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Recombinant production of 
influenza hemagglutinin and HIV-1 
GP120 antigenic peptides using a 
cleavable self-aggregating tag
Wanghui Xu†, Qing Zhao, Lei Xing‡ & Zhanglin Lin

The increasing demand for antigenic peptides in the development of novel serologic diagnostics and 
epitope-based vaccines requires rapid and reliable peptide synthesis techniques. Here we investigated 
a method for efficient recombinant expression and purification of medium- to large-sized antigenic 
peptides in E. coli. Previously we devised a streamlined protein expression and purification scheme 
based on a cleavable self-aggregating tag (cSAT), which comprised an intein molecule and a self-
aggregating peptide ELK16. In this scheme, the target proteins were fused in the C-termini with cSAT 
and expressed as insoluble aggregates. After intein self-cleavage, target proteins were released into 
the soluble fraction with high yield and reasonable purity. We demonstrated the applicability of this 
scheme by preparing seven model viral peptides, with lengths ranging from 32 aa to 72 aa. By adding an 
N-terminal thioredoxin tag, we enhanced the yield of target peptides released from the aggregates. The 
purified viral peptides demonstrated high antigenic activities in ELISA and were successfully applied to 
dissecting the antigenic regions of influenza hemagglutinin. The cSAT scheme described here allows 
for the rapid and low-cost preparation of multiple antigenic peptides for immunological screening of a 
broad range of viral antigens.

Discrete peptides derived from intact viral antigens are important tools for immunological studies, including 
epitope mapping, peptide arrays and the characterization of protein–protein interactions1–4. From such studies, 
a number of antigenic peptides have been developed into novel serological diagnostics and epitope-based vac-
cines5–8. In particular, peptides over 40 amino acids (aa) have become increasingly important in vaccine devel-
opment, mainly because they are better at forming stable structural domains and mimicking natural structural 
epitopes6. The increasing demand for medium- to large-sized peptides (30–100 aa) in immunological research 
has stressed the need for rapid and reliable peptide synthesis techniques, using or chemical or recombinant tech-
nologies. Despite progress in solid-phase peptide synthesis, the purification and recovery of chemical synthetic 
peptides of over 30 aa in length remains costly and success rates are largely sequence-dependent9. Recombinant 
peptides shorter than 100 aa are usually prone to proteolysis and difficult to express with high yield in commonly 
used microbial hosts, such as E. coli cells10–12. Here we investigated methods for the efficient recombinant expres-
sion and purification of antigenic peptides with lengths ranging from 30–100 aa in E. coli cells.

Fusion partners have been widely used to enhance the stability and solubility of recombinant proteins in E. coli11,13,14.  
To produce recombinant peptides with high yields, several emerging schemes employ fusion tags that induce 
the formation of protein inclusion bodies (IBs)15, including the well-known hydrophobic bacterial ketosteroid 
isomerase (KSI) applied in the commercial pET-31b(+ ) vector16, the autoprotease Npro of classical swine fever 
virus17, the elastin-like polypeptide (ELP) tag18,19 and the recently reported N-terminal region (1–62 aa) of syn-
thetic human growth hormone (GH)20. IBs can provide resistance to proteolytic effects, high expression rates, and 
simple recovery by centrifugation. However, the fusion tags described above are usually large in size (over 120 aa),  
increasing the burden of recombinant expression. Furthermore, separation of the target peptide from the tag 
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usually involves harsh chemical cleavage (as for the KSI scheme), a tedious refolding procedure (as for the Npro 
scheme), multiple phase transition cycling steps (as for the ELP scheme) or solubilization of the IBs using alkali 
solutions (as for the Cry4a scheme).

Previously, we reported that a short β -structured self-complementary peptide ELK16 (LELELKLKLELELKLK), 
when fused to a target enzyme in the C terminus, can induce the formation of highly active enzyme aggregates21. 
Based on this finding, we devised a convenient and matrix-free approach to express and purify recombinant pro-
teins from E. coli, referred to as the cleavable self-aggregating tag (cSAT) scheme22. Briefly, the target proteins were 
fused at the N-terminal of the Mxe GyrA intein molecule followed by ELK16, expressed as insoluble aggregates 
and isolated by centrifugation. After dithiothreitol (DTT)-induced intein-mediated cleavage, the target proteins 
were released into the soluble fraction with high purity and yield. Here we further improved the cSAT scheme by 
adding an N-terminal thioredoxin (Trx) tag and demonstrated the usefulness of this scheme in efficiently express-
ing and purifying medium to large-sized viral antigenic peptides for immunological assays. Seven virus-derived 
peptides with lengths ranging from 32 to 72 aa were studied. Among them, five were derived from the pandemic 
2009 A(H1N1) influenza virus hemagglutinin (HA) and two from the type 1 human immunodeficiency virus 
(HIV-1) envelope glycoprotein gp12023,24. All of the peptides were screened from random peptide libraries of viral 
surface antigens. In this study, the peptides both with and without the N-terminal Trx tag were expressed and 
purified from E. coli cells using the cSAT scheme. Trx was found to greatly enhance the yield and purity of soluble 
target peptides released from the aggregates. The purified viral peptides demonstrated high antigenic activities 
in ELISA and were successfully applied to dissect the important antigenic regions of influenza hemagglutinin24.

