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a b s t r a c t

COVID-19 infection segmentation has essential applications in determining the severity of a COVID-
19 patient and can provide a necessary basis for doctors to adopt a treatment scheme. However, in
clinical applications, infection segmentation is performed by human beings, which is time-consuming
and generally introduces bias. In this paper, we developed a novel evolvable adversarial framework
for COVID-19 infection segmentation. Three generator networks compose an evolutionary population
to accommodate the current discriminator, i.e., generator networks evolved with different mutations
instead of the single adversarial objective to provide sufficient gradient feedback. Compared with the
existing work that enforces a Lipschitz constraint by weight clipping, which may lead to gradient
exploding or vanishing, the proposed model also incorporates the gradient penalty into the network,
penalizing the discriminator’s gradient norm input. Experiments on several COVID-19 CT scan datasets
verified that the proposed method achieved superior effectiveness and stability for COVID-19 infection
segmentation.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 spreads globally, with more than 200 million con-
irmed cases in 223 countries and over 4 million deaths. AI
echniques have attracted significant attention in the fight against
OVID-19. For example, Fang et al. presented a novel SLAM algo-
ithm using RGB and depth images to reduce cross-infection risk
etween doctors and patients. This method could also raise hos-
ital operation efficiency [1]. Dash et al. presented a new audio
eature called C-19CC, which can diagnose the initial condition
ithout visiting a hospital [2].
Medical imaging technologies play a vital role in fighting

OVID-19. These technologies can be used to diagnose COVID-
9 and evaluate the treatment of COVID-19 patients. Wang et al.
ffered CHP-Net to differentiate and localize COVID-19 from
ommunity-acquired pneumonia [3]. CHP-Net can also extract
ore features from chest X-ray radiographs than other ConvNet.
ne crucial application to use medical imaging is to segment the
OVID-19 infections to assess the severity of the patients through
edical images, which can aid doctors in the treatment. However,

n clinical applications, infection segmentation is performed by

∗ Corresponding author.
E-mail address: jtang25@gmu.edu (J. Tang).
ttps://doi.org/10.1016/j.asoc.2021.107947
568-4946/© 2021 Elsevier B.V. All rights reserved.
human beings, which is time-consuming and generally intro-
duces bias. In this paper, we focus on automatic segmentation
of COVID-19 infections.

Recently, various methods have been proposed for the seg-
mentation of COVID-19 infection. For example, Oulefki et al.
proposed an efficient Kapur entropy-based multilevel thresh-
olding unsupervised network, minimizing the over-segmented
regions [4]. Shan et al. presented a VB-Net, which incorporated
the attention mechanism to capture rich contextual relation-
ships [5]. Zhou et al. included an attention mechanism with a
U-Net architecture, which can re-weight the feature spatially
for better feature representations [6]. To tackle the low contrast
between COVID-19 infections and normal tissues, Inf-Net used a
parallel partial decoder to aggregate the high-level features and
generated a global map to solve the implicit reverse attention [7].
Chen et al. used aggregated residual transformations and soft at-
tention mechanism to improve the model’s capability [8]. Yu et al.
proposed a lightweight deep learning model (MiniSeg) for COVID-
19 segmentation [9]. MiniSeg had 83K parameters and was not
easy to cause overfitting issues. It also had high computational
efficiency and was convenient for practical deployment.

Methods based on GANs were developed for COVID-19 infec-
tion segmentation. Xu et al. presented a weakly supervised lesion
framework (GASNet) by embedding the generative adversarial
training process into the segmentation network [10]. GASNet was
supervised by chest CT scans without voxel-level annotations,

https://doi.org/10.1016/j.asoc.2021.107947
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107947&domain=pdf
mailto:jtang25@gmu.edu
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nd the generator was used to segment the lesions in a COVID-
9 CT image. Attention U-Net-based GAN was developed for
ung segmentation on COVID-19 X-ray images [11]. Although
he research in [11] was designed not specifically for COVID-
9 infection segmentation, it can easily modify the approach for
OVID-19 and other diseases. To reduce the impact of domain
hift between the real and synthetic data, Chen et al. introduced a
onditional GAN to make the embedding distribution closer [12].
Although these prior works have achieved remarkable

rogress, GANs tend to be challenging to be trained and even
uffer from model collapse [13]. Besides, network architecture
nd hyperparameters setting will significantly affect the GAN-
enerated samples’ quality and lead to gradient vanishing issues
nd doesn’t not yield good results [14,15]. Weight clipping is
ne of the most comprehensive strategies for the 1-Lipschitz
onstraint. It enforces parameters in a given range (between −c
nd c). However, this behavior might make most of the weights
qual to −c or c, which weakens the fitting ability of GANs
nd commonly results in exploding or vanishing gradients [16].
oreover, many recent efforts on GANs are contributed to handle

