gas phases. In addition, they proposed an
approach to directly calculate the cyclic steady state (CSS).
The model was validated for postcombustion CO2 capture by
VSA against rate-based numerical simulations; four different
types of sorbents were tested. More recently, Subramanian
Balashankar et al.31 expanded the approach of Maring and
Webley30 by treating the process as isothermal and by
considering different VSA cycle configurations, which included
blow-down, evacuation, pressurization, and adsorption steps.
Notably, the model was used to screen 197 adsorbents from the
NIST/ARPA-E database for CO2 capture application. When
looking at the temperature swing adsorption (TSA) landscape,
Joss et al.32 developed a shortcut model for a four step TSA cycle
and binary mixture. No spatial gradients were considered in the
model, and the partial differential equations were reduced to
ordinary differential equations. In addition, the model directly
calculates the CSS semi-analytically, which reduces the
computational complexity. More recently, Ajenifuja et al.33

further developed the work of Maring and Webley30 and Joss et
al.32 and presented an equilibrium model to quickly scan
adsorbents using a three-step TSA cycle. Instead of using partial
differential equations, a set of nonlinear algebraic equations is
used for mass and energy balances, which reduces the
computational time. The methodology is applied to screen 75
adsorbents for the capture of CO2.
With this work, we further contribute to the topic of

equilibrium-based modeling tools for computationally efficient
analysis of adsorption processes. The framework we present
builds upon the excellent works discussed above and further
extends them by

• Bridging the equilibrium-based approach to machine
learning; i.e., we improve the accuracy and prediction
capability of an equilibrium model using neural networks.
This allows, for example, us to include the productivity as
key performance indicator and to consider saturation
levels in the bed during adsorption below 100%.

• Modeling a vacuum-temperature swing adsorption cycle;
i.e., we add the vacuum step to the TSA cycle.

• Considering a ternary mixture as feed where CO2 is not
necessarily the most retained gas; i.e., we add H2O
adsorption, which is often the most adsorbed species in
CO2 capture with V/TSA.

• Including multiple CO2 isotherm types in the model, i.e.,
Toth, extended Toth model (Toth-cp), Langmuir−
Freundlich, dual-site Langmuir (DSL), and s-shaped
isotherm model.

• Applying the tool to dilute or ultradilute CO2
concentrations, i.e., from CO2 capture from air to flue
gas with 1% CO2.

The model that we present here is benchmarked with a well-
established detailed 1D VTSA model. Furthermore, we apply
the proposed method to efficiently scan the NIST/ARPA-E
Database of Novel and Emerging Adsorbent Materials (NIST-
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ISODB) in search of promising sorbents to capture CO2. The
NIST-ISODB database is the world’s largest public collection of
experimental gas adsorption isotherms.34 It includes over 30 000
isotherms for a wide range of adsorbent materials including
MOFs, COFs, zeolites, activated carbons, and amorphous
porous polymers and serves as basis for several data-driven
analyses.35,36 In addition, we complement the NIST database
with adsorbents data from publications that have not been
included yet.23,37,38

This paper is organized as follows: in Equilibrium Model for
VTSA, we describe the 4 step VTSA process and the
mathematical modeling framework of the 0D model. In
addition, an overview of the key performance indicators is
given. InModel Validation, the 0Dmodel is validated against the
rate-based model by comparing the performance for a specific
simulation (e.g., in terms of time steps and temperatures) as well
as optimizing the results. Finally, in the Sorbents Screening
section, themodel is applied for the screening of more than 2100
materials for CO2 capture from diluted sources.

■ EQUILIBRIUM MODEL FOR VTSA
The VTSA cycle considered in this work is shown in Figure 1
and consists of four steps: adsorption, blow-down, heating, and
cooling. This is a slightly simplified version (i.e., no preheating
step) of the VTSA cycle adopted for CO2 capture from air in
Sabatino et al.38 Moreover, we consider a feed stream consisting
of three components, i.e., CO2, H2O, and N2, where CO2 and
H2O can adsorb, while N2 is treated as an inert. It is worth noting
that the model can be adapted to consider additional gas species.
Different from other simplified models,30,31,33 the targeted
species is not necessarily the strongly adsorbed one but can also
be the weakly adsorbed component; i.e., H2O typically shows a

higher adsorption capacity than CO2 when using materials of
interest for CO2 capture from diluted streams.
The model builds upon the approach presented in previous

works,30,31,33 where the key model assumptions are (i) the bed is
treated as a well-stirred reactor, (ii) the gas and the solid phases
are in equilibrium during all steps of the cycle, (iii) the gas phase
behaves like a perfect gas, and (iv) the pressure drop in the bed
as well as (v) heat transfer resistances are negligible.
Accordingly, at any time instant, the total amount of moles of
component i in the bed Ni,total is calculated from the number of
moles in the solid (s) and in the fluid (f) phase

= +N t N t N t( ) ( ) ( )i i i,total ,s ,f (1)

with

= *N t m q y p T( ) ( , , )i i i,s s (2)

=N t
pyV

RT
( )i

i
,f

c

(3)

where p is the pressure in the column, yi is the mole fraction of
species i, Vc is the column volume, ϵ is the void fraction, R is the
universal gas constant, T is the temperature,ms is the mass of the
adsorbent, and * =q f y p T( , , )i i , the equilibrium adsorbed

amount. *qi can be calculated from any suitable isotherm; in
this work, we have implemented multiple isotherm equations so
as to include in the screening as many materials from the NIST
database as possible: Toth, extended Toth (Toth-cp),
Langmuir−Freundlich, dual site-Langmuir (DSL), and s-shaped
isotherms. The detailed equations can be found in Table S12.
The overall material balance considering the column and the
flows entering/leaving can be written as