Results
Constructions of fusion proteins. The fusion proteins were constructed using two sets of vectors in this 
study, as shown in Fig. 1A. The first vector pET-P-Intein-ELK16(a) was modified from a previously constructed 
vector pET30a-LipA-I-ELK16 and used to express the fusion of target peptide-intein-ELK1622. The other vec-
tor pET-Trx-P-Intein-ELK16(a) contained a thioredoxin tag (Trx), with a molecular weight of 12.5 kD, inserted 
upstream of the target peptide. The method of expression and purification of the target viral peptides without or 
with the Trx tag is shown in Fig. 1B. Trx is an intracellular thermostable protein of E. coli that is highly soluble 
expressed in its cytoplasm25. It is one of the most frequently used fusion tags for enhancing the soluble expression 
of recombinant proteins in E. coli cells25,26. Herein, the Trx tag is incorporated to increase the solubility and sta-
bility of the target peptides after intein-mediated cleavage, particularly for peptides that are unstable in solution 
and more prone to form aggregates27–29. Here we discovered that in spite of its great solubility, the Trx tag was able 
to be first expressed as insoluble aggregates of fusion protein and subsequently released into the soluble fraction 
after intein-mediated cleavage, which was applicable with the cSAT scheme (Fig. 1B).

Expression and purification of the target viral peptides using the cSAT scheme. The target viral 
peptides in this work included P1–P5 from the pandemic 2009 A(H1N1) influenza virus hemagglutinin (HA), 
and G9 and G31 from the HIV-1 envelop glycoprotein gp120, all of which were obtained by screening random 
viral peptide libraries in previous studies23,24. The lengths of the above viral peptides ranged from 32 to 72 aa, and 
the sequences are listed in Supplementary Table S1.

The expression and intein-mediated cleavage results for the fusion of target peptide-intein-ELK16 are shown in 
Fig. 2A. All of the target peptides accumulated as insoluble aggregates at an estimated concentration of 15.0–31.3 μ g/mg  
wet cell weight, based on the densitometry analysis of the SDS-PAGE results (Table 1). The aggregates were iso-
lated by centrifugation and intein-mediated cleavage was induced with 40 mM DTT at 4°C overnight. Four of 
the target peptides, P1, P2, P3 and G31 were successfully released into the soluble fraction after cleavage, with 
yields estimated to be 1.0–3.6 μ g/mg wet cell weight and recovery rates of 24.8–65.8%. The purities of these four 
peptides were estimated to be in the range of 62.1–69.9% (Table 1). However, three of the target peptides, P4, P5 
and G9, were poorly released into the soluble fraction, with yields lower than 0.5 μ g/mg wet cell weight, which 
were lower than the detection range.

The results obtained with the Trx-target peptide-intein-ELK16 fusion are shown in Fig. 2B. The fusion aggre-
gates were expressed at an estimated level of 18.9–36.8 μ g/mg wet cell weight (Table 1). All of the target peptides 
with the N-terminal Trx tag were successfully released into the soluble fraction after intein-mediated cleavage. 
With the exception of Trx-G9, all of the other peptides were produced in high yield, estimated to be around 
4.8–7.1 μ g/mg wet cell weight with recovery rates of 30.0–78.1%. As for Trx-G9, the majority of the target peptide 
remained in the insoluble fraction, with a soluble peptide yield of 0.9 μ g/mg wet cell weight and a recovery rate of 
8.3%. The purities of the target peptides containing the Trx tag that were released into the soluble fraction were 
also higher than those without the Trx tag, and were estimated to be 67.1–98.3% (Table 1).