he training difficulties by developing various adversarial training
bjectives [13]. Since each objective has its own and down-
ides [17], no single one is ‘‘the best’’ for all conceivable types of
etrics, i.e., the trade-off between objectives varies from problem

o problem.
This paper proposes an evolvable GAN framework for auto-

atic COVID-19 infection segmentation. The proposed frame-
ork employs three adversarial objective functions as mutation
perators to optimize the generator network for generating high-
uality samples. Generators’ population evolves in each iteration,
hich attempts to cut down the distance between the generated
nd actual distribution. Moreover, we adopt gradient penalty
nstead of weight clipping to satisfy the Lipschitz continuity con-
ition to achieve steady. The Wasserstein distance is also incorpo-
ated to replace the Jensen–Shannon divergence (JS divergence)
ommonly used in GANs. By this means, the impact of hyperpa-
ameters is alleviated, leading to better generative performance.
esides, we also designed a fitness function according to the
iscriminator for evaluating the performance of the evolved gen-
rator network. The best offspring is preserved as the next parent
or evolution. Extensive experiments on four public COVID-19 CT
can datasets demonstrate that our method can improve stability
nd generative performance. In a nutshell, our main contributions
nd innovations in this paper are summarized as follows:

• Inspired by the evolutionary algorithm in deep learning, we
utilized three different mutation operators to update the
generator for automatic COVID-19 infection segmentation,
which can overcome the limitation of a single adversarial
training objective.
• To alleviate the gradient vanishing caused by weight clip-

ping and JS divergence, we introduced gradient penalty and
adopted Wasserstein distance in our network to satisfy 1-
Lipschitz constraint.
• We present an evolvable adversarial framework for auto-

matic COVID-19 infection segmentation in CT images. Com-
pared with some previous methods, the segmentation re-
sults of our proposed method have fewer mis-segmented
regions and more accurate boundaries, especially in the
subtle infection regions. Numerical experience also indicates
that our approach tends to be more stable and efficient in
six widely adopted metrics.

. Related works

In this section, we first give a short introduction to GANs.
hen the concept of evolutionary algorithms and some works

ntegrated with neural networks are briefly summarized.

2

2.1. Generative Adversarial Networks (GANs)

GANs contain a generator and a discriminator, which offers an
excellent framework for training deep generative models. In the
training process, deepfake samples are created by the generator
to deceive the discriminator while the discriminator goes out
of its way to distinguish ground truth in the training datasets
from these fake samples [18]. They progress alternately until the
generator wins the adversarial game, i.e., the generator network
can synthesize examples so that the discriminator network can-
not make a better decision than randomly guessing. GANs have
been widely applied in image processing, such as image genera-
tion [19], photo editing [20], image-to-image translation [21], and
video prediction [22].

GANs and their variants are prevalent deep learning mod-
els for automatic medical image segmentation. GANs consider
both local and global contextual relations between pixels in im-
ages and thus can improve the ability to directly enforce the
learning of multiscale spatial constraints. They provide practical
ways to deal with complex medical images [23]. For example,
U-net-GAN combines a GAN strategy to train a deep learning
network to segment multiple organs on chest CT images [24].
Spine-GAN connected GAN, LSTM, and atrous autoencoder in
an integrated end-to-end framework to segment multiple spinal
structures [25]. RescueNet used unpaired adversarial training to
segment the whole tumor, followed by core and enhance regions
on brain MRI scans [26].

However, there are four significant problems in the existing
GAN models: non-convergence, mode collapse, diminished gra-
dient, and high sensitivity to the hyperparameter selections [15].
LSGAN utilizes the least square loss function for the discrimina-
tors and can converge faster than most GANs. It partly avoids
mode collapse but not assigns a high cost to generate well-
performance samples [27]. E-GAN employs multiple objectives as
mutation operations and evolves the generators’ populations [28].
E-GAN can integrate the advantages of different training objec-
tives and select the best offspring to generate better-performing
samples under such circumstances. WGAN minimizes an efficient
approximation of Wasserstein distance instead of JS divergence in
the classic GAN without the requirement of maintaining a care-
ful balance between the generator and the discriminator during
training [13]. WGAN also copes with mode collapse but some-
times still generates low-quality samples or fails to converge.
WGAN-GP finds that most of these problems are due to weight
clipping, leading to exploding or vanishing gradients [16]. WGAN-
GP enforces Lipschitz constraint by working with gradient penalty
and achieve high-quality generations.