Figure 1. Simplified VTSA cycle. Indirect heating and cooling are performed with an open end or open entrance, respectively. The temperature and
pressure profiles are indicative.
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=N t N t N t N t( ) ( ) d d
i

i
i

i
t

t

t

t

,total f ,total 0 in out
f f

0 0

(4)

The material balance is complemented by the energy balance,

which can be written as

= + | |

m c T t T t

Q t N t N t H

( ( ) ( ))

d ( ( ) ( ))
t

t

i i
i

n

i

s p,s f 0

,s f ,s 0 ads,
f

0 (5)

whereQ is considered positive when entering. The isosteric heat
ΔHads,i is calculated using the Clausius−Clapeyron equation:

=
p

T

H

RT

ln i iads,
2

i
k
jjjjj

y
{
zzzzz (6)

It is worth noting that the specific heat capacities of the gases
are considered negligible with respect to the specific heat of the
solid material and, therefore, excluded from the energy balance.
In the following, we discuss how the material and energy

balances are written and solved for each step in the cycle. The
overall resolution strategy with known/unknown variables is

Figure 2. Architecture of the equilibrium model.
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also shown in Figure 2. Amore detailed list of the equations used
in each step (derived from the previous balances) are reported in
Table S5. Similar to previous works, the starting point of the 0D
simulation is the end of the adsorption, i.e., the blow-down step
in our cycle. However, we propose a different approach for the
resolution, which allows us to include the process productivity in
themodel despite using equilibrium as well as to better represent
real bed operation. This is enabled by the targeted use of neural
networks, as explained in the following.
Blow-Down Step. During the blow-down step, the total

amount of gas leaving the column,Nout, and the gas composition,
yi, as well as the temperature, T, are calculated. The initial
temperature and pressure are the same as that during adsorption,
i.e., ambient conditions. When a vacuum is applied, a waste
stream consisting mainly of the species present in the fluid phase
is produced. Heating could also be applied to optimize the cycle,
but given the difference in typical times of pressure and heat
exchange, we neglect this and keep the model significantly
simpler.
For the resolution of this step, the material and energy

balances are solved for a discrete number of substeps, where the
pressure is gradually decreased and gas is extracted from the bed
until pvac is reached. The pressure follows a time profile obtained
from detailed 1D simulations, and it is temperature and material
independent. Therefore, the material and energy balances for
every step k of the blow-down are written as

=N y N Ni
k

i
k k

i
k

,total
1

out ,total (7)

= | |m c T T N N H( ) ( )k k

i
i
k

i
k

i
k

s p,s des des
1

CO ,H O

,s
1

,s ads,

2 2

(8)

where the superscript k refers to the current step of the blow-
down and k− 1, to the preceding step.Nout is the total amount of
gas that is removed from the column, and it is calculated for
every step k. Since N2 is treated as an inert, =N 0N ,s2

and
therefore only considered as present in the fluid phase. As for the
energy balance, cp,s is the specific heat capacity of the sorbent;
Tdes is the desorption temperature, and ΔHads,i is the isosteric
heat of adsorption for every species i adsorbing (i.e., H2O and
CO2).T

k
des is calculated numerically from the energy balance for

each substep kwhileΔHads,i is computed for each substep k using
the Clausius−Clapeyron expression, and, as suggested by Joss et
al.,33 is approximated by including the temperature, pressure,
and composition from the previous substep k − 1, i.e.,

=H f y p T( , , )i
k

i
k k k

ads,
1 1 1 . More details can be found in

SI Section 1.6. The time length of the blow-down is directly
retrieved from the vacuum pressure profile (see SI Section 1.1).
In previous works,30,31,33 the initial conditions of the blow-

down step were set assuming that full bed saturation was reached
during the adsorption step. However, full saturation is hardly
achieved in fixed bed separations, as the front of the targeted
species propagating in the bed is not perfectly sharp. Therefore,
depending on the process specifications and characteristics, a
certain level of undersaturation is always present in the bed,
which affects the amount of targeted species that can be
recovered. Here, we propose to overcome this intrinsic
limitation of equilibrium models by computing the saturation
level α via a neural network (NN) trained with rate-based
simulations:

= T p VNN( , , , )p des vac feed (9)

In the following section, we provide more details about the
neural networks. Accordingly, a level of saturation below 100%
in the bed is assigned at the beginning of the blow-down,
depending on the particle density, ρp, the desorption temper-
ature, Tdes, the vacuum pressure, pvac, and the volume feed
stream, Vfeed.
Heating Step. During the heating step, the total amount of

gas leaving the column, Nout, and the gas composition, yi, as well
as the external heat provided, Qheating, are calculated. The
pressure is kept constant at pvac during the whole step while the
temperature is increased following a preassigned profile, which is
calculated by fitting data from rate-based simulations. In
contrast to the pressure profile, which is only dependent on
the starting and end pressure, the temperature profile is
dependent on the start and final temperature, the density and
the heat capacity of the adsorbentmaterial, and the bed pressure.
Moreover, the length of the heating step is calculated via a
dedicated neural network, whose training data are the same as
that used for the saturation level. More details can be found in SI
Section 1.2.
The material balance solved during heating is shown in eq 4,

while the energy balance needs to be extended to include the
external heating, Qheating:

= | |

+

Q N N H

m c T T

( )

( )

k

i
i
k

i
k

i
k

k k

heating

CO ,H O

,s ,s
1

ads,

s p,s des des
1

2 2

(10)