Antigenic activity assay of the purified peptides. The antigenic activities of the target viral peptides 
released into the soluble fraction from the fusion aggregates were verified by ELISA. In a previous study, the HA 
peptides P1–P5 were screened from a random peptide library using three kinds of antisera from mouse, goat and 
human immunized against 2009 A(H1N1) influenza virus HA. To characterize the antigenic activities of P1–P5 
to the three kinds of antisera, the five target peptides with an N-terminal Trx tag were expressed and purified from  
E. coli using the cSAT scheme24. Here we also tested the antigenic activities of P1–P3 without the additional Trx 
tag. As shown in Fig. 3A,B, the binding activities of P1–P3 alone to the antisera from goats agreed with those of 
P1–P3 in fusion with Trx. Specifically, P1 was reactive to both the goat and mouse antisera, while P3 was only 
reactive to goat antisera (see Supplementary Fig. S1). It should be noted that although the strength of the binding 
activity of Trx-P3 to goat antisera was similar to that of Trx-P1, the activity of P3 alone was weaker compared 
with P1. We hypothesized that since P3 is a short peptide of only 39 aa, its antigenic structure may be stabilized 
by the presence of the Trx tag. Again, P2 showed no measurable binding activity to either of the antisera, probably 
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because of its incorrect conformation as previously reported24. It is noteworthy that both Trx-P4 and Trx-P5 
yielded detectable binding against goat antisera, whereas in the absence of the N-terminal Trx tag, P4 and P5 
could not be obtained in sufficient amounts for the assay (Fig. 3B). The antigenic activities of P1–P5 with the 
N-terminal Trx tag, and P1–P3 alone against the mouse antisera are also shown in Supplementary Fig. S1. It is 
clear that the binding activities of P1–P3 to the mouse antisera agreed with those of P1–P3 fused with the Trx tag.

The peptides G9 and G31 were identified by screening for foldable fragments of the HV-1 envelope glycopro-
tein gp120, but the antigenic activities of these peptides remained to be elucidated23. In this study, a commercial 
goat-derived polyclonal antibody against HIV-1 (clone HXB2) gp120 was used to detect their binding activities by 
ELISA (Fig. 3C). All of the peptide samples purified from E. coli using the cSAT scheme, including G31, Trx-G9 
and Trx-G31, were detected by the polyclonal antibody. It was thus confirmed that these two target peptides 
retained strong antigenic activities during the expression and purification process.

Figure 1. Construction of expression vectors for fusion proteins. (A) Expression vector pET-P-Intein-
ELK16(a) for the fusion of target peptide-intein-ELK16 was based on the previously constructed vector 
pET30a-LipA-I-ELK1622 with the EcoRI site replaced with an EcoRV site. Expression vector pET-Trx-P-Intein-
ELK16(a) for the fusion of Trx-target peptide-intein-ELK16 was then modified by inserting the thioredoxin 
(Trx) gene with a GS linker sequence between NdeI and EcoRV sites. The short segment ATGCGAATG 
encoding MRM was inserted to facilitate intein-mediated cleavage. ‘*’ indicates the intein cleavage site.  
(B) Schematic of the expression and purification of target peptide or Trx-target peptide, demonstrated by 
the SDS-PAGE results of Trx. Lane a, insoluble fraction of the cell lysate; lanes b and c, insoluble and soluble 
fractions of the cleaved fusion protein respectively; lanes s1, s2 and s3, quantification standards consisting of 
bovine serum albumin (BSA, 66.5 kDa) at 3, 1.5 and 0.75 μ g/lane and aprotinin (6.5 kDa) at 1.5, 0.75 and 0.3 μ g/
lane respectively. The molecular weights of the protein standards M1 and M2 are indicated on the left and right 
sides respectively. The gel was cropped and the full-length gel is presented in Supplementary Fig. S3.
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Discussion
In this work we reported the recombinant expression and purification of seven viral antigenic peptides of 32 to 
72 aa in length based on the cSAT scheme. The target peptides with or without the N-terminal Trx tag were first 
expressed as insoluble aggregates, then released into the soluble fraction and easily purified after intein-mediated 
self-cleavage. The binding activities of the purified viral peptides to the antisera or polyclonal antibodies were 
verified by ELISA.