2.2. Evolutionary algorithms

Inspired by biological evolution, evolutionary algorithms have
succeeded in many computing tasks, including optimization, mod-
eling, and design [29,30]. Evolutionary algorithms often perform
well-approximating solutions to almost all types of problems
with high robustness. Besides, the advantages of evolutionary
algorithms also include self-organization, self-adaptation, and
self-learning. Therefore, they can effectively tackle intricate prob-
lems and have broader applicability than traditional optimization
methods [31].

Recently, many problems in deep learning were solved using
evolutionary algorithms. For example, multi-node evolutionary
neural networks adopt an evolutionary algorithm to optimize the
hyperparameters for automating network selection on compu-
tational clusters [32]. Evolutionary algorithms are also used to
optimize deep learning architectures and extended to optimize
the topology, components, and hyperparameters [33]. In [34], the
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erformance of deep learning networks was improved by evolv-
ng a population of autoencoders, i.e., learning multiple autoen-
oder features, evaluating them based on their reconstruction
uality, and generating new individuals by adopting mutation
perators.

. Methods

The proposed medical image segmentation framework is de-
cribed in Fig. 1. Unlike classic GAN, which has a generator and a
iscriminator, a population generator network evolves with dif-
erent mutations instead of the single adversarial objective. In this
ase, we exploit the advantages and suppress the shortcomings
f different GAN objectives by optimizing the generator network
o get high-quality samples and more stable performance. Each
enerator is a U-Net variant. The encoding part consists of 4 ×
convolutional layers with stride 2, batch normalization layers,
ctivation layers (leaky ReLU), and corresponding feature maps.
he decoding part includes the image resize layers with factor
, 3 × 3 convolutional layers with stride 1, batch normalization
ayers, and activation layers (ReLU). The encoding setup of the
iscriminator is the same as the generator.
Roughly speaking, the original CT images are input into the

enerator initially, and the discriminator will train the output and
round truth with gradient penalty. The distance between the
enerated and actual distribution is evaluated at the following
tage, which provides fitness scores for offspring selection in the
enerator evolution process. Then, we evolve a population of
he generators for the best one from three different mutation
perators. Fitness scores evaluate the offspring networks so that
he best-performing offspring is selected for the next iteration.

We utilize three mutations to generate the offspring generator
etworks. The first mutation operator, known as L1 mutation, is
ppeared as follows:

= Ex∼Pg ,x′∼Pr

[D (x)− D(x′)

1

]
(1)

The L1 mutation has strong robustness and is not sensitive to
abnormal samples. If there are several abnormal samples during
training, the L1 mutation would not adjust to fit the individual
abnormal sample, which is more stable than other mutations. But
in the later stage of training, the loss of L1 mutation will fluctuate
around the stable value, and it is difficult to converge to higher
accuracy.

The second mutation function, named conditional mutation, is
as follows:

M = Ex∼Pg ,x′∼Pr

[
log(1− D(x|x′))

]
(2)

The conditional mutation adopts conditions to supervise the
generator. The condition can be any auxiliary information, such
as class labels or data from other modalities. In this work, we use
ground truth as a condition to lead the distribution of generated
images more similar to actual distribution.

The Non-saturating mutation, which penalizes the generator
to deceive the discriminator, has good convergence property, i.e.:

M = −Ex∼Pg [logD(x)] (3)

The Non-saturating mutation would not saturate. In the initial
stage of training, when the discriminator can easily distinguish
between true and false samples, the generator will face the prob-
lem of gradient vanishing. This mutation will converge faster at
the beginning of training, but the optimization objects are easily
affected, leading to gradient instability.

Through the above three mutation operators, we will obtain
three different offspring generator networks after each iteration.
Since each mutation has its own and downsides, no single one
3

is ‘‘the best’’ for all conceivable types of metrics. Thus, we utilize
the evaluation function to evaluate the offspring’s fitness scores
and select the best as the parent network in the next iteration.

We replace JS divergence commonly used in GANs with
Wasserstein distance, which measures the minimum consump-
tion under optimal path planning when one distribution is moved
to another [35]. Wasserstein distance is defined as:

W (P1, P2) = inf
γ∼

∏
(P1,P2)

E(x,y)∼γ [∥x− y∥] (4)

where P1 and P2 represent two distributions. x and y represent
samples. x ∼ P1 means x is from distribution P1. E represents ex-
pectation calculator. γ (x, y) stands for joint distributions, which
indicates how much ‘‘mass’’ must be transported from x to y to
transform the distributions P1 into the distribution P2.

∏
(P1, P2)

enotes the set of all γ (x, y) whose marginals are P1 and P2
espectively.

When Wasserstein distance is applied to GAN, it is defined as:

(
Pr , Pg

)
= (1/K ) sup

∥D∥L≤K
Ex∼Pr [D(x)]− Ex̃∼Pg

[
D(x̃)

]
(5)

here Pr is the distribution of the real samples, and Pg is the
istribution of the generated samples. D is the discriminator
etwork. D (x) is the output of the D with sample x and ∥D∥L ≤
is the function f , which enforces a K-Lipschitz constraint.

t means that we could take the maximum distribution dis-
ance between the two exceptions when the function D meets
he K-Lipschitz constraint. The loss function of the discriminator
etwork is computed as follows:

= Ex∼Pr [Dω(x)]− Ex̃∼Pg

[
D(x̃)

]
(6)

where L is Wasserstein distance. Dω is the discriminator network
with a set of parameters ω. The discriminator network needs to
optimize L to decrease the Wasserstein distance.

When the support of Pr and Pg is a low-dimensional manifold
n a high-dimensional space, the overlap between Pr and Pg is al-
ays 0. In this scenario, the JS divergence will be constantly equal
o log2, leading to gradient vanishing. But Wasserstein distance
an continuously provide sufficient gradients no matter whether
he two distributions overlap or not. This excellent feature of
asserstein distance can solve vanishing gradient problems and
ake the network more stable.
Different from the commonly used weight clipping, we adopt

radient penalty in discriminator to satisfy the 1-Lipschitz con-
traint, and the final loss function is as follows:

= Ex∼Pr [D(x)]−Ex̃∼Pg

[
D

(
x̃
)]
+λEx̂∼Px̂

[(
∥∇x̂D

(
x̂
)
∥2 − 1

)2] (7)

here λ is the gradient penalty coefficient. x̂ is a random sam-
le from Px̂. Px̂ is uniform distribution along the straight lines
etween the pairs of points sampled from the actual and gen-
rator distribution [16]. To satisfy the 1-Lipschitz constraint, the
radient penalty directly constrains the gradient norm of the
iscriminator’s output concerning its input.
When the discriminator network is trained to the optimal

ituation, the discriminator network can be expressed as:

∗ (x) =
Pr (x)

Pr (x)+ Pg (x)
(8)

We input the generated samples into the discriminator net-
work in the evaluation part, considering samples’ quality. Then,
the offspring network’s fitness can be obtained. The closer the
fitness scores are to 1, the closer the offspring network’s image is
to the real distribution. The fitness function is shown as follows:

F = E [D(x)] (9)
x∼Pg
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Fig. 1. The framework of our proposed evolvable adversarial network for medical image segmentation.
0

The offspring network with the highest fitness score is se-
lected for the next iteration, while other networks are eliminated.
Therefore, the generator network will be optimized according to
different mutation functions to adapt to the continuously updated
discriminator network. Compared with the original GAN, this
evolvable framework can integrate the advantages of different
adversarial training objectives and is more stable.

In most situations, the fitness of the generated offspring can
be judged by two properties of the generated samples: (1) the
quality and (2) the diversity. The mode collapse issue in GANs
optimization may lead to poor diversity of generated samples. But
as a fully supervised network, our study only needs to judge the
fitness of the generated offspring by the quality of the generated
samples.

In the training process, considering the initial discriminator’s
parameters ω0 and the generators’ parameters

{
µ1

0, µ
2
0, . . . , µ

np
0

}
,

here np is the number of the parent generators (In this work,
p = 1).
In each iteration, the discriminator was updated for nD steps

irstly (In this work, nD = 2. The batch size m = 8). Meanwhile,
e sample a batch of label

{
x(i)

}m
i=1 ∼ Pr , a batch of output{

x̃(i)
}m
i=1 ∼ Pg and a random number ϵ ∼ U [0, 1], where Pr is

the distribution of the real samples, Pg is the distribution of the
enerated samples. x̂ is computed as follows:

ˆ ˜
x← ϵx+ (1− ϵ) x (10)

4

The discriminator’s parameters were updated based on x(i), x̃(i),
x̂ and gradient penalty, the update step is shown as follow:

gω ← ∇ω

[
1
m

m∑
i=1

Dω

(
x(i))
−

1
m

m∑
i=1

Dω

(
x̂(i))

+λ
1
m

m∑
i=1

(
∥ ∇x̂Dω

(
x̂
)
∥2 −1

)2] (11)

ω← Adam(gω, ω, α, β1, β2) (12)

where Dω is the discriminator, λ is the hyper-parameter of gra-
dient penalty, α, β1, β2 are Adam hyper-parameters (default α =

.0002, β1 = 0.5, β2 = 0.999, λ = 0.1).
Then, each parent generator was optimized by nm mutation

operators (In this work, nm = 3). We sample a batch of input{
x(i)

}m
i=1 ∼ PCT , where PCT is the distribution of the COVID-19 CT

samples. The generator’s parameters are updated as follows:

gµj,l ← ∇µjM
l
G

({
x(i)}m

i=1 , µj
)

(13)

µ
j,l
child ← Adam(gµj,l , µ

j, α, β1, β2) (14)

where Ml
G is the lth mutation operator, and µj,l denotes the

parameter of the jth parent generator updated by the lth mutation
operator. In this way, we can obtain a batch of children generators
with the parameter µ

j,l .
child
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Fig. 2. Visual comparison of COVID-19 infection regions segmentation results
on the COVID-19 CT scan dataset.

Finally, we use the fitness function to evaluate the fitness score
f each children generator and sort them in descending order.

F
j1,l1 , Fj2,l2 , . . .

}
← sort

({
F
j,l}) (15)

The np children generators with higher fitness scores will be
selected as the parent generators for the next iteration.{
µ1, µ2, . . . , µnp

}
←

{
µ

j1,l1
child, µ

j2,l2
child, . . . , µ

jnp ,lnp
child

}
(16)

. Experiments

.1. Datasets

This section evaluated the proposed method using four pub-
ic COVID-19 CT datasets, including COVID-19 CT scan dataset,
OVID-19-1110 dataset, COVID-19-9 dataset, and MS COVID-19
ataset. We also conducted ablation studies to verify the effec-
iveness of each contribution in our framework on the COVID-19
T scan datasets.
OVID-19 CT scan dataset [36]. The COVID-19 CT scan dataset
onsisted of 20 annotated COVID-19 chest CT volumes. Each CT
olume was finally verified by senior radiologists with more than
en years of experience. The volumes of each CT scan dataset
ubject had a resolution of 512 × 512 with slices about 176
y mean (200 by median). We cropped each subject into a sub-
olume of 480 × 480 × 160 to remove the black border regions
hile keeping the entire lung regions.
OVID-19-1110 dataset [37]. The COVID-19-1110 dataset con-
isted of 1110 COVID-19 CT studies. The dataset was provided by
edical hospitals in Moscow, Russia. A small subset of studies (50
cs.) was annotated by the experts of the Research and Practical
5

linical Center for Diagnostics and Telemedicine Technologies of
he Moscow Health Care Department.
OVID-19-9 dataset [38]. The COVID-19-9 dataset consisted of
axial COVID-19 volumetric CTs from Radiopaedia. This dataset

ncludes both positive and negative slices (373 out of 829 slices
ave been evaluated by a radiologist as positive and segmented).
S COVID-19 dataset [39]. The MS COVID-19 dataset consisted of
00 axial CT images frommore than 40 patients. All the CT images
ere collected by the Italian Society of Medical and Interventional
adiology. The CT images were segmented by a radiologist us-
ng three labels: ground-glass opacity (GGO), consolidation, and
leural effusion.

.2. Experimental setup and metrics

To verify the performance of the proposed method, we com-
ared it with three state-of-the-art COVID-19 segmentation meth-
ds, including Inf-Net [7], MiniSeg [9], and the U-Net [40]. In
he training process, the batch size was 8, the learning rate was
.0002, and the number of offspring selected in each iteration
as 1. All experiments were performed on a machine with GTX
060 GPU, Intel Core i5-9400F CPU, and a 16G RAM equipped
ith PyTorch. Each slice was resized to 256 × 256 as the input.
hen, we randomly selected 80% of each subject for the training
et, 10% for the validation set, and 10% for the test set.
We used six widely adopted metrics, including the Dice simi-

arity coefficient (Dice), Intersection over Union (IoU), Sensitivity
Sen), Specificity (Spec), Mean Absolute Error (MAE), and Struc-
ure Measure (SM). The formula of Dice, IoU, Sen, and Spec are
hown as follows:

ice =
2 ∗ TP

FN + 2 ∗ TP + FP
(17)

IoU =
TP

FN + TP + FP
(18)

en =
TP

TP + FN
(19)

pec =
TN

TN + FP
(20)

here TP , TN , FP and FN refer to true positive, true negative,
alse-positive and false-negative pixels of the output images and
he ground truth.

MAE measures the pixel-wise error between the output im-
ges and the ground truth, which is defined as:

AE =
1

w × h

w∑
x

h∑
y

|S (x, y)− G(x, y)| (21)

where w and h are the width and height of the output image S
and the ground truth G, and (x, y) donates the coordinate of each
pixel in S and G.

Structure Measure measures the structural similarity between
a prediction map and the ground truth mask, which is consistent
with the human visual system and defined as [41]

SM = (1− α) ∗ So (S,G)+ α ∗ Sr (S,G) (22)

where α (default α = 0.5) is a balance factor between the
object-aware similarity So and the region-aware similarity Sr .

4.3. Comparison experiments and ablation studies

(1) Left and Right Lung Segmentation Results: In the first ex-
periment, we segmented left and right lungs on the COVID-19
CT scan dataset and compared them with the ground truth. As
shown in Fig. 2, the proposed method can accurately segment the
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Fig. 3. Visual comparison of lung region segmentation results on the COVID-19 CT scan dataset.
orresponding lung area for various CT images, both left and right
ung.
2) Comparison with Existing Methods and Ablation Study: We
compared the proposed method with Inf-Net, MiniSeg, U-Net on
the COVID-19 CT scan dataset. As shown in Fig. 3, although all
these methods’ results were roughly the same in segmentation
boundaries, the proposed method can segment the infected area
of COVID-19 with some more details (marked with red circles)
than other methods.

We also conducted ablation studies to verify the effectiveness
of each contribution in the proposed method. We utilized the
six metrics defined above to perform quantitative comparisons
and compared the quantitative results of the proposed method
under different settings: Proposed-1 (proposed method with-
out mutation), Proposed-2 (proposed method without Gradient
Penalty), Proposed-3 (proposed method without Gradient Penalty
and mutation). We performed experiments using the proposed
method under different settings and other techniques, includ-
ing Inf-Net, MiniSeg, and U-Net, on COVID-19 infection region
segmentation and lung region segmentation. The results are in
Tables 1 and 2, respectively. In Table 1, the proposed method
outperformed Inf-Net and U-Net in Dice, IoU, Sen, Spec, and MAE,
SM by a large margin. We attributed this improvement to GANs
and mutations, which considered both local and global contextual
relations between pixels in images and combined the advantages
of different adversarial training objectives. As a network designed
for accurate and efficient COVID-19 segmentation with limited
training data, MiniSeg also performed better than Inf-Net and U-
Net, but the proposed method still outperformed MiniSeg with a
0.47% improvement in terms of Dice and 1.84% improvement in
terms of Sen. The performance on SM also improved by 1.54%.

As the baseline method, Proposed-3 refers to GAN based on
U-Net. Compared with U-Net, Proposed-3 boosted performance
6

Table 1
Quantitative results of COVID-19 infection regions on the COVID-19 CT scan
dataset. The best results are shown in bold fonts.

Methods Dice IoU Sen Spec MAE SM

COVID-19
CT scans

Proposed 0.7853 0.6465 0.8615 0.9987 0.0024 0.8525
Proposed-1 0.7667 0.6217 0.8164 0.9953 0.0077 0.8243
Proposed-2 0.7793 0.6384 0.8358 0.9973 0.0039 0.8352
Proposed-3 0.7613 0.6146 0.8041 0.9935 0.0106 0.8217
MiniSeg 0.7806 0.6402 0.8431 0.9991 0.0035 0.8371
Inf-Net 0.7664 0.6213 0.8157 0.9943 0.0052 0.8296
U-Net 0.7165 0.5582 0.7361 0.9861 0.0227 0.7947

with 4.48% improvement in Dice and 5.64% improvement in
IoU. Due to the mutations, Proposed-2 outperformed Proposed-
3 with 1.8% improvement in Dice and 2.38% improvement in
IoU. Proposed-1 also beat Proposed-3 with 0.54% improvement
in Dice by employing gradient penalty instead of weight clipping.
Although Proposed-3 uses weight clipping, its shortcomings do
not show up obviously because of its good parameter settings.
For the same reason, the progress of Proposed-1 is limited despite
using gradient penalty. The results of Proposed-2 are better than
Proposed-3 and Proposed-1 due to taking advantage of mutation.
In the following experiments, we also discuss the parameter c of
weight clipping. It can be observed that when gradient penalty
and mutations were utilized together, compared with Proposed-
2, the proposed method can further boost the performance with
0.6% improvement in terms of Dice and 2.57% improvement in
terms of Sen. As shown in Table 2, we can also find that the pro-
posed method had similar progress on lung region segmentation
task.
(3) Convergence Analysis: To verify the effectiveness of each con-
tribution in the proposed methods, we compared the convergence
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able 2
uantitative results of lung regions on the COVID-19 CT scan dataset. The best
esults are shown in bold fonts.

Methods Dice IoU Sen Spec MAE SM

COVID-19
CT scans
(Lung Masks)

Proposed 0.9734 0.9482 0.9612 0.9783 0.0005 0.9861
Proposed-1 0.9556 0.9149 0.9431 0.9615 0.0008 0.9786
Proposed-2 0.9607 0.9244 0.9487 0.9668 0.0007 0.9798
Proposed-3 0.9462 0.8979 0.9326 0.9571 0.0012 0.9713
MiniSeg 0.9616 0.9261 0.9485 0.9725 0.0004 0.9827
Inf-Net 0.9534 0.9109 0.9397 0.9618 0.0008 0.9773
U-Net 0.9226 0.8563 0.9177 0.9512 0.0015 0.9499

Fig. 4. Training process of COVID-19 infection regions segmentation on the
OVID-19 CT scan dataset.

Fig. 5. Training process of lung regions segmentation on the COVID-19 CT scan
dataset.

of the proposed method, Proposed-1, Proposed-2, Proposed-3,
and U-Net. As shown in Figs. 4 and 5, the proposed method and
Proposed-2 converged faster than the other models in the initial
training stage. We owed this improvement to the Non-saturating
mutation. We can also find that the proposed method obtained
better results than others, and we presume the credit should be
given to mutations and gradient penalty.
(4) Stability Analysis: To further illustrate the significance of
penalty gradient in our evolvable adversarial network, we com-
pared the performance of the proposed method, Proposed-1,
Proposed-2, and Proposed-3, with different parameter ranges
[−c, c]. The evaluation criterion was the Dice coefficient after
training 100 Epochs. As shown in Fig. 6, when the value of c was
oo large or too small, the Dice results obtained by Proposed-
and Proposed-3 were significantly reduced, while the results
btained by our method and Proposed-1 were more stable than
thers. We suppose that should be attributed to gradient penalty.
n addition, Proposed-2 still achieved better performance than
7

Fig. 6. Dice results after 100 training Epochs with different weights for weight
clipping on the COVID-19 CT scan dataset.

Table 3
Quantitative results of COVID-19 infection regions on the COVID-19-1110
dataset. The best results are shown in bold fonts.

Methods Dice IoU Sen Spec MAE SM

COVID-19-1110

Proposed 0.6683 0.5018 0.8018 0.9761 0.0105 0.7729
MiniSeg 0.6491 0.4804 0.8113 0.9789 0.0129 0.7526
Inf-Net 0.6275 0.4572 0.7883 0.9777 0.0238 0.7129
U-Net 0.5934 0.4219 0.7178 0.9691 0.0477 0.6747

Proposed-3 due to the mutations. When c = 0.05, Proposed-
2 and Proposed-3 had the best performance, but at this time
parameter c was only a rough estimate, and a series of ex-
periments were required to find the optimal global solution of
parameter c , which was also one of the reasons why the network
with weight clipping training was difficult. In consequence, the
proposed method was not affected by parameter range limitation
during training and achieved better stable performance.
(5) Results on COVID-19-1110 dataset : We also compared the
proposed method with those obtained by Inf-Net, MiniSeg, U-Net
on the COVID-19-1110 dataset. As shown in Fig. 7, although U-Net
can roughly segment the COVID-19 infection regions, the perfor-
mance was not promising. We can find that the segmentation
results of the proposed method outperformed other methods and
were closer to the ground truth. Specifically, compared with other
methods, the results of the proposed method had fewer mis-
segmentation regions and more accurate boundaries, especially
in the subtle infection regions.

The quantitative results are shown in Table 3. The proposed
method outperformed U-Net with 7.49% improvement in Dice
and outperformed MiniSeg with 2.14% improvement in IoU. Com-
pared with Inf-Net, SM was improved from 71.29% to 77.29%.
The proposed method also achieved better performance in most
evaluation metrics.

In addition, it is evident that the results in Table 1 are better
than those in Table 3 in terms of all indicators. We assumed
that this was due to the different infection degrees of patients
between these two datasets. Comparing the CT images in the
COVID-19 CT scan dataset and the COVID-19-1110 dataset, most
of the CT images in the latter dataset have smaller infected areas
than those in the former one. Thus, we infer that the larger degree
of the infected area, the better the segmentation results.
(6) Results on the COVID-19-9 dataset : To further verify our
contributions on COVID-19 CT segmentation, we compared the
results on another newer dataset—the COVID-19-9 dataset. Fig. 8
shows the qualitative results of the proposed method and the
other three methods. By visually checking the segmentation re-
sults in Fig. 8, we can find that all the methods can get relatively
good results for large and clear infections. However, due to the
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Fig. 7. Visual comparison of COVID-19 infection regions segmentation results on the COVID-19-1110 dataset, where the red labels indicate COVID-19 infection regions.
Fig. 8. Visual comparison of COVID-19 infection regions segmentation results on the COVID-19-9 dataset, where the red labels denote COVID-19 infection regions,
and the yellow arrows highlight some segmentation details.
8
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Fig. 9. Visual comparison of multi-class lung infection segmentation results, where the red and green labels indicate the GGO and consolidation, respectively.
able 4
uantitative results of COVID-19 infection regions on the COVID-19-9 dataset.
he best results are shown in bold fonts.

Methods Dice IoU Sen Spec MAE SM

MS-9 CT scans

Proposed 0.7574 0.6095 0.8591 0.9819 0.0338 0.8242
MiniSeg 0.7353 0.5814 0.8497 0.9791 0.0386 0.7917
Inf-Net 0.7248 0.5684 0.8417 0.9857 0.0429 0.7931
U-Net 0.6874 0.5237 0.8172 0.9431 0.0673 0.7655

limitation of the single adversarial training objective and gra-
dient vanishing in the other three ways, the proposed method
performed better in some details (yellow arrows).

The quantitative results are shown in Table 4. The proposed
ethod outperformed Inf-Net with 3.11% improvement in Struc-

ure Measure, which also denoted that the proposed method was
ore consistent with the human visual.

7) Results on MS COVID-19 dataset : In clinical settings, in addi-
ion to the overall evaluation, quantitative evaluation of different
ypes of lung infections (such as GGO and consolidation) is also
ery important. Therefore, we extended the proposed method
o multi-class lung infection labeling to provide richer informa-
ion for further diagnosing and treating COVID-19. As shown
n Fig. 9, the proposed method can more accurately segment
GO and consolidation infections than other methods. As can
e observed, although both the proposed method and MiniSeg
9

achieved promising performance, the proposed method obtained
better results on some small lesion areas.

Table 5 shows the quantitative results on the MS COVID-19
dataset. The proposed method achieved the competitive perfor-
mance on GGO segmentation in Dice, Sen, and MAE. Compared
with MiniSeg on GGO segmentation, the proposed method im-
proved the results from 76.93% to 78.21% in Dice. The result in
terms of SM was also improved from 83.47% to 84.35%. For more
challenging consolidation segmentation,

the proposed method achieved the best performance in Sen
and MAE. MiniSeg only outperformed the proposed method with
0.42% improvement in Dice and 0.48% improvement in SM. It
is worth noticing that the proposed method also achieved the
best performance in terms of Dice, Sen, MAE, and SM on the
average of segmentation results, which can further illustrate the
effectiveness of the proposed method.

5. Conclusions

Segmentation of the infection lesions from CT volumes is es-
sential for quantitative measurement of disease progression [42,
43]. In this paper, we proposed a new evolvable GAN segmenta-
tion framework for automatic COVID-19 infection segmentation.
We focused on both the gradient vanishing problems and the
limitation of the single adversarial training objective. The fit-
ness function was designed to select the best offspring network
able 5
uantitative results of GGO, consolidation, and average on the MS COVID-19 dataset. The best results are shown in bold font.
Methods Ground-glass opacity Consolidation Average

Dice Sen MAE SM Dice Sen MAE SM Dice Sen MAE SM

Proposed 0.7821 0.8812 0.0533 0.8435 0.7417 0.8534 0.0615 0.8015 0.7619 0.8729 0.0574 0.8225
MiniSeg 0.7693 0.8654 0.0588 0.8347 0.7459 0.8528 0.0648 0.8063 0.7576 0.8591 0.0618 0.8205
Inf-Net 0.7626 0.8695 0.0614 0.8145 0.7222 0.8489 0.0674 0.7983 0.7424 0.8592 0.0644 0.8064
U-Net 0.7505 0.8551 0.0726 0.8094 0.7125 0.8431 0.0798 0.7928 0.7315 0.8491 0.0762 0.8011
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fter each iteration. We utilized gradient penalty to satisfy the
-Lipschitz constraint to alleviate the instability issue. Four pub-
ic COVID-19 CT scan datasets were employed for qualitative
nd quantitative analysis. Experiments show that our method
an improve stability with high quality of segmentation results.
herefore, our work could help clinicians determine whether a
atient is infected and accurately segment the infected area.
Furthermore, although the degree of infection is different in

he CT slices from different angles, the difference between the
lices is relatively small if they are from the same CT volume.
herefore, the CT slices from different angles may have a minor
mpact on the experimental results. In future studies, we will
edicate ourselves to reduce this impact.
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