As for the blow-down, the differential equations of the
isosteric heat of adsorption are presolved at each substep, k,
using the pressure, temperature, and composition from the
previous substep, k − 1 The initial conditions of the heating are
the final conditions of the blow-down, and the heating step is
calculated until the final desired temperature is reached.
Cooling Step. During the cooling step, the exit valve is

closed and the system is repressurized with ambient air and
cooled by an external cooling. The initial conditions of the
cooling step are equal to the final state of the heating step. The
composition of the three components, yi, the air required for
repressurization, Nin, and the amount of cooling, and Qcool, are
calculated. Similar to the previous steps, the repressurization and
cooling proceeds incrementally by adding a small amount of air
during each substep. The length of the cooling and the
temperature/pressure profile are fixed according to the 1D
model (more details can be found in SI Section 1.1). The cooling
step is calculated until T k

des reaches Tamb, and the following
balance equations are used

+ =
= =

N y N N
i

n

i
k

i
k

i

n

i
k

1
,total

1
,feed in

Air,

1
,total

(11)

= | |

+

Q N N H

m c T T

( )

( )

k

i
i
k

i
k

i
k

k k

cooling

CO ,H O

,s
1

,s ads,

s p,s des des
1

2 2

(12)

Besides using external cooling, it is also possible to implement
open cooling with ambient air. In this case, in eq 12, the term
Q k

cooling is substituted with m c T( )in
Air,k

p . In addition, an outlet
term needs to be added to the material balance in eq 11. The
closed cooling system is generally the most efficient one, while
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for DAC applications, for simplicity reasons, open cooling may
be preferred, which would lead to a lower recovery. For our
further analysis, we therefore choose the closed cooling system.
Adsorption Step.During this step, the total amounts of feed

Nfeed and waste Nwaste are calculated. To keep the model simple
and fast, the adsorption step is considered isothermal and
isobaric at ambient temperature and pressure. The initial
condition is set by the final condition of the cooling step, and the
bed is then fed with ambient air until the CO2 saturation level set
by the neural network is reached. Different from the previous
steps, the adsorption is not divided into multiple k steps but
solved for the final conditions directly. Because of the presence
of H2O, CO2 can be either the weakly or the strongly adsorbed
species depending on the material. Especially for cases with very
low CO2 concentrations like in ambient air, CO2 is usually not
the most strongly adsorbed species. Therefore, in order to avoid
material balance errors, the adsorption step is divided into two
substeps: the first substep is used to reach saturation of the
strongly adsorbed species, while the second substep is used to
reach the desired level of saturation of the weakly adsorbed
species. Let us start with the case of CO2 as weakly adsorbed
species. First, air is fed until the bed is saturated with H2O; here,
both CO2 and H2O can adsorb. During the second substep,
more air is fed until the bed reaches the CO2 saturation level
fixed by the neural network, while H2O cannot adsorb anymore.
On the other hand, if CO2 is the strongly adsorbed component,
the adsorption step coincides with the first substep only, where
the bed is fed until the CO2 saturation level from the NN is
reached. The material balances solved during the first substep of
adsorption are

=

=

N t N t y N t

y t N t N N

( ) ( ) d

( ) d

i i i t

t

i o
t

t

i i

,total f ,total 0
feed

feed

waste
in out

0

f

0

f

(13)

where Ni,total(t0) and Ni,total(tf) are the total amount of
component i in the column at the end of the cooling step and
adsorption step, respectively; yi

feed is the concentration of the
component in the feed stream; yi(to) is the mole fraction of
component i at the end of the cooling; Ni

in and Ni
out are the

amount of species i fed and withdrawn form the column during
the adsorption time, respectively. For the resolution of the
material balances of the first substep of the adsorption and as far

as H2O is the strongly adsorbed species, N t( )H O,total f2

corresponds to the conditions of full saturation in the column
and eq 13:

= * +N t m q y
p V

RT
( )H O,total f s H O H O

feed amb c

amb
2 2 2 (14)

If CO2 is the strongly adsorbed species, H2O in eq 14 is
substituted with CO2. The material balances of the second
substep of the adsorption are written as for the first substep (eq
13) but with the following differences:

• The initial conditions (t0) correspond to the end of the
first adsorption substep.

• N t( )CO ,total f2
corresponds to the saturation level assigned

by the neural network.
• Water is treated as an inert; i.e., it flows through the
column without adsorption.

The molar fraction of CO2 at the end of the second substep,
y t( )CO f

2
, is equivalent to the initial composition of the blow-

down step. Therefore, the total amount of air and the waste
stream leaving the column are = +N N Ni iads

feed in,1 in,2 and
= +N N Ni iads

waste out,1 out,2. The total time of the adsorption step
can be determined by including the air velocity, uair, and the
geometry of the considered sorbent (SI Section 1.4). Figure 2
gives an overview of the whole cycle with the input and output
parameters for each step as well as the process performance
parameters.
Neural Networks. Two independent neural networks are

used in the framework we propose, and they allow the inherent
limitations of the equilibrium models to be overcome by
providing: (i) the (under)saturation level of the bed α at the end
of the adsorption step and (ii) the time required for heating,
which in turns allows for an estimate of the productivity, an
indicator typically computed in rate-based models exclusively
(see the next subsection). This results in a more realistic and
informative 0D model. The first NN directly provides α for
assigned particle density, desorption temperature, vacuum
pressure, and volume of gas fed (the variation of these cycle
operating parameters corresponds to the exploration of different
purity-recovery combinations). The second NN provides the
time required to heat the bed to the regeneration temperature,
theat, which is typically the longest step in the cycle, for the
assigned sorbent and particle density, sorbent specific heat,

Figure 3. Overview over the isotherms included in the training data for the NN compared to the isotherms of the database: (a) linear scale and (b)
logarithmic scale.
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desorption temperature, and vacuum pressure. Indeed, the key
to obtain meaningful neural networks is in the data set provided
to the training step. Here, we used simulations carried out for
eight different sorbent combinations obtained with the 1D rate-
based model described in Sabatino et al. (the materials were
taken from the same work).38 For the NN providing the heating
time, a total of 4200 simulations were performed using the eight
different material combinations and varying desorption temper-
ature and vacuum pressure. For the NN providing the saturation
level, we restricted the input data set to the optimal Pareto points
of the eight sorbents described in Sabatino et al.,38 resulting in a
total of 324 simulations. In Figure 3, we show the shape of the
isotherms used for setting up the saturation neural network (red
lines), those used for the database screening (gray), and those
selected as optimum by the screening (light blue). We note that
overall the isotherm shape is similar but that those used for the
neural network training span a smaller area in the isotherm
plane. The inclusion of additional sorbents in the 1Dmodel data
generation phase would likely strengthen the NN accuracy.
For both neural networks, the data sets were divided into

training, validation, and testing data with a ratio of 60:20:20. The
training was done using the Levenberg−Marquardt back-
propagation method as implemented in the neural network
toolbox provided in MATLAB. A summary of the input/output
data for both neural networks is shown in Table 1.

Performance Indicators. The adsorption cycle can be
evaluated via four performance indicators, which are calculated
at the end of the simulation, i.e., the productivity PrCO2

, the

specific thermal energy consumption eCO
th

2
, the CO2 recovery r,

and the CO2 (dry) purity CO
dry

2
.

=
N MM

t V
PrCO

CO CO

cycle s
2

2 2

(15)

=e
Q

mCO
th th

CO
2

2 (16)

=
N

N NCO
dry CO

total H O
2

2

2 (17)

=r
N

NCO
CO

CO
in2

2

2 (18)

where NCO2
is the amount of CO2 produced during the heating

step, tcycle is the total duration of the cycle, and Vs is the volume
of the adsorbent. The time of the cycle required to compute the
productivity is calculated by including all step times; i.e., tcycle =
tBD + theat + tcool + tads. As shown in Figure 2, the time for the
blow-down is obtained with a fitting function; the heating time is
retrieved using a neural network; the cooling time is set to 350 s
similar to our previous work;38 the time of the adsorption step is

determined by the air velocity and the geometry of the sorbent as
explained in the previous section.
The 0D model is implemented in MATLAB R2021, and the

mass and energy balance equations are solved using the lsqnonlin
solver and trust-region-ref lective algorithm.39 The model takes
less than 10 s to simulate one cycle using a laptop machine with
an INTEL Core i7 2.50 GHz processor and 8.00 GB of RAM.

■ MODEL VALIDATION
The equilibrium model validation is carried out by comparing
the results with a rate-based adsorption model. In the 1Dmodel,
the material and energy balances of a fixed-bed are typically
expressed in differential form and are numerically solved in space
and time until a cyclic steady state is reached. Moreover, the
mass transfer is approximated with the linear driving force
approach. The 1D model adopted for the validation has been
used in multiple previous publications, and it has been shown to
predict experimental results well.40−43 The detailed mathemat-
ical equations and the simulation parameters are reported in SI
Section 1.8. Additional details can also be found in other
previous publications.28,32

The validation of the 0D model is structured in two different
steps. We need to recognize that not only does the 0D model
have to reproduce fairly well the performance of a specific cycle
simulated with the 1Dmodel, but it also has to correctly identify
the potential of a givenmaterial when the process is optimized. If
both conditions hold, then the 0D model can be used to screen
potential sorbents. Accordingly, first, we compare the profiles
and performance indicators of a single simulation using the same
input parameters (e.g., cycle times, inlet velocity, temperatures,
and pressure). Second, we compare the results when the process
is optimized; i.e., the input parameters are varied. More
specifically, the optimization of the four-step VTSA process is
carried out by minimizing the energy consumption and
maximizing the productivity.44 The multiobjective optimization
problem is formulated as follows:

eminimize( Pr , )

subject to
x

th

spec (19)

where x is the decision variable, Φ is the purity, and Φspec is the
required minimum purity. This constraint is imposed as a
penalty C on the resulting objective function in the form of

= [ ]C 10 min(0, ( ))spec (20)

We would like to note that the minimum recoveryΦspec value
allowed in the optimization was set to 70%. This was required to
include APDES-NFC, a DAC sorbent described in the early
works of Climeworks’ founders, which we considered in
previous work38 and in the 1D model simulations. This sorbent
features a high porosity, and higher CO2 purity can only be
reached when a preheating-to-waste step is included with the
blow-down. However, the constraint is never active in the
screening and for the validation of other sorbents (see next
section and Figures S11, S12, S13). Therefore, the low-purity
constraint does not affect the outcome of the fast screening.
The decision variables x for the 0D model are (i) the

desorption temperature, (ii) the vacuum pressure, and (iii) the
inlet feed velocity. The time of the different cycle steps depends
on these parameters as well as on the material properties. The
boundaries of the decision variables are given in Table S9. We

Table 1. Summary of the Input, Output, and Boundary
Conditions of the Neural Networks

input output
# data
sets

Tdes range
(K)

pvac range
(bar)

ρparticle, ρMaterial, cp,s, Tdes,
pvac

theat 4200 363−400 0.1−0.8

ρparticle, Tdes, pvac, V̇feed α 324 363−400 0.1−0.8
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repeat the same optimization for the 1D model using the same
VTSA cycle and materials but adding the step times as variables.
The optimization of the 0D model is carried out using a

particle swarm algorithm adapted for multiobjectives (MOP-
SOs), as implemented in MATLAB.45 The size of the particle
and repository was set to 50 and the number of cycles, to 35.
These parameters are smaller than the ones recommended by
Coello et al.,46 but they did show the same accuracy. For the 1D
model optimization, we follow the same approach reported in
Sabatino et al.38 The results of the optimizations with the 0D
and 1D models are compared in terms of the energy and
productivity range for the eight materials discussed by Sabatino
et al.38 The nomenclature of the materials can be found in Table
S11 and includes four promising sorbents, namely, APDES-
NFC,47 Tri-PE-MCM-41,48 MIL-101(Cr)-PEI-800,49 and
Lewatit VP OC 1065,50−52 together with data for H2O
isotherms of three different materials, i.e., APDES-NFC,
Lewatit, and MCF-APS-hi.53 More details on the choice of
these materials can be found in Sabatino et al.38