Comparing the two types of fusion constructs (with or without the N-terminal Trx tag), the former performed 
better because the yields and purities of all tested viral peptides were greatly improved, especially for P4, P5 and 
G9, the yields of which were undetectable (< 0.5 μ g/mg wet cell weight) without the Trx tag. In particular, P4 
and P5 when fused to Trx were produced at high yields in the soluble fraction. G9, on the other hand, while the 
yield was improved, most of the target peptide in the Trx fusion form still remained in the insoluble fraction 
after intein cleavage. The grand average of hydropathicity (GRAVY) value was calculated using web.expasy.org/
protparam (see Supplementary Table S1) for all seven peptides30. As indicated, G9 is a hydrophobic peptide with a 
positive GRAVY value, whereas the other six peptides are all hydrophilic peptides with negative GRAVY values30. 
Therefore, we speculate that the hydrophobicity of the target peptide may still greatly affect its solubility when 
fused to Trx. Trx has also been reported to enhance the cytoplasmic solubility of proteins with disulfide bonds by 
the virtue of its intrinsic oxido-reductase activity27. In this regard, G9, which has two disulfide bonds, may also 
benefit from fusion to Trx, albeit in a lesser degree compared with P5 (with one disulfide bond). The Trx-peptides 
showed antigenic activity towards specific antisera. This would be especially beneficial when a panel of antigenic 
peptides of reasonable purity (> 70%) are required quickly for parallel analysis of their activities using typical 
immunoassays, such as ELISA and immunoblotting24. The major impurity in the purified samples was the cleaved 
fusion tag intein-ELK16, which would not be expected to interfere with the assays in most cases. It should be 
mentioned that other solubility tags could also be incorporated into the cSAT scheme to assist with releasing the 
peptides into the soluble fraction.

As for the constructs without the Trx tag, the expression and purification results varied for different peptides. 
For P4, P5, and G9, the yields were low. We found that the cleavage efficiencies for P4, P5 and G9 fusion proteins 

Figure 2. Expression and purification of target viral peptides. Expression and purification of the 2009 A 
(H1N1) influenza hemagglutinin (HA) peptides P1–P5 and HIV-1 (HXB2) envelope glycoprotein GP120 
peptides G9, G31 without (A) and with (B) Trx tag, as detected by SDS-PAGE. Lane a, insoluble fraction of the 
cell lysate; lanes b and c, insoluble and soluble fractions of the cleaved fusion protein respectively. The loading 
volume of the protein samples was 1:2:4 for lanes a, b and c respectively. Lanes s1, s2 and s3, quantification 
standards consisting of bovine serum albumin (BSA, 66.5 kDa) at 3, 1.5 and 0.75 μ g/lane and aprotinin (6.5 kDa) 
at 1.5, 0.75 and 0.3 μ g/lane respectively. The molecular weights of the protein standards M1 and M2 are 
indicated on the left and right sides respectively. The gels were cropped and the full-length gels are presented in 
Supplementary Fig. S4.
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were comparable with those for P1, P2 and G31 fusion proteins (Table 1), and for P3 fusion protein, it was even 
slightly higher. However, the fusion aggregate yields of P4, P5 and G9 were lower compared with the other pep-
tides (Table 1). Moreover, the majority of these three peptides are distributed in the insoluble fraction after intein 
cleavage. This suggests that for these three peptides, the relatively stronger hydrophobicity or weaker hydrophilic-
ity (see Supplementary Table S1), and the difficulty of forming correct double disulfide bonds during expression 
for P5 (1 disulfide bond) and G9 (2 disulfide bonds), affected the expression levels, as well as the solubility after 
intein-mediated cleavage. However, the scheme still provides a quick and low-cost method for producing peptides 
that can retain a stable conformation in the soluble fraction, as shown for P1–P3 from influenza HA and G31 
from HIV-1 gp120.

The peptides produced in this study may then be applied in research focusing on the antigenic structure and 
vaccination potential of influenza and HIV viruses. For example, the P1 peptide correlated well with the epitope 
of a recently reported cross-neutralizing antibody 12D1 to several subtypes of influenza viruses31. Vaccination 
in mice using a chemical synthetic peptide mimicking the 12D1 epitope has been proven to provide protection 
against influenza viruses of the H3N2, H5N1 and H1N1 subtypes, and this 55-aa peptide was covered by the 
recombinant P1 peptide reported in the current study32. The G31 peptide corresponded to the conserved immu-
nodominant C-terminal region of the HIV-1 envelop protein gp120. A chemical synthetic peptide of 27 aa, which 
was contained in the G31 peptide sequence, has been used as an antigen in a combined assay for HIV-1/HIV-2 
infection33. Moreover, vaccination in mice with phage displaying the C-terminal region has been shown to induce 
neutralizing antibodies to HIV-1 clade C viruses34.

The increasing demand for antigenic peptides with good specificity and sensitivity requires more reliable, and 
preferably high-throughput, peptide synthesis techniques. The cSAT scheme described here provides a fast and 
efficient way to express and purify medium to large-sized recombinant peptides from E. coli cells, which can then 
be used in immunological assays to detect a broad range of viral antigens.

Materials and Methods
Materials. The DNA fragments for hemagglutinin (HA) peptides P1–P5 were amplified from plasmid CMV-
R-Cali-04-09 carrying the whole HA gene of A/California/04/2009(H1N1) influenza virus, provided by Prof. Paul 
Zhou, Institute Pