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Abstract: Galectin-7 is a soluble unglycosylated lectin that is able to bind specifically to β-galactosides.
It has been described to be involved in apoptosis, proliferation and differentiation, but also in cell
adhesion and migration. Several disorders and diseases are discussed by covering the aforementioned
biological processes. Structural features of galectin-7 are discussed as well as targeting the protein
intracellularly or extracellularly. The exact molecular mechanisms that lie behind many biological
processes involving galectin-7 are not known. It is therefore useful to come up with chemical probes
or tools in order to obtain knowledge of the physiological processes. The objective of this review is
to summarize the roles and functions of galectin-7 in the human body, providing reasons why it is
necessary to design inhibitors for galectin-7, to give the reader structural insights and describe its
current inhibitors.
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1. Introduction: Galectin-7

Galectin-7 belongs to a family of lectins that bind specifically to β-galactosides, i.e.,
the galectins. To date, 16 different members of galectins have been described in mam-
mals, and 12 members have been characterized in humans. Although galectins share
primary structural resemblance in their carbohydrate-recognition domains (CRDs), they
are subdivided into three groups based on the molecular architecture. Prototype galectins
contain a single CRD and form homodimers (human galectin-1, -2, -7, -10, -13, -14, and -16).
Tandem-repeat galectins (human galectin-4, -8, -9, and -12) contain two CRDs that are
connected by a short peptide linker that can range from 5 up to 70 amino acids. Finally,
there are chimera-type galectins (only member: human galectin-3) when a single CRD
is connected to an amino-terminal polypeptide non-lectin domain through which it can
form oligomers [1–3].

Galectin-7 was first reported by Celis in 1995 while searching for keratinocyte proteins
that may play a role in the maintenance of the normal phenotype and various skin diseases.
One of these proteins corresponded to IEF17 in the keratinocyte database and had a shared
identity with the galectin family. It contained all the amino acids that are central to the
β-galactoside binding. For this reason, the protein was named galectin-7 after consultation
with researchers in the field [4]. The findings of the Celis group were supported by
Magnaldo and colleagues [5]. Both groups concluded that galectin-7 is a keratinocyte-
specific marker often found in all layers of the epidermis and other stratified epithelia of
tissues; in the tongue, cornea, esophagus, stomach, anus, Hassal’s corpuscles of the thymus
and even in myoepithelial cells of the mammary gland epithelium [6].

Galectin-7 is synthesized in the cytoplasm, and it accumulates in the cytosol or nucleus
before secretion to the outer plasma membrane or extracellular matrix. Like all other
galectins, the secretion or export of galectin-7 from the cytoplasm occurs via an undefined
nonclassical secretory mechanism [1,7].
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The X-ray crystal structure of human galectin-7 in its native form is described by the
Celis and Acharya groups as a dimer. It has a significant amino acid sequence identity to
the known prototype of galectin-1, -2 and -10 [8]. Although it was reported as a monomer
in solution [8,9], the observed molecular weight as determined by ultracentrifugation and
sedimentation experiments strongly suggests that it is a dimer in solution [10]. Nesmelova
and co-workers confirmed these findings and reported 1H, 13C, and 15N chemical shift as-
signments for the human galectin-7 dimer as determined by heteronuclear, triple resonance
NMR spectroscopy in solution [11].

Acting intra- or extracellularly, galectin-7 participates in diverse processes, such as
controlling apoptosis, cell migration and cell adhesion. In addition, it also plays a crucial
role in the re-epithelialization process of corneal or epidermal wounds and in several
human diseases/disorders, such as cancer [12]. Because of its diverse roles in human
cellular pathology and the fact that the precise modes of action of galectin-7 are not well
understood in many cases, there is a need for strong inhibitors that target galectin-7
specifically in order to provide insights into the biological mechanisms and as a string point
for therapeutic intervention. This review intends to present an up-to-date overview on
galectin-7 and its various roles in the human body from a chemical as well as a biological
point of view. We aim to do this by covering the following subjects: biological importance
of galectin-7, targeting galectin-7, and structural features. We will refer to the current
synthetic inhibitors of galectin-7.

2. Galectin-7, a Convergence of Pathology with Physiology

Being mainly expressed in stratified epithelia, galectin-7 is described in epithelial
tissues as being involved in apoptotic responses, proliferation and differentiation, but
also in cell adhesion and migration [13]. In the following section, we will examine its
involvement by elaborating on several biological processes and disorders which are linked
to (the functions of) galectin-7.

2.1. Role in Epidermal Homeostasis of Skin, Corneal and Periodontal Tissue

Bernerd et al. showed that UVB irradiation of skin keratinocytes, reconstructed in vitro
and of human skin ex vivo, lead to sunburn/apoptotic skin keratinocytes. These sun-
burn/apoptotic keratinocytes express higher levels of galectin-7 than other keratinocytes,
suggesting that galectin-7 is strongly associated with UVB-induced apoptosis in
the epidermis [14].

The previously obtained result by Bernerd et al. was confirmed and revealed that the
expression of galectin-7 is induced by UVB irradiation and also cis-UCA (cis-urocanic acid).
The latter is an epidermal chromophore that undergoes trans to cis isomerization after UVB
irradiation. Notably, cis-UCA is a potent inhibitor of cutaneous acquired immunity. It was
concluded that galectin-7 induces apoptosis and demonstrated that it is highly expressed
in the epidermis of patients with actinic keratosis, compared with normal skin [15].

Gendronneau et al. found evidence for the role of galectin-7 in the process of skin
wound healing. They generated galectin-7–deficient mice that were viable and exhibited
no phenotypical abnormalities in skin structure, organization, differentiation or expression
of epidermal markers. However, the epidermal response to UVB radiation as well as
mechanical injury in vivo proved to be disturbed. Sunburn cells occurred earlier, the
apoptotic response was less acute, and it lasted longer, compared with wt (wild-type)
tissue. It was concluded that galectin-7 modulates keratinocyte apoptosis and proliferation
as well as migration [16].

In addition, the same group studied the role of galectin-7 overexpression in basal ker-
atinocytes of skin repair after environmental stress. The epidermal response to a scratch on
the surface was delayed (timing of wound closure). The re-epithelialization of cells located
at each edge of the wound depends on cellular interactions, notably through adherens
junctions. It was proposed that the overexpression of galectin-7 causes the loosening of
adherens junctions and hence, the delay in wound closure. When the transgenic mice
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(with keratinocytes overexpressing galectin-7) were exposed to UVB radiation, more ker-
atinocyte apoptosis was induced. The effects on the maintenance of epidermal homeostasis
of deficient and overexpressed galectin-7 were proven to be very similar [17]. Advedissian
and co-workers continued the study of the involvement of galectin-7 in cell migration and
found that there is an interaction with a key component of adherens junctions, E-cadherin.
They showed an interaction between galectin-7 and E-cadherin at the plasma membrane,
which causes intercellular adhesion [18].

Mechanistic evidence was provided for the aforementioned findings of Gendron-
neau et al. The galectin-7 knockdown results in reduced differentiation and increased
proliferation of keratinocytes. Moreover, it was shown that galectin-7 positively regulates
microRNA (miR)-203 expression, which in turn is used for regulating keratinocyte differen-
tiation and proliferation. To determine how galectin-7 regulates keratinocyte proliferation
and differentiation through miR-203, the expression of a known miR-203 target, p63 (an
essential transcription factor involved in skin development), in galectin-7 knockdown cells
was examined. Knocking down either galectin-7 or miR-203 in keratinocytes increased
the expression of p63. The rescue of miR-203 expression in a galectin-7 knockdown model
reduced p63 expression. Further extensive research showed that increased galectin-7 ex-
pression upregulates c-Jun N-terminal kinase 1 (JNK1) by a direct interaction, which is
required for miR-203 expression. Finally, they established that galectin-7 has an intra-
cellular function in keratinocytes through the JNK1-miR-203-p63 pathway [19]. More
recently, it was found that the expression of galectin-7 is reduced by cytokines in the skin
lesions of patients with psoriasis. This results in the hyperproliferation of keratinocytes
and skin inflammation [20].