Validation of a Specific Cycle Simulation. Here, we
compare the 0D and 1D model for the same input parameters,
i.e., same material, heating and cooling temperature, pressure,
feed composition, feed velocity, and cycle times. The pure

component isotherm equations as well as the parameters for the
different materials are reported in SI Section 2. We carry out this
validation for two different materials: case s2/E-A and Cr-
MIL(101). Case s2/E-A was among the materials used to build
the data collection adopted to develop the profile functions and
the neural networks called in the 0D model. On the other hand,
Cr-MIL(101) was not used for this purpose; thus, we use the Cr-
MIL(101) validation to investigate the capability of the 0D
model to predict the performance of the new materials. For all
tested cases, we carry out the validation using air as feed, i.e., a
direct air capture process.
The cycle times were defined by running the simulation with

the 1D model and are long enough for the model to reach the
vacuum pressure (tBD) and the desorption temperature (theating)
and to ensure a high saturation in the bed (tads). The cooling
time was set to tcool = 350 s for all materials. This is done to
ensure that the times as well as the final temperature and
pressure are the same for both models. For this case, the 0D
model structure was adapted to handle the times as additional
input. Furthermore, the 1D model uses an equivalent temper-
ature to include the enhancing effect of water on the CO2
adsorption; for consistency, this was also included in the 0D
model for the validation. More details on this approach can be

Table 2. Process Conditions for the Validation of the 0D Model against the 1D Model

material Tdes (K) pvac (bar) V̇feed(m3/s) tads (s) tprod (s) tcool (s) tpurge (s) H2O isotherm

s2/E-A 373 0.27 8.90 × 10−6 3160 1500 350 30 APDES-NFC
Cr-MIL(101) 373 0.27 8.90 × 10−6 5000 4300 350 300 APDES-NFC

Figure 4.Temperature, pressure, and concentration profiles for the 0D and 1Dmodels: (a, b) s1/E-A; (c, d) Cr-MIL(101). For the 0Dmodel profiles,
the adsorption step is plotted over time.
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found in Sabatino et al.38 The process conditions for this
validation are reported in Table 2.
Figure 4 shows the temperature, pressure, and the molar

fraction profiles of the three components for the 0D and 1D
models. Figure 4a,b refers to the s2/E-A material, while Figure
4c,d refers to Cr-MIL(101). In addition, in Figure S5, the
profiles of the adsorbed amounts of CO2 and H2O are added.
Although the 0D model is significantly simpler than the detailed
1D model, the profiles are in good agreement. Notably, also, the
concentration profiles show a good agreement between the
models, which is hard to obtain for a well-stirred 0D equilibrium
model. When looking at the main differences between the 0D
and the 1D model, we notice the following. In the temperature
profile (Figure 4a), a deviation is present for the adsorption step:
for the 1D model, the temperature increases at the beginning of
this step, while the 0D model shows a constant temperature.
This is because we assume isothermal adsorption in the 0D
model.
When looking at Figure 4c,d, i.e., the Cr-MIL(101) case, we

notice that the model also predicts the profiles well when a new
material is considered. This is an important feature of the model,
and it confirms that the 0D model can effectively predict the
performance of sorbents not used to build the NN functions and
can therefore be used as a screening tool.
Figure 5 shows the molar fractions of CO2 and H2O as a

function of the temperature during the cycle for both the 0D

model and the 1D model. Also, here, Figure 5a,b shows the
results for the sorbent case s2/A-E, while Figure 5c,d displays
those for sorbent Cr-MIL(101) (the concentration−pressure
profiles are reported in the SI). It should be noted that the
composition profiles follow a similar shape for both sorbent s2/
E-A and sorbent Cr-MIL(101).
The overall performance of the 0D model with respect to the

1D model for all tested sorbents is shown in the parity plots in
Figure 6, where the results are reported for the 9 different
materials. Moreover, the parity plots for different CO2
concentrations in the feed and the same materials are reported
in SI Section 2. The following can be concluded. (i) The purity
predicted by the 0Dmodel underestimates the 1Dmodel, which
is a consequence of the well-stirred approach. The results are
however within a 20% gap with onlymaterial s1/A-A outside this
gap. (ii) The capture rate is in good agreement and typically
slightly overestimated by the 0D model (20% gap still applies).
(iii) The specific thermal energy demand is in good agreement
with the 1D simulation. (iv) The productivity is in fair
agreement with the 1D model; this is particularly surprising,
given that the 0D model is equilibrium based and the
productivity is computed bymeans of a neural network function.
The higher productivity stems from the higher capture rate of
the 0D model. When considering the two additional cases for

=y 0.1%CO2
and =y 1%CO2

vol., the parity plots show a similar

Figure 5.Composition profiles similar to Ajenifuja et al.33 of CO2 andH2O over the temperature for the case of s2/E-A (a, b) and Cr-MIL(101) (c, d).
For the 1D model, the temperature and composition plots refer to average values over the bed at cyclic steady sate.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.2c01695
Ind. Eng. Chem. Res. 2022, 61, 14004−14019

14012

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c01695/suppl_file/ie2c01695_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c01695/suppl_file/ie2c01695_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c01695/suppl_file/ie2c01695_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01695?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01695?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01695?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01695?fig=fig5&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.2c01695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


agreement for energy and productivity and a better agreement
for purity and capture rate (see SI Section 2.1).
Although the error for the predicted performance parameters

is in the range of +/−20%, it must be noted that the 0D model
does not aim to provide a very accurate prediction of the
performance but rather at consistently predicting the perform-
ance of multiple sorbents. Therefore, to examine this feature
better, we need to compare the capability of the model when
process optimization is used.
Validation of Sorbent Comparison and Optimization.

As mentioned, the goal of the 0D model is to identify the most
promising adsorbents from large databases of possible sorbents,
where the ranking is done using technical key performance
indicators. Therefore, we here benchmark the 0D model in
terms of optimization of adsorbents. To this end, we consider
again the 8 adsorbents used for the previous validation and
compare the results of process optimization carried out using the
0D and the 1Dmodels. The design variables considered with the
0D model are the desorption temperature, Tdes, the vacuum
pressure, pvac, and the volume stream of the incoming air, Vfeed.
The same ranges across the different materials are considered for
Tdes and pvac, while for Vfeed, the range is material-specific (the
maximum air velocity is set by the minimum fluidization
velocity). In contrast to the 0D model, the 1D model requires
the cycle step times as input variables; in this case, the design
variables and their upper and lower bounds are taken from
Sabatino et al.38 and listed in Table S9.

As optimization results, Pareto curves with the optimal
productivity-energy points are obtained. The detailed opti-
mization results including purity, recovery, and decision
variables are found in SI Section 2. To improve the visualization
of the comparison between the models, the optimal Pareto
points are depicted in Figure 7 as interval bars for both
productivity (left y axis) and specific energy consumption (right
y axis). As a comparison, the brighter bars show the
corresponding results for the 1D model. When comparing the
0D and 1D models, we now aim to obtain a similar sorbent
ranking (i.e., the most performing sorbents are identified) and
similar range for the performance indicators.
Looking at the comparison, we first notice that the

optimization results of the 0D model are in line with the 1D
model; i.e., the simplified approach identifies similar values for
energy consumption and productivity. Typically, the 0D model
identifies broader ranges compared to the 1D model, especially
for the productivity. The latter is however the most difficult
indicator to extract from an equilibrium model. Second, we
notice that the 0D model identifies the same well-performing
and badly performing sorbents of the 1D (see Table 3 for a
summary of the ranking). For the 0D model, the two best
performing materials are s6/MP-A and s3/MP-A, while the two
worst performing sorbents are s1/A-A and s8/L-L. The 1D
model identifies the same worst sorbents and the same best
sorbents (where the two best sorbents are swapped). These
results let us conclude that the 0Dmodel reliably reproduces the

Figure 6. Parity plots of the performance parameters resulting from the 0D model and the 1D model. Each material is shown by a specific symbol and
color, and each point features different input parameters for Tdes and pvac. The dashed lines show a margin of 20%.
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screening performance by the 1D model but in a fraction of the

required time: around 2 h are needed for an optimization with

the 0D model (per material) while from 8 h to several days are

needed for the 1D model (per material). It should also be

stressed that the 0D model shall not fully substitute the 1D

model but complement it in the sorbent screening phase.

■ SORBENTS SCREENING
We applied the model described above to screen and rank a large
number of possible sorbents. The screening was carried out by
retrieving data from different sources, i.e., the NIST/ARPA-E
database,34 adsorbents considered by Khurana and Farooq,23

and promising DAC sorbents from the literature not included in
the previous sources.37 We do not limit the screening to specific

classes of sorbents but consider, e.g., zeolites, activated carbon,
and MOFs. Both real and hypothetical sorbents are included.
The first objective is to demonstrate the potential of the 0D
model by screening all the data mentioned above and by ranking
the most promising adsorbents. The second objective is to
identify the most promising sorbents for CO2 capture from
diluted sources. To this end, we apply the screening to CO2
capture from air (400 ppm) and from sources at 0.1% vol CO2
and 1% vol CO2. These latter may be representative
compositions found in stables and in the aluminum industry,
respectively. Therefore, for the last two cases, an additional
constraint is set, namely, the capture rate needs to be higher than
90%. For the DAC case on the other hand, the capture rate is not
restricted.
Screening Methodology. The screening process includes

several steps, which are shown in Figure 8. All screening tools are
made available as open source online; see the SI. As a first step,
the isotherm data of the NIST/ARPA-E needs to be retrieved
from the online database and preliminary filtered to exclude
adsorbents that cannot be further considered. This includes, e.g.,
isotherm availability for the gas of interest or converting the
units of the data. More details are provided in Figure S10. In the
next step, isotherm fitting is carried out for the remaining
adsorbents. Since the isotherm of the adsorbents can take
various shapes, we allow for automatic selection among three
common isothermmodels during the fitting, i.e., the Langmuir−
Freundlich, the Toth-cp, and the s-shaped methods (these three
isotherm models can capture a wide range of experimental
isotherm shapes). The fitting approach is further described in SI
Section 3.
In the next step, the working capacity is calculated to identify

those materials with positive capacity for the CO2 adsorption of
interest. A summary of these conditions is reported in Table 4.
While these process conditions are fixed here, the screening
could be carried out for varying inputs. Thereafter, the 0Dmodel
is run for all materials with a positive working capacity. When no
H2O isotherm is provided in the database, we include the H2O

Figure 7. Resulting performance parameters (productivity in blue, thermal energy consumption in orange) from the 0D and 1D optimization. The
nomenclature for the different sorbent cases can be found in Table S11.