Systemic sclerosis (SSc) is a multisystem connective tissue disorder characterized
by vascular injury, fibrosis of the skin, various internal organs following autoimmune
inflammation and tissue injury [21]. Saigusa and co-workers investigated the potential
contribution of galectin-7 to the development of clinical manifestations in SSc, using clinical
samples from patients and cultured keratinocytes. Galectin-7 proved to be remarkably
downregulated in the basal and suprabasal layers of the lesional epidermis of involved skin
in contrast to the abundant expression throughout the epidermis of normal control skin. In
addition, SSc patients with diffuse pigmentation and those with esophageal dysfunction
had significantly decreased serum galectin-7 levels as compared to those without each
symptom. Suppression of the galectin-7 level is believed to be stimulated by autocrine
endothelin signaling stimulation in SSc keratinocytes [22].

Patients who suffer from diabetes mellitus [23] have a high risk of impaired wound
healing that sometimes may lead to infection and amputation. As cell migration is an
important process involved in proper wound healing, Huang and co-workers demonstrated
that a high glucose environment reduced galectin-7 expression in keratinocytes, due to
enhanced O-GlcNAc (O-linked N-acetyl-D-glucosamine) glycosylation of certain regulators
of galectin-7 expression. This dysregulation of galectin-7 causes a significant reduction
of keratinocyte migration and thus, improper wound healing [24]. The context of this
dysregulation can be associated with O-GlcNAc-mediated processes controlling cellular
differentiation [25]. A more detailed review regarding the re-epithelialization of skin
wounds is reported [26].

In their search for novel, galectin-based therapeutic strategies for the treatment of non-
healing corneal tissue epithelial defects, Cao et al. demonstrated via Western blot analysis
that healing corneas contained increased levels of galectin-7 throughout the epithelium,
compared with normal corneas after injury. Furthermore, it was reported that exogenous
galectin-7 stimulated the rate of corneal epithelial wound closure. Inhibition of this stimu-
latory effect of galectin-7 occurred by a competing lactose but not by non-binding sucrose.
It was suggested that the CRD of the lectin is directly involved in wound closure [27].

Er: YAG (erbium-doped yttrium–aluminum–garnet) laser therapy is used for peri-
odontal treatment by removing soft and hard tissues as well as calculus, with minimal
heat-related side effects. The bactericidal effect makes the therapy even more useful. Er:
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YAG laser irradiation promotes faster adhesion and growth of human gingival fibroblasts
(HGFs) and periodontal ligament fibroblasts (PDL fibroblasts). The cell proliferation of
HGFs is reported to be stimulated, and this might be caused due to an increase in the
protein expression of galectin-7 in the HGFs. Er: YAG laser irradiation causes a direct
effect of promoting proliferation, migration, and invasion of PDL fibroblasts through the
upregulation of galectin-7, yet its signaling pathway needs to be verified [28].

2.2. Roles in Cancer

Approximately 85% of cancers occur in epithelial cells: the carcinomas [29]. Like
many galectins, galectin-7 displays opposite effects in terms of tumor progression from
one histological type to another. It may contribute to the growth and/or development of
certain tumor types, while acting negatively on the development of other tumor types [12].
Galectin-7 does not only have a role in carcinomas [13], but also in lymphomas and
melanomas by contributing either to neoplastic transformation and tumor progression
through the regulation of cell growth, cell cycle, angiogenesis, apoptosis and cell migration.
In addition, galectin-7 may have a protective effect on cancer, depending on the tissue
type [30]. Hanahan and Weinberg defined hallmarks of most cancers which describe the
biological capabilities essential for carcinogenesis [31]. There are a number of papers pub-
lished regarding the subject of cancer (development) and the roles of (targeting) galectins,
and even galectin-7 in particular [13,30,32–50]. Nevertheless, our goal for this section is to
provide the reader with a brief overview of the presence and roles of galectin-7 in most
cancers/cancer types by covering mostly recent publications.

Analysis of the expression of galectin-7 in benign and malignant thyroid cancers
showed a downregulation of galectin-7 in adenomas, compared to carcinomas [51]. It was
shown that galectin-7 is constitutively expressed in aggressive (metastatic) lymphoma
cells at both mRNA and protein levels. Highly metastatic variants of the lymphoma cell
line showed strong upregulation of galectin-7 in the spleen, the thymus and kidneys, due
to the methylation of the galectin-7 gene (LGALS7) [52,53]. Methylation of the LGALS7
gene, leading to the silencing of galectin-7 during gastric cancer tumorigenesis, was also
suggested by Kim and colleagues. They revealed significantly lower expression levels of
galectin-7 in malignant tissues of gastric cancer patients, compared with matched normal
tissues. The overexpression of galectin-7 in AGS gastric adenocarcinoma cells suppressed
cell proliferation, migration, and invasion, whereas the removal of galectin-7 in KATO III
gastric carcinoma cells reversed these properties [54].

To determine its critical role in lymphoma progression, Demers and co-workers hy-
pothesized two years later that the promalignant activity of galectin-7 in thymic lymphoma
is related to its capacity to induce MMP-9 (matrix metalloproteinase-9, a metastatic gene)
expression. Their hypothesis was based on the evidence that galectin-7 transfectants have
higher levels of MMP-9 expression, while the addition of lactose completely inhibits the
expression of MMP-9. Furthermore, murine or human recombinant galectin-7 induces
the expression of MMP-9 in both mouse and human lymphoma cells [55]. In continu-
ation, the same group found evidence that galectin-7 is expressed in human lymphoid
malignancies and proposed that it is a critical tumor-modulating gene that controls the
dissemination of lymphoma cells via MMP-9 [56]. The reader is also referred to the re-
view by St-Pierre regarding the relationships between galectin-7, p53 and MMP-9 during
cancer progression [6].

Galectin-7 was reported to be highly expressed in ESCC (esophageal squamous cell
carcinoma) during a study that was designed to isolate and identify ESCC biomarkers,
using proteomic tools. The level of galectin-7 expression was related to the degree of
ESCC differentiation [57].

Galectin-7 is also believed to increase the invasive behavior of breast cancer cells; the
ability to metastasize to the lungs and bones increased in mouse models. It is believed that
breast cancer cells overexpressing galectin-7 are related to the ability of galectin-7 to protect
against apoptosis [58]. An important mediator of galectin-7 gene activation in breast cancer
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cells, CCAAT/enhancer-binding protein beta or C/EBPβ, was suggested to contribute
by the same group in 2014 [59]. Grosset et al. generated a mutant form of galectin-7 in
which arginine 74 was mutated to obtain galectin-7R74S, a CRD-defective mutant form of
galectin-7. They demonstrated that breast cancer cells expressing mutated galectin-7 were
equally or even more resistant to drug-induced apoptosis, compared to cells expressing wt
galectin-7 [60]. In addition, galectin-7 proved to accelerate tumor progression in one of the
most aggressive forms of breast cancer (HER-2 positive) as was published in a subsequent
study, using genetically engineered galectin-7–deficient mice [61].

The observation that galectin-7 may have immunosuppressive properties was made
by Labrie and co-workers while investigating the expression of galectin-7 in epithelial
ovarian cancer (EOC). It was found that galectin-7 increased the invasive behavior of
ovarian cancer cells by inducing MMP-9 and increasing cell motility. EOC cells can also
secrete galectin-7. Recombinant human galectin-7 kills Jurkat T cells and human peripheral
T cells [62].