Table 3. Resulting Ranking of the Adsorbents for the
Validation of the 0D Model Using the 1D Modela

0D model 1D model

Pr
(kg/m3/h)

Qth (MJ/
kg)

Pr
(kg/m3/h)

Qth (MJ/
kg)

s6 MP-M 12.1 7.7 s3 E-M 10.8 4.1
s3 E-M +1% −5% s6 MP-M −5% 0%
s2 E-A 0% +13% s2 E-A −16% +86%
s5 MP-A −25% +19% s5 MP-A +23% +107%
s7 MP-L −2% +27% s7 MP-L −23% +96%
s4 E-L −1% +24% s4 E-L −23% +107%
s1 A-A −35% +50% s1 A-A −45% +149%
s8 L-L −40% +38% s8 L-L −76% +188%

aThe values of the maximum productivity and the corresponding
thermal energy consumption are given for the best performing
adsorbent. For the remaining materials, the deviation to the best
performing one is given in a percentage.
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isotherm of APDES-NFC47 and Lewatit50 with a fitting provided
by Sabatino et al.38 (the H2O uptake of the APDES-NFC
isotherm lies somewhere in the middle, while Lewatit adsorbs
higher amounts of H2O). Moreover, we consider the case of no
water adsorption with a dry feed. For the screening process, no
enhancing effect of water on the CO2 adsorption was
considered, as no specific and reliable information/data is
generally available.
Another issue present for most of the materials, especially

those from the NIST/ARPA-E database, concerns the
availability of physical property data (and associated units),
like the material and particle density and heat capacity. For the
cases where one or more properties are not available, the
following generic assumptions are made: ρmaterial = 1130 kg/m3,
particle void fraction (ϵparticle) = 0.35, and cp,s = 1070 J/kg/

K.23,33 While this is certainly a simplification, any other
assumptions would result in a similar outcome.
In the next step, the results of the 0D model are sorted:

materials with specific energy consumption higher than 100 MJ/
kgCOd2

are excluded from further consideration. For the
remaining adsorbents, an optimization is carried out using the
0Dmodel. The upper and lower bounds of the decision variables
are the same as for the validation of the exemplary isotherm
mentioned in the previous section (see Table S9). The
optimization results allow for a final ranking of the sorbents.
Possibly, the most promising sorbents are further evaluated by
optimization with the 1D model.
Screening Results.The screening considers initially around

2500 different materials for which nearly 8000 isotherms are
fitted and sorted. For the DAC case, only 12 materials show a
positive working capacity and reasonable performance param-
eters. 13 and 30 materials were found for =y 0.1%CO2

and

=y 1.0%CO2
, respectively. Here, we would like to remind the

reader that for the two latter cases the capture rate is constrained
to be higher than 90% while it can vary freely for the DAC case.
The screening results are shown in Figure 9, while Table 5
reports the ranking of the 10 best performing adsorbents for the
three different cases. The ranking is based on the minimum

Figure 8. Overall screening approach.

Table 4. Boundary Conditions for the Material Screening

Tdes
(K)

Tads
(K)

pvac
(bar)

pads
(bar)

yCO2feed

(%)
yH2Ofeed

(%)
yN2feed
(%)

DAC
(400 ppm)

373 293 0.1 1.001 0.04 1.34 98.62

0.1% 373 293 0.1 1.001 0.1 1.34 98.56
1.0% 373 293 0.1 1.001 1.0 1.34 97.66

Figure 9. Resulting objectives for three case studies: (a) humid air feed stream with =y 0.04%CO2
, (b) =y 0.1%CO2

, and (c) =y 1.0%CO2
. The best

performing adsorbents show a high productivity Pr, given on the x axis, and a low specific thermal energy demandQth represented by the color bar. The
upper limit of the color bar is set to a specific value to make the differences and best performing materials visual. The actual energy consumption can
therefore be higher than the limit shown by the bar.
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specific energy consumption and the maximum productivity.
Figure 9 shows that, as expected, the specific energy
consumption is decreasing and the productivity is increasing
for higher CO2 concentrations in the feed. The model
consistently predicts that, for an increase in productivity, more
thermal energy is needed. Notably, a few particular sorbents can
be identified for all applications.
For DAC, the MOFs Cr-MIL(101) and MIL-101 have the

best performance in terms of both productivity, which can reach
20 kg/(m3h), and energy; the latter can be potentially as low as
4.1 MJth/kgCOd2

. For 0.1%, PCN-11 is also an interesting sorbent
in addition to the MOFs for DAC. The maximum productivity
increases to above 40 kg/(m3h). Finally, for the 1.0% case, the
MOFs Mg-MOF-74, MIL-101(Cr)-250 nm-PEI-399, and Ca-X
are identified as the most promising with energy consumption as
low as 4.3 MJth/kgCOd2

and maximum productivity above 100 kg/
(m3h). Nicely, zeolite 13-X is also identified as one of the most
performing sorbents, in line with what has been reported for
postcombustion CO2 capture with VSA and TSA cycles.
All materials short-listed from screening the 0.1% case are

included in the results of the 1.0% case. The materials of the
0.04% case, on the other hand, are not all included in the higher
CO2 concentration cases, since for the DAC case we do not
constrain the capture rate: the capture rate of the three excluded
materials is lower than 90% (see Figures S11 and S12).
For the DAC case, an optimization with the 1D model is also

carried out for the short-listed sorbents, and the corresponding
material ranking is reported in brackets in Table 5. The rankings
for the two models is again very similar, and the two best
adsorbents are consistently identified. The three cases using a
different water isotherm, i.e., from the Lewatit sorbent, are very
similar to the screening with the APDES-NFC isotherm, and the
resulting ranking is the same (see the SI). When looking at the
screening cases using a dry feed stream, the results, on the
contrary, are very different. This was expected since the
concentration profiles are very different.

■ DISCUSSION
In this work, we showed that equilibrium models can effectively
contribute to the overall design of the adsorption processes for
CO2 capture from diluted sources and from air. Especially, they
are useful tools to map the preliminary performance regions and
to identify promising sorbents from large databases. Coupling
equilibrium models with machine learning further enhances the

outcome, e.g., by providing good estimates of the process
productivity. However, as for all models, there are a few limits
that are worth stressing (which are particularly relevant for
scientists interested in reusing our MATLAB package provided
on GITHUB).
First, it should be kept in mind that the purpose of the 0D

model is not to provide accurate predictions, for that, rate-based
models shall be used, but to enable (i) otherwise nonviable
simulations, e.g., high-throughput materials screening, and (ii)
and a better understanding of the process performance in an
early stage of development. The 0D model should be consistent
with the rate-based models’ predictions but should not aim at
substituting them.
Second, it is important to include in the 0D model the

adsorption of all relevant species and adopt suitable adsorption
models. For example, in this work, we have considered N2 as an
inert, which is acceptable as far as N2 adsorption is negligible
(e.g., in amine-functionalized sorbents), but which should be
included when dealing with more traditional sorbents (e.g.,
zeolite 13X). N2 must also be included when extending this
model framework to nondiluted CO2 capture applications, e.g.,
NGCC, coal, and industrial sources. Along a similar line, in this
work, we have neglected H2O competition and enhancement
effects: this should be corrected as soon as more experimental
data become available.
The last limitation we would like to discuss here concerns the

neural network modules. As all data-driven models, the quality
of the NNs depends on the quality of the data input. In the
development of the NN used in our model, we considered a
limited number of materials (see Figure 3) and kinetic data, and
we used such NNs for extrapolation to different isotherms.
While this led to outcomes in line with the rate-based model, the
performance of the NN could be improved by adding training
data from additional materials (e.g., considering the finding of
this work as shown in Figure 9). When more experimental data
become available, most of all about kinetics, the model should be
updated accordingly: first, by retraining the NNs, second by
rethinking the overall model structure. One possibility along the
latter line might include the use of AI as surrogate model for
equilibrium and using the kinetics indicators to drive the sorbent
selection (see 1).

■ CONCLUSIONS
In this paper, we presented a new equilibrium-based 0D model
for the rapid simulation of vacuum temperature swing

Table 5. Resulting Rankings Showing the 10 Best Performing Materials for Three Different Cases with Varying CO2
Concentrations in the Feed and Including Watera

400 ppm 0.1% 1.0%

1 Cr-MIL(101) (2) PCN-11 Mg-MOF-74
2 MIL-101 (1) MIL-101 Ca-X
3 CuBTC (3) Cr-MIL(101) MIL-101(Cr)-250 nm-PEI-300
4 MIL-53(Al) (4) Ca-X zeolite Na-LSX
5 Zn-DABCO (5) zeolite Na-LSX zeolite 13X
6 MIL-101(Cr)-PEI-800 (6) Cu-BTC powder PCN-11
7 Lewatit (8) CuBTC MIL-101
8 exemplary (7) MIL-53(Al) carbonb

9 zeolite Na-LSX (10) Zn-DABCO Cr-MIL(101)
10 Ca-X (9) MIL-101(Cr)-PEI-800 Mg-X

aThe names of the sorbents correspond to the naming in the NIST database. The ranking results for 400 ppm (second column) using the 1D
model are added next to the materials in brackets. The deviation of the productivity and thermal energy consumption between the best perfoming
material and the rest is given in Tables S13−S15. bActivated carbon.
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adsorption cycles. The model, which builds upon the key
assumption of well-mixed conditions in the bed, was developed
to enable a fast, yet reliable screening of sorbents for CO2
removal from diluted sources, e.g., direct air capture
applications. Nonetheless, the formulation is generic and
portable to other separations of interest as far as the model is
adapted to grasp the key separation characteristics. To this end,
we extended the approaches presented in the literature for
equilibrium-based adsorption models by embedding neural
network submodels trained from rate-based simulations, by
including H2O in the feed (i.e., CO2 is not necessarily the
strongly adsorbed species), and by considering the vacuum
temperature adsorption cycle. The resulting model can predict
the separation performance (capture rate and purity), the
specific energy consumption, and the productivity. The latter is
enabled thanks to the embedding of machine learning, as
equilibriummodels do not provide rate-connected performance.
The resulting 0D model can simulate a VTSA cycle in less than
10 s and a full cycle optimization in less than 2 h, therefore
significantly lowering the computing time, especially on
standard desktops and thus enabling a large screening of new
materials.
We have shown that the resulting 0D model can predict fairly

well the different performance indicators of VTSA cycles. To
this end, we compared the model with the results of a more
sophisticated 1D rate-based model. The validation included the
comparison of specific fixed cycles for several materials in terms
of performance indicators and temperature/composition
profiles and also the comparison of the outcome of cycle
optimizations for different sorbents. The findings confirm that
(i) the 0D model reproduces well specific cycles and (ii) returns
similar metrics when optimizing cycles; i.e., it is capable of
substituting more sophisticated models in the large screening of
materials.
Finally, we applied the 0D model to the screening of several

thousands of sorbents, which were obtained from the NIST/
ARPA-E database and additional literature.23,34,37,38 We carried
out the screening to assess CO2 capture from air and from other

diluted sources = =( )y 0.1% and y 1.0%CO CO2 2
. The sorbent

screening also included additional steps that are required to
retrieve and polish the source data. We identified 12, 13, and 28
promising materials for the DAC, the =y 0.1%CO2

, and the
=y 1.0%CO2

cases, respectively. In all cases, a couple of sorbents
stood out as particularly promising in terms of both energy
consumption and productivity. As final comparison, we run the
optimization of the DAC promising sorbents with the 1D
model; the outcome results were fully consistent with the 0D
model.
Overall, we can conclude that equilibrium models, and

particularly the one we propose here, are a powerful tool for
sorbent screening that could reliably substitute more sophisti-
cated models. We showed that this also holds true when using
more complicated cycles, i.e., VTSA, and when considering
more challenging separations, i.e., from (ultra)diluted sources.
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