In contrast, galectin-7 reduces the invasive behaviors of prostate cancer cells by
inhibiting their motility. Galectin-7 is found to be downregulated in prostate cancer
cells, and the expression of galectin-7 in prostate cancer cells increases their sensitivity to
apoptosis in response to chemotherapeutic agents. The group of St-Pierre showed that the
ability of galectin-7 to modulate apoptosis was independent of its CRD activity by using a
CRD-defective mutant, i.e., galectin-7R74S. However, CRD activity proved to be necessary
to inhibit the invasive behaviors of prostate cancer cells. In vivo, galectin-7 overexpression
in prostate cancer cells led to a significant reduction in tumor size, while its CRD-defective
mutant form significantly increased tumor growth [63].

The group of Lo demonstrated that human tumorous imaginal disc (Tid1), a heat shock
protein (Hsp40), reduces head and neck squamous cell carcinoma (HNSCC) malignancy. It
was found that galectin-7 was one of the proteins that interact with Tid1 and the levels of ex-
pression of both proteins were measured in HNSCC patients. Low Tid1 and high galectin-7
expression predicted poor overall survival in HNSCC. The interaction between Tid1 and
galectin-7 was bridged by N-linked glycosylated Tid1. It is believed that N-linked glyco-
sylation of Tid1 is required to interact with galectin-7 to downregulate galectin-7, which
in turn can attenuate cancer progression and metastasis. Galectin-7 played a critical role
in promoting tumorigenesis and metastatic progression by enhancing the transcriptional
activity of TCF3 transcription factor through elevating MMP-9 expression [64].

Evidence was provided for the pro-invasive activity of galectin-7 in oral squamous
cell carcinoma (OSCC) by inducing the expression of not only MMP-9, but also MMP-
2. It was observed that galectin-7 overexpression resulted in significant upregulation
of MMP-2 and MMP-9. On the other hand, silencing MMP-2 or MMP-9 significantly
impaired the invasiveness of OSCC cells that overexpressed galectin-7. In order to explain
these results, the signaling pathways involved were investigated. It was concluded that
increasing galectin-7 expression significantly enhanced the phosphorylation and activation
of extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK). Moreover,
the pharmacological inhibition of ERK or JNK activity significantly reduced OSCC cell
invasiveness induced by galectin-7 overexpression [65]. The signaling pathways which
direct hypersensitized carcinoma cells to apoptosis was also earlier observed in malignant
peripheral nerve sheath tumor cells [66].

The proapoptotic activity of galectin-7 was also attributed to activation of the JNK
pathway in cervical and colon cancer [67,68]. Zhu and colleagues confirmed these results
by revealing a role for galectin-7 in sensitizing cervical squamous cancer cells to paclitaxel
treatment. A galectin-7 knockdown in the cancer cells showed increased viability against
paclitaxel-induced apoptosis [69]. As galectin-7 is negatively regulated in cervical cancer,
Higareda-Almaraz and co-workers demonstrated the link between the pro-apoptotic re-
sponse triggered by cancer and the anti-tumoral activity of the immune system. Galectin-7
re-expression affects the regulation of molecular networks in cervical cancer that are in-
volved in some of the cancer hallmarks, such as metabolism, growth control, invasion and
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evasion of apoptosis. The effect of galectin-7 extends to the microenvironment, where the
reconstitution of galectin-7 leads to a change of regulation and interaction networks [70].

It was demonstrated by Menkhorst and colleagues that galectin-7 production in-
creased in endometrial cancer with increasing cancer grade; galectin-7 may promote the
metastasis of endometrial cancer by reducing cell–cell adhesion and enhancing cell mi-
gration. Furthermore, it was also established that galectin-7 had no significant effect on
proliferation or apoptosis [71].

Matsui and co-workers showed that bladder cancer cells expressing upregulated
galectin-7 tended to respond more sensitively to chemotherapy, compared to urothelial
tumor cells having lower levels of galectin-7 [72].

Kopitz et al. demonstrated for human neuroblastoma cells that galectin-7 is a negative
growth regulator not by apoptosis, but rather a switch from proliferation to differentiation
of the cancer cells [73].

2.3. Role in Pre-Eclampsia, Menstruation and Recurrent Pregnancy Loss

Pre-eclampsia is a hypertensive disorder of pregnancy and causes maternal and fetal
morbidity and mortality. It is defined as the presence of hypertension, proteinuria or other
end organs, such as liver or brain, damage occurring after 20 weeks of pregnancy. Severe
forms of pre-eclampsia can be complicated by renal, cardiac, pulmonary, hepatic, and
neurological dysfunction, hematologic disturbances, fetal growth restriction, stillbirth and
maternal death [74,75]. Recurrent pregnancy loss is a prevalent and distressing disorder,
defined as the spontaneous end of pregnancy before an embryo has reached viability until
20–24 weeks of gestation [76,77].

Members of the galectin family are expressed within the female reproductive tract
and have been shown to be involved in multiple biological functions that support the
progression and regulation of implantation and pregnancy via cell adhesion and migration,
immune cell activation, apoptosis and hormone production to name a few [78,79].

Menkhorst et al. investigated the expression of galectin-7 in the endometrium during
the menstrual cycle of normally fertile women and women who have a history of mis-
carriage to see whether there is an association with tissue/serum levels of galectin-7 and
miscarriage. Galectin-7 was immunolocalized to the endometrial luminal and glandular
epithelium in normally fertile women. The serum concentration of galectin-7 proved to be
significantly elevated at week 6 of gestation in women with a viable fetus with a history of
miscarriage, compared to normal healthy pregnancies. Furthermore, galectin-7 was aber-
rantly expressed in the non-pregnant endometrium of women with a history of miscarriage.
These findings suggested that this allows for inappropriate blastocyst implantation. They
demonstrated a role for galectin-7 on trophoblast–endometrial epithelial cell adhesion by
acting as an adhesion molecule [80]. In a subsequent study, the same group showed that
galectin-7 serum concentration was significantly elevated during weeks 10–12 and 17–20 of
gestation in women who went on to develop pre-eclampsia, compared to women with
normal pregnancies. It was also proposed that the elevated serum galectin-7 associated
with pre-eclampsia may be due to placental oxidative stress and/or hypomethylation [81].

Evans and colleagues were able to identify and compare endometrial expression of
galectin-7 in women with normal endometrial repair versus women with amenorrhea who
do not experience endometrial breakdown and repair. Their study demonstrated the pres-
ence of galectin-7 not only within the menstruating endometrium (being produced by the
premenstrual and menstrual endometrium), but also in menstrual fluid. They also estab-
lished that galectin-7 enhances endometrial re-epithelialization and elucidated the mechanism
by which galectin-7 mediates endometrial epithelial wound repair. Galectin-7–mediated
re-epithelialization is dependent on integrin-mediated signaling and elevates the expression
of ECM factors which are involved in repair in other tissues [80].

In order to study the function of (among other) prototype galectins in placental tissue,
the expression of galectin-7 in the placenta in cases of spontaneous abortions (SPA) and
recurrent abortions (RA) in the first trimester was analyzed. Galectin-7 was found in the
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syncytiotrophoblast in placentas after induced abortion and with weaker staining in the
decidua. In SPA and RA first-trimester placentas, the expression of galectin-7 in the villous
trophoblast/syncytiotrophoblast was significantly lower [82].

In order to determine the role of galectin-7 in the placenta, Menkhorst and co-workers
demonstrated that elevated galectin-7 during placental formation contributes to abnormal
placentation, thus leading to the development of pre-eclampsia. Augmented galectin-7 dur-
ing the period of placental formation in mice caused hypertension and albuminuria, and
the authors hypothesize that in women, galectin-7 acts via the placenta to induce the sys-
temic features of pre-eclampsia via impaired placental formation, placental inflammation
and the placental release of anti-angiogenic factors [83].

2.4. Roles in Allergic Inflammatory and Autoimmune Diseases

Inflammatory autoimmune diseases have large numbers of pathologies characterized
by various factors that can contribute to a breakdown in self-tolerance or inflammation
dysregulation. Immune cells are sensitive to galectins, and they are important regulators of
inflammation or autoimmunity, making them therapeutic targets for some inflammatory
autoimmune diseases [84].

Galectins control a wide range of cells involved in the allergic inflammatory diseases
by modulating the biological activities of the cells. Hence, galectins may influence the
development and course of allergic diseases. Evidence for the involvement of galectins
in terms of immunoregulatory activities has been gathered in the pathogenesis of allergic
conjunctivitis, atopic dermatitis, asthma and food allergy in the past few years [85].

During their study, Niiyama and colleagues assessed whether galectin-7 could be
utilized as an indicator (biomarker) of skin barrier disruption and as an index of local skin
symptoms in atopic dermatitis (AD) patients. Atopic dermatitis is a chronic, relapsing
inflammatory skin disease characterized by pruritic and eczematous skin lesions. Skin
barrier disruption is an important contributing factor in the pathogenesis of AD, as the
disruption of the skin barrier allows the penetration of allergens into dry skin, inducing
an itching sensation. Galectin-7 expression in keratinocytes increased after skin barrier
disruption, and an overexpression in the stratum corneum was detected in tape-stripped
samples. Measurement of the galectin-7 content in the stratum corneum might be useful
for the evaluation of the skin barrier function in dry skin conditions, such as AD [86].

Niiyama’s results were confirmed, and the production mechanism and functional role
of galectin-7 in AD patients was investigated. A galectin-7 knockdown experiment on a
3D-reconstructed epidermis was performed; it resulted that endogenous galectin-7 protects
IL-4/IL-13–induced disruption of cell-to-cell adhesion and/or cell-to-extracellular matrix
adhesion. In addition, IL-4/IL-13–induced galectin-7 release from keratinocytes reflects the
skin barrier impairment in AD patients [87].

Luo and co-workers showed that galectin-7 promotes activated CD4+ T cell immunity.
The modes of action include the promotion, proliferation and polarization of Th1/2 cells
balance toward Th1 in activated CD4+ T cells, and the elevation of immune-enhancement
factors in the microenvironment by inhibiting the TGFβ/Smad3 pathway. This means that
galectin-7 may have anti-inflammation effects, and it can induce autoimmune disease and
transplantation rejection [88].

The airway epithelium plays an important role in the development of allergic in-
flammation, remodeling, and bronchial hyper-responsiveness. Moreover, the bronchial
epithelium plays an important role in immune regulation during the initiation of allergic
responses. The integrity of airway epithelial layer structure is the key to the airway barrier
and local microenvironment homeostasis. Destruction of the integrity of the epithelium
leads to depletion of the ordered airway barrier and increases sensitivity to viral infections
and allergens. Eventually, this leads to airway inflammations, such as asthma or chronic
obstructive pulmonary disease (COPD) [89].

As galectin-7 was identified to be overexpressed and increased apoptosis occurred
in bronchial epithelial cells in asthma, Sun and Zhang investigated the effect of galectin-7
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on the apoptosis of human bronchial epithelial cells. They were able to demonstrate that
galectin-7 silencing inhibited TGF-β1–induced (growth factor that promotes multiple cell
apoptosis, also elevated in asthmatic patients) apoptosis in airway epithelial cells via
blocking the JNK pathway [90].

Encouraged by their previously obtained results, Tian et al. showed that the expression
of galectin-7 mRNA and protein in bronchial epithelial cells of children with asthma were
both increased, and the expression of galectin-7 mainly occurred in apoptotic bronchial
epithelial cells. The overexpression of galectin-7 in transgenic mice (Tg(+) mice) showed
abnormal airway structures in embryos and after birth; a thin and disordered epithelium
layer was observed. Galectin-7 was localized in the cytoplasm and nucleus of bronchial
epithelial cells. Increased apoptosis was mediated through the mitochondrial release of
cytochrome c; upregulated JNK1 activation and expression destroys the airway epithelium
barrier, which predisposes the airways to RSV respiratory syncytial virus (RSV), ovalbumin
or OVA-induced epithelial apoptosis. Taken together, the aforementioned results suggest
that galectin-7 causes airway structural defects, injury, and other asthma responses [89].

Intracellular galectin-7 proved to be involved in bacterial autophagy, as immunoblot-
ting analysis by the group of Lin and co-workers revealed low-level galectin-7 expression
in HeLa cells. Examination of HaCaT cells revealed that intracellular galectin-7 clearly
colocalized with and surrounded group A streptococcus (GAS), an intracellular bacterium.
GAS proliferation was increased following galectin-7 knockdown in HaCaT cells, which
indicates that intracellular galectin-7 plays a critical role in intracellular immunity in the
response against bacterial infection [91].

2.5. Role in Transplant Rejection

Based on the facts that galectin-7 is related to immune responses in transplantation
and increased expression of galectin-7 in serum from renal allograft recipients (compared
with normal volunteers) was identified, Luo and colleagues investigated the galectin-7
response to acute rejection of mouse cardiac allografts. More specifically, they showed that
the expression of galectin-7 increased with the severity of allograft rejection. Furthermore,
they demonstrated that the upregulation of galectin-7 expression in the allografts was
directly related to the T cell response. The results showed that infiltrating lymphocytes
and endothelial cells in the allografts expressed large amounts of galectin-7 located in the
cytoplasm and nucleus of cardiomyocytes, endothelial cells, and infiltrating lymphocytes.
This was not observed in native hearts or isografts, and it is believed that galectin-7 plays a
crucial role to accelerate allograft rejection [92].

Table 1 summarizes the various pathophysiological roles and mode of action displayed
by galectin-7.

Table 1. Various roles of galectin-7 along with its modes of action.

Role Mode of Action References

Epidermal homeostasis of skin Regulation of keratinocyte proliferation, differentiation and
migration [14–25]

Re-epithelialization of corneal wounds Mediating corneal epithelial cell migration [27]

Wound healing of PDL fibroblasts Promoting proliferation, migration and invasion of PDL
fibroblasts [28]

Promalignant activity in gastric cancer Lower expression levels of galectin-7 cause increase in gastric
cancer cell proliferation, migration and invasion [54]

Promalignant activity in thymic
lymphoma + HNSCC Induce MMP-9 expression [6,55,56,64]

Increasing invasive behavior of breast
cancer cells Protecting breast cancer cells from apoptosis [58–61]
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Table 1. Cont.

Role Mode of Action References

Reducing invasive behavior of prostate
cancer cells Inhibiting motility prostate cancer cells [63]

Pro-invasive activity in oral squamous
cell carcinoma Induce MMP-2 and MMP-9 expression [65,66]

Protective effect on the survival of
cervical squamous carcinoma patients

Inhibiting MMP-9 expression and
cell invasion in cervical squamous carcinoma cells [67,69,70]

Promoting metastasis of endometrial
cancer Reducing cell–cell adhesion and enhancing cell migration [71]

Sensitizing bladder cancer cells to
chemotherapy Increase generation of reactive oxygen species [72]

Negative growth regulator of
neuroblastoma cells Switch from proliferation to differentiation of cancer cells [73]

Mediation of endometrial epithelial
wound repair

Endometrial re-epithelialization is dependent on integrin
mediated signaling [80]

Abnormal placentation hence leading to
the development of pre-eclampsia

Acting via the placenta to induce the systemic features of
pre-eclampsia via impaired placental formation, placental

inflammation and placental release of anti-angiogenic factors
[81,83]

Skin barrier impairment in keratinocytes Protecting disruption of cell-to-cell adhesion and/or
cell-to-extracellular matrix adhesion [87]

Anti-inflammation effects, inducing
autoimmune disease and transplantation

rejection
Promotion, proliferation and polarization of Th1/2 cells [88]

Causing airway structural defects, injury,
and other asthma responses

Increased apoptosis occurred in bronchial epithelial cells in
asthma [89,90]

Intracellular immunity in the response
against bacterial infection

Colocalizing with and surrounding group A Streptococcus (GAS,
intracellular bacterium) [91]

Accelerating allograft rejection Up-regulation of galectin-7 expression in the allografts was
directly related to T cell response [92]

Despite of the many findings mentioned in this section, much has to be discovered
at the molecular level of several pathophysiological processes. Knocking down or not
expressing galectin-7 would not be sufficient in many cases, and hence it may cause any
other complications.

3. Drug Potential of Galectin-7 Inhibitors and Galectin-7 as a Biomarker

It may not always be necessary to solely inhibit galectin-7 either intracellularly of
extracellularly. Clearly, inhibitors will eventually aid the elucidation of molecular mech-
anisms/pathways in a variety of biological processes, but it is also of great interest to
support the diagnosis and prognosis of several disorders. The second part of this section
will deal with the use of galectin-7 as a biomarker in some cases where it is reported to
be overexpressed.

3.1. Drug Potential of Galectin-7 Inhibitors

The activity and function of any galectin can be multi-faceted, due to galectin self-
association, and/or interactions with cell surface glycans/other biomolecules, both extra-
cellularly and intracellularly [93].

The approach of carbohydrate-derived small-molecule inhibitors to target the CRD of
galectins is mainly based on the use of chemically modified natural galectin ligands, such
as the disaccharides lactose (Lac) or N-acetyllactosamine (LacNAc). As the development
of these inhibitors involves a full understanding of the biochemistry of galectin–glycan
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interactions, efforts are being made to generate galectin inhibitors that target individual
members (particularly galectins-1, -3 and -7) of the family with higher affinity and selectiv-
ity [50]. Most of the current inhibitors only block extracellular functions of a given galectin
and neglect intracellular functions [36], except for galectin-3 for which Stegmayr and co-
workers were able to synthesize and evaluate the roles of intracellular and extracellular
galectin-3 inhibitors [94].

It is warranted in impaired diabetic wound healing to identify and elucidate the status
of specific galectin-7 regulating molecules in a high glucose environment. Furthermore,
elucidating the specific molecular dysfunction in keratinocytes associated with individual
diabetic phenotype will likely result in the development of more effective and personal-
ized therapeutic strategies for optimal wound management in patients diagnosed with
diabetes [24].

Wan and colleagues concluded in their review that inhibiting the contribution of
galectin-7 to allergic inflammation should be achievable by generating antibodies with
the proviso that (1) the antibodies do not exhibit cross reactivities to other galectins and
(2) the galectin’s contribution should go through extracellular actions. If this is not the case,
antibodies will not be suitable, and cell-permeable inhibitors are required [85].

As for the resistance to anticancer therapies, intracellular versus extracellular functions
of galectins are an important aspect to keep in mind to understand the role of these proteins in
anticancer therapy resistance, as well as in the design of galectin-based cancer treatments [48].

Many publications call for inhibitors and methods for targeting galectin-7 and/or
modulating its activity. Yet, no specific galectin-7 inhibitor is available. For example,
extracellular galectin-7 promotes cancer via binding to cell surface receptors of cancer cells
and induce de novo transcriptional activation of LGALS7, which in turn render cells resistant
to pro-apoptotic drugs. Another example is displayed by the binding of extracellular
galectin-7 to glycoreceptors expressed in infiltrated immune cells that triggers a cascade of
signaling events, leading to the apoptosis of cancer-killing T cells, or alters their regulatory
functions, helping tumors evade anti-tumor immunity [95].

In another example, where the expression of galectin-7 in epithelial ovarian cancer
(EOC) is evaluated, it was observed that extracellular galectin-7 is released outside the
cells. Galectin-7 is believed to have a significant impact on tumor progression by inducing
immunosuppression and increasing the invasive behavior of tumor cells that eventually
leads to metastasis. Targeting galectin-7 may represent a valuable strategy to overcome
cancer-associated immunosuppression and the prevention of metastasis in EOC [62].

Grosset and co-workers confirmed the expression of galectin-7 in the cytosolic and
nuclear compartments of breast cancer cells and the ability of galectin-7 to translocate to
mitochondria. However, whether the resistance of breast cancer cells to apoptosis is depen-
dent on the intracellular localization of galectin-7 remains unknown [60,96]. Bibens-Laulan
and St-Pierre uncovered how galectin-7 traffics between both intracellular and extracellular
compartments in ovarian and breast cancer cells. They reported that extracellular galectin-7
plays a central role in controlling intracellular galectin-7 in cells via two mechanisms: firstly,
by increasing the transcriptional activation of LGALS7 gene transcription, and secondly
via re-entry into the cells. However, whether re-entry is dependent on the glycan-binding
site of galectin-7 is unknown [97]. Girotti and colleagues concluded that it is still not clear
whether intracellular or extracellular activities of galectins should be targeted to halt tumor
progression [49]. In addition to their extracellular function, the fact that galectins can alter
tumor progression through their interaction with intracellular ligands (sometimes even
independently of their CRD) calls for a change in the basic assumptions and may force
scientists re-design strategies in order to develop galectin antagonists for the treatment
of cancer [98].

3.2. Galectin-7 as a Biomarker

The biomarkers field is shifting from tests analyzing single targets to multiplexed
analysis of numerous proteins with or without post-translational modifications or ex-
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clusively glycans. These improvements are possible, due to the advances in analytical
(detection) techniques, such as mass spectrometry for glycan analyses and lectin-antibody
array methodologies. Indeed, a more specific (and early) pathological (i.e., cancer) diag-
nosis will result in earlier disease detection, improved disease monitoring and assistance
and eventually successful patient-specific therapies. However, despite all the literature
supporting the value of biomarkers for prognostic and monitoring applications, these tests
suffer from limited specificity and sensitivity, which makes it a challenge to come up with
a useful biomarker [38,41].

Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe
cutaneous adverse drug reactions (cADRs) that can cause a life-threatening condition and
late sequelae. Galectin-7 was reported to be one of the seven proteins that showed higher
concentrations in the samples of SJS/TEN samples than in the non-severe cADR samples.
The proteins were quantitated, using selected/multiple reaction monitoring (SRM/MRM)
with stable synthetic isotope-labeled peptides as an internal control. The technique might
be useful in the search for a potential SJS/TEN biomarker and key candidates involved in
SJS/TEN pathogenesis [99].

Although it was proposed that galectin-7 serves as a negative prognostic factor in
ovarian cancer by two independent groups [62,100], Schulz and colleagues studied the
prognostic value of galectin-7 (among other galectins) in patients with epithelial ovarian
cancer. The staining of galectin-7 in tumor cells was mainly observed in the cytoplasm; only
a few individual cases showed nuclear staining. In addition, a significantly reduced overall
survival was observed for cases with a high galectin-7 expression and a better survival for
galectin-7 negative cases. Lower galectin-7 expression was confirmed as an independent
prognostic factor for overall survival in ovarian cancer [101].

Trebo et al. suggested that galectin-7 might be an independent negative prognostic
factor in breast cancer and a therapeutic target, especially in HER2-positive breast cancer.
The expression of galectin-7 was observed in the cytoplasm as well as in the nucleus
of breast cancer cells. Galectin-7 expression in the cytoplasm as well as in the nucleus
was significantly higher in no special type (NST) tumors, compared to non-NST tumors.
In addition, galectin-7 was also present in macrophages next to the tumor cells. These
macrophages might also provide a source of extracellular galectin-7 for tumor cells and
might regulate the intracellular galectin-7 pool. Combining the results suggested that
galectin-7 might be an independent negative prognostic factor in breast cancer and a
therapeutic target, especially in HER2-positive breast cancer [102].

Matsukawa and co-workers aimed to identify predictors of tumor sensitivity to preop-
erative radiotherapy/chemotherapy for oral squamous cell carcinoma (OSCC) in order to
allow oncologists to determine optimum therapeutic strategies. They identified galectin-
7 as a potential predictive marker of chemotherapy and/or radiotherapy resistance, as
in vitro overexpression of galectin-7 significantly decreased cell viability after chemother-
apy (most likely due to growth arrest rather than apoptosis) in the OSCC cell line [103].

Kim et al. indicated that, given the fact that the expression of galectin-7 in gastric
cancer is regulated by DNA hypermethylation (as discussed previously in Section 2), the
DNA methylation of galectin-7 is a promising candidate biomarker for application in
gastric cancer [54].

In order to develop new inhibitors for galectin-7, one must gain knowledge regarding
structural information of the binding pocket and to have a understanding of the preferred
interactions between the target protein and small molecules. The following section will
cover these aspects.

4. Structural Features

Being involved in a variety of physiological processes, many of which are directly
linked to immunity and disease, deciphering the complex structures of galectins and their
interactions with carbohydrates is of fundamental relevance to gain a deeper understand-
ing of the underlying biological processes involved, the different affinities for different
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carbohydrates and non-carbohydrate ligands and to develop potential therapeutic inter-
ventions [104]. The crystal structures of most of the galectins, also in complexes with
glycan ligands, are known. The CRD (consisting of ~130–140 residues) of most galectins
is comprised of five- and six-stranded anti-parallel β-sheets arranged in a β-sandwich
(sometimes referred to as “jelly roll”) configuration that lacks an α-helix. The subunits in
the dimeric galectin-7 are related by a twofold rotational axis perpendicular to the plane of
the β-sheets [1].

The first crystal structures of human galectin-7, in free form and in the presence of
galactose, galactosamine, lactose, and N-acetyl-lactosamine, were published by Leonidas
et al. The structure of galectin-7 shows a fold similar to that of prototypes galectin-1 and -2,
but has a greater similarity to the related galectin-10. Unlike galectin-1 and -2 that are both
dimeric galectins with a single CRD and both known for their multivalent carbohydrate
recognition due to their structural organization, the homodimer arrangement of galectin-7
is considerably different because this galectin recognizes carbohydrates in its monomeric
form and does not possess multivalency. The dimer interface involves the association
of the β-strands, F1–F5, from the two protomers which are held together by hydrogen
bonding interactions. These H-bonds involve five residues from molecule (subunit) A,
eight residues from molecule (subunit) B, and an extensive set of van der Waals interactions.
The dimer interface of galectin-7 is relatively large, 1484 Å2, compared to areas of 1093 Å2

(galectin-1) and 1179 Å2 (galectin-2) [8].
Detailed analysis of the aforementioned galectin-7–carbohydrate complex structures

show that His49, Asn51, Arg53, Asn62 and Glu72 are the key residues involved in carbo-
hydrate recognition through hydrogen bond interactions. The highly conserved residues
His49, Asn 51, and Arg53 make hydrogen bonds with the galactose O4 in all four complexes.
The galactose O5 makes two hydrogen bonds with Arg53 and Glu72, while O6 is engaged
in interactions with Asn62 and Glu72. Tryptophan 69 is involved in stacking interactions
with the galactose moiety in a manner analogous to that seen in Gal-1 and Gal-2 structures.
Residues Arg 53, Thr56, Glu58, Glu72, and Arg74 form a network of ionic interactions.
In the galactose and galactosamine complex structures, the O1 (involved in hydrogen
bond formation with Pro85 and Ser8), O2, and O3 atoms of the carbohydrate are involved
in water-mediated interactions and contribute to the strength of carbohydrate binding.
Moreover, the Arg31 residue in galectin-7 could form part of the carbohydrate-binding
region, as it was observed that Arg31 in galectin-7 occupies the position of His52 in Gal-1,
which is located about 3.1 Å away from the carbohydrate moiety [8]. Figure 1 displays the
dimeric structure of galectin-7 as well as its binding to N-Ac-LacNac.

Figure 1. (a) Dimeric structure of galectin-7 (pdb 1BKZ); (b) N-Ac-LacNAc binding to galectin-7
(pdb 5GAL).
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By combining nuclear magnetic resonance (NMR) and circular dichroism spectro-
scopies and molecular dynamics (MD) simulations, Ermakova et al. provided comple-
mentary structural information on the binding of lactose to galectin-7 and its impact on
protein thermodynamics and conformational dynamics. They were able to show that there
is positive cooperativity when lactose binds. Binding of the first ligand enhances binding
of the second. Analyzing MD simulations indicated that significant changes occur in the
ligand-free subunit (A) when lactose is bound to the other subunit (B). Increased conforma-
tional entropy was reflected by an overall increased internal motion in galectin-7. Based
on molecular mechanics and MD simulations, an increase in the ligand binding–induced
dimer stability (of galectin-7) was observed. This increase was validated experimentally in
several assays: gel filtration fast protein liquid chromatography (FPLC), CD-based ther-
mal denaturation studies, fluorescence resonance energy transfer (FRET) and STD NMR.
Furthermore, it was observed that the binding of lactose to galectin-7 (Kd = 0.465 mM
averaged over two Ka values) alters the lectin conformation and dynamics within the
ligand-binding site, as well as through an internal gradient from the ligand-binding site to
the dimer interface. The greatest effects were observed in the residues that interact directly
with the ligand (the 50–58 and 62–70 loops), the 5-stranded β-sheet at the backside of the
lactose-binding site (including the region involved in dimerization of galectin-7) and loops
(residues 9–14 and 110–116) down to the dimer interface [105].

Masuyer and colleagues compared the binding affinities of compounds 1 and 2 (Figure 2)
and evaluated the structural information by measuring a high resolution crystal structure
of galectin-7 in the complex with 2 [106].

Figure 2. Structures of 1 and 2: these two molecules differ by the presence of the O-benzylphosphate
group in 2, compared with an O-methylphosphate group in 1.

They reported that the CRD itself remains unchanged despite a slight movement in
the adjacent loop composed of Arg74 and Gly75. The crystal structure highlights stronger
binding achieved through the side groups of the 2-O-benzylphosphate ligand 2, compared
to galactose. The phosphate group weakly hydrogen bonds with Arg31 while it is also
stabilized by hydrogen-bonded water molecules linked to the same Arg31 and Asn51
of the CRD. The amido group also shows interactions with water molecules linked to
Lys64 and Trp69, expanding the binding capacity of the ligand to a region not previously
involved in galactoside recognition by galectin-7. The phenyl group does not seem to be
involved in the binding of ligand 2 despite being in close proximity to polar residues His33,
Glu122 and Asn35. As both His33 and Glu122 are not conserved among galectins, better
specificity of inhibition could be achieved by focusing the ligand interaction toward this
position. It is also noted that the benzyl moiety of the O-benzylphosphate 2 is not taking
part in the inhibitor binding, as it faces away from the CRD. The slightly better affinity of
1 (Kd = 240 µM compared to Kd = 450 µM for 2) toward galectin-7 reflects this; the smaller
methyl group might be able to interact with Arg31, possibly via a different orientation than
that of the O-benzyl group, and hence, show a slightly better affinity. The authors proposed
to search for a more favorable interaction with Arg31 (and other nearby residues) when the
(alkyl)-phosphate groups at the 2-O position is modified for the design of inhibitors [106].

Hsieh and co-workers provided structural evidence of human galectin-7 (hGal7) in
complex with Galβ1-3GlcNAc (LN1) and Galβ1-4GlcNAc (LN2) (Figure 3). They compared
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the results with LN1 and LN2-complexed galectin-1 and (the C-terminal CRD domain of)
galectin-3 by means of crystallography [107].

Figure 3. Structures of 3 (Galβ1-3GlcNAc, LN1) and 4 (Galβ1-4GlcNAc, LN2).

When complexed to 3, the crystal structure determination of galectin-7 revealed
that the dimer of galectin-7 is present in a back-to-back arrangement. Furthermore, the
authors confirmed that the CRD adopts a typical galectin fold, which is composed of two
antiparallel β-sheets of six (S-sheets S1-S6) and five (F-sheets F1-F5) strands, jointly forming
a β-sheet sandwich structure. The S1–S6 β-strands constitute a concave surface to which
β-galactoside-containing glycans are bound. Generally the galactose moiety (Gal) forms
more hydrogen bonds with the amino acid residues in the CRD of the galectin than the
N-acetylglucosamine moiety (GlcNAc), supporting the idea that Gal serves as the major
recognition component [107].

The Gal of 3 (LN1) interacts with the following residues located on S4–S6 β-strands
and the loop connecting S4 and S5 strands of galectin-7: His49, Asn53 and Asn62 (through
hydrogen bond networks) and Trp69 (via van der Waals contacts). Specifically, the Arg53
residue not only bridges H-bonds to several oxygen atoms of LN1 (C4-OH, O5 of GAL
and C4-OH of GlcNAc), but also connects a few carbohydrate-interacting amino acid
residues, such as Asn51, Glu58 and Arg74, to form a characteristic interacting network of
H-bonds and electrostatic interactions, which are optimal for the carbohydrate orientation.
Galectin-7 has more H-bonds to the Gal moiety and a characteristic shorter distance with
GlcNAc in 3 (LN1), as compared to those in 4 (LN2) [107].

The electrostatic network consists of Arg53, Glu58, Glu72 and Arg74. Glu58 mediates
a unique salt-bridge network by forming two weaker monodentate N–O bridges with
Arg53 and Arg74. Neither of the hGal7–LN1 and the hGal7–LN2 complexes contain water-
mediated interactions; the main cause is most probably the large distance of Glu58 to the
bound sugar. Investigation of the loop L4 between the S4 and S5 β-strands revealed that
L4 is shorter, compared to the counterpart in galectins-1 and -3. Glu58 seems to either
reside in the end of L4 or the beginning of the S5 β-strand, which makes it impossible for
Glu58 to coordinate with the N2 atom of LN2 for additional water-mediated interactions.
Based on their results, it was concluded that the length of L4 and the location of the Glu
residue (resided in the variable loop L4) are found to influence the geometry of the salt-
bridge, which eventually resulted in a higher affinity of galectin-7 toward LN1, compared
to LN2 [107].

High-resolution crystal structures of carbohydrate-based dendrons D1, D2 and D3
(5, 6 and 7, respectively, in Figure 4) in complex with human galectin-7 were resolved,
as follows. The overall structure of galectin-7 remained unchanged upon ligand binding
and appeared as a dimer comparable with that described previously by Leonidas [8]. The
dimeric state of galectin-7 did not appear to break down upon ligand binding; however,
the interface of dimerization was slightly altered in terms of a decrease in surface contact
area. The ligand D1 (5) is bound to galectin-7 through its galactose rings interacting with
the CRD and a single water-mediated hydrogen bond between the triazole arm and R31.
Despite having identical lengths, all three arms do not seem to be long enough to bind
to galectin-7 simultaneously. This probably resulted in the disorder and lack of electron
density for the third arm in the crystal structure of the D1–hGal7 complex. It was concluded
that D1 was able to link two molecules of galectin-7 in a linear fashion as shown in Table 2.
Co-crystallization of galectin-7 in complex with D2 (6) led to two crystal forms. The first
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crystal form (D2-1) showed electron density for two of the three arms of the dendrons
similar to that observed with D1 (resulting in cross-linking of two hGal7 molecules). In the
second crystal form, D2-2, electron density was observed for all three arms of the dendrons
with each galactose-terminus bound to one hGal7 molecule; this crystal form has three
dimers of hGal7 in the asymmetric unit. Galectin-7 in complex with D3 (7) results in the
linking of two molecules of galectin-7 (Table 2). In addition, the D3–hGal7 structure of this
complex shows that one terminal galactosyl group binds at the CRD of galectin-7, whereas
another galactosyl ring of the adjacent arm interacts with a different CRD of the same
galectin-7 molecule [108].

Figure 4. Structures of 5, 6 and 7 (D1, D2 and D3, respectively).
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Table 2. Cross-linking of galectin-7 by dendrons D1, D2 and D3. Figures are re-used with permission
from the copyright holder.

Compound Cross-Linked Form

5 (D1)

6 (D2)

6 (D2)

7 (D3)

TD139 8 [109], being in clinical development by the Swedish Galecto Biotech [110],
has completed Phase Ib/IIa clinical trials for the treatment of idiopathic pulmonary fibro-
sis [111]. It displays potent inhibition of galectin-1 and galectin-3, which proved to be
increased by a factor up to 200 times, compared to the inhibition of galectin-7 as determined
by fluorescence polarization (FP) [112].

Hsieh and co-workers investigated the binding interactions between thio-digalactoside
TD139 8 (Figure 5) with galectin-1, -3 and -7 by means of X-ray crystallography, isothermal
titration calorimetry and NMR spectroscopy [113]. The galectin’s CRD is described in terms
of the subsites A–E in order to facilitate analysis and discussions on ligand binding [114].
According to this model, the best structurally characterized subsites C and D are responsible
for recognition of the β-galactoside–containing disaccharides [113].

When the binding affinity of 8 with human galectin-3 (hGal3) was investigated with
that of human galectin-7 (hGal7), it became clear that galectin-7 contains Arg31 and His33
at the positions held by Arg144hGal3 and Ala146hGal3. Arg31hGal7 is placed in subsite B
and thus, does not interact with the 4-fluorophenyl substituent of TD139. Likely hindered
by the imidazole of His33hGal7, a bulkier residue than the counterpart Ala146hGal3, the
4-fluorophenyl moiety turns ~50◦ away as compared to that in the galectin-3 complex,
having the vacated volume in subsite B of galectin-7 occupied by two water molecules. The
orientation in which the 4-fluorophenyl-triazole moiety of TD139 is situated in subsite E (the
aromatic substituent interacts with Arg) is a consequence of the previously mentioned salt-
bridge in galectin-7, this time involving Glu58, Arg74 and Glu72. Similar tandem arginine–
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π interactions between the 4-fluorophenyl-triazole and Arg74hGal7 were observed, albeit
being a weak interaction due to the electron-deficient π system. This π–arginine interaction
resides only in subsite E (not in subsite B) as confirmed by 19F-NMR spectroscopy, which led
to the conclusion that subsite E of galectin-7 is able to contribute more binding interactions
than subsite B [113].

Figure 5. Structure of 8 (TD139).

5. Small-Molecule Carbohydrate and Non-Carbohydrate Galectin-7 Inhibitors

Due to the galectin-7 characteristic that it binds to β-galactosides, most of its small-
molecule inhibitors are carbohydrates, or, at least, based on sugar scaffolds. In order to
make progress, it is of importance to come up with (glyco)mimetics that are capable of
recognizing and blocking galectin-7. These mimetics could be molecules that mimic natural
(binding) carbohydrates structurally and functionally. In addition, they should display
improved pharmacological properties, have better resistance against glycosidase hydrolysis,
and bind more strongly and more selectively to galectin-7 [2]. In particular, the poor
selectivity of current small-molecule inhibitors remains an important obstacle to overcome,
due to the high similarity of the CRD structures among the different galectins [50]. Hence,
developing specific galectin-7 inhibitors that will selectively target the intracellular or
extracellular functions of galectin-7 could be a strategy to inhibit not all, but specific
galectin-7–mediated processes [13]. Chan and co-workers mentioned in their review that
success was achieved in distinguishing between galectin-3 and other galectins. However,
having the selectivity be reversed and thus developing inhibitors that are more selective for
the weak-binding galectin-7 (than for galectin-3, for example) would certainly be a major
breakthrough [115]. In this section, we will briefly discuss the best synthetic inhibitors of
galectin-7 based on (non-)carbohydrate scaffolds that were developed in the past.

5.1. Inhibitors Based on a Carbohydrate Scaffold

The first discovery of efficient and selective monosaccharide inhibitors of galectin-
7 came from the group of Nilsson during a study in which they synthesized a library
of 28 compounds that was tested for binding to galectin-1, -3, -7, -8N and -9N. They
demonstrated the potential of 1,5-difluoro-2,4-dinitrobenzene 9 (Figure 6) as a scaffold for
the synthesis of combinatorial carbohydrate libraries. Three selective galectin-7 inhibitors
(structures 10, 11 and 12 in Figure 6) were found to have affinities similar to those of the best
natural ligands. The Kd values were measured in a competitive fluorescence-polarization
assay to be in the range of 0.14–0.18 mM for galectin-7, whereas no inhibition was observed
for galectin-1, -3, -8N and -9N [116].
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Figure 6. Structures of the scaffold 9 and the inhibitors 10 (Kd = 0.17 mM), 11 (Kd = 0.18 mM) and 12 (Kd = 0.14 mM).

One year later, Bergh and co-workers from the same group published syntheses of
galactosides carrying 3- or 4-substituted alkyne benzyl ethers. The group developed a
method using a solid phase variant of the Nicholas reaction to provide inhibitors that have
alkynyl benzyl ethers. Their approach simplified the purification steps and enabled the use
of unprotected carbohydrates in the formation of the para/meta-substituted products. They
found two of them to be the simple straight-chain allyl- and hydroxymethyl-substituted
alkynes 13 and 14, which suggests that the binding pocket of galectin-7 close to galactose
O-3 is relatively small and does not allow larger cyclic structures to bind. The Kd (mM)
values against galectin-1, -3, -7, -8N and -9N were measured in a competitive fluorescence
polarization assay and listed in Table 3 [117]:

Table 3. Kd (mM) values for inhibitors 13, 14 and 15 against galectins-1, -3, -7, -8N and -9N as measured in a competitive
fluorescence-polarization assay.

Compound Galectin-1 Galectin-3 Galectin-7 Galectin-8N Galectin-9N

27 2.4 0.39 1.0 1.0

6.9 2.9 0.65 3.8 1.9

n.i. a 5.4 0.74 2.4 2.0

a n.i. = non-inhibitory.
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Compound 13 proved to be the most interesting inhibitor, due to its lowest Kd value
and its selectivity. Compared to affinities for other members of the galectin family, prefer-
ence for galectin-7 is increased by a factor of up to 100 [117].

Salameh and colleagues came up with derivatives of N-acetyl lactosamine carrying
diverse thiourea groups at galactose C3. The thioureas obtained upon reaction of the
isothiocyanate with amines are known to form strong hydrogen bonds, which makes them
suitable for improving the affinity of ligands for proteins. In case of 16 (Figure 7), a Kd
value of 23 µM was measured by a fluorescence polarization assay, which makes 16 the
best galectin-7 ligand. It is, however, not the most selective, as it binds in the range of
35–47 µM to galectin-1, -3, -8N and -9N [118].

Figure 7. Thioureido N-acetyllactosamine derivative 16.

In a more recent paper, Delaine et al. continued developing galectin-1 and -3 antago-
nists with selectivity and therefore, synthesized ditriazolylthio-digalactosides (compounds
8 and 17–26 in Figure 8) [112]:

Figure 8. Ditriazolylthio-digalactosides developed by Delaine et al.

It was observed from the dissociation constants that, regarding the affinity of these
ligands toward galectin-7, the binding is enhanced by the 4-aryltriazolyl groups in 17–24.
The dissociation constants are in the range of 1–10 µM for galectin-7, which are close to
those for galectin-2, -4N, -4C, -9N and -9C. The sterically more demanding compounds 25
and 26 did not significantly bind to galectin-7 [112].

5.2. Inhibitors Based on a Non-Carbohydrate Scaffold

Vladoiu and colleagues reported a peptide-based galectin inhibitor that was specifi-
cally designed to disrupt the formation of galectin-7 dimers from the monomers and its
pro-apoptotic function. They identified critical residues possibly involved in the formation
of the dimer interface based on their tendency to form hydrogen bonding, hydropho-
bic, or van der Waals interactions [8]. In addition, structural analyses of the dimeric
interface published by Ermakova and co-workers [105] was also used in their design
of a peptide-based inhibitor. Two peptides were designed to rationally mimic and dis-
rupt the galectin-7 segment between residues 13–25 and 129–135 since those residues
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appear to be directly involved in the stabilization of the dimeric structure: hGal7(13–25)
(H-Ile-Arg-Pro-Gly-Thr-Val-Leu-Arg-Ile-Arg-Gly-Leu-Val-NH2) and hGal7(129–135) (H-Leu-
Asp-Ser-Val-Arg-Ile-Pro-NH2). Human galectin-7129–135 proved to be more potent than
hGal7(13–25) in disrupting hGal7 homodimers as measured by mild denaturing native gel
electrophoresis. There is an interaction between hGal7(129–135) and galectin-7 through a
classical solid-phase binding assay. The decrease in hGal7 homodimers is observed at
a concentration range of 100–500 µM of peptide hGal7(129–135). Moreover, an increase in
galectin-7 binding on the surface of Jurkat T cells and an apoptotic response were ob-
served in the presence of hGal7(129–135). A reduction in the ability of the protein to induce
apoptosis of Jurkat T cells was observed [119]. More recently it was demonstrated that
meso-tetrakis(p-sulfonatophenyl)porphyrin 27 (TpSPPH2, Figure 9) significantly reduced
the level of (galectin-7-induced) apoptosis of human Jurkat T cells [120].

Figure 9. Structure of a novel non-carbohydrate galectin-7 inhibitor 27 (TpSPPH2).

A binding affinity of 27 for galectin-7 was measured by fluorescence quenching to
be 9.5 ± 1.6 µM. In addition, TpSPPH2-bridged oligomers of galectin-7 were observed by
small-angle X-ray scattering (SAXS) and 1H−15N HSQC NMR of galectin-7−TpSPPH2
complexes. Docking simulations on galectin-7 showed that the TpSPPH2 moiety preferen-
tially binds to three main subsites at the dimer interface. [120].

6. Conclusions

In the world of physiology, pathology and glycobiology, galectin-7 is one of many
proteins that require special attention, due to its striking biological properties. Galectin-
7 is a member of the prototype galectin family, which is mainly expressed in stratified
epithelia of several tissues. While it is known for having multiple biological functions in
the human body, much of its molecular mode of action has to be elucidated. Although
several strategies were developed to knockout galectin-7 or suppress its translation, we
believe the field of cellular pathophysiology would benefit from small-molecule inhibitors
which can be administered to evaluate its effect on cellular disorders and even diseases
such as cancer. Moreover, the use of small molecules that bind strongly and specifically to
galectin-7 may also be deployed for prognosis and monitoring disorders/diseases in search
of better and personalized medical treatment. Molecules were synthesized, but both the
potency and specificity need to be improved. It is impossible to hit a target when our eyes
are closed; therefore, with this mini review, we wish to elaborate on an emerging target
within glycobiology, galectin-7.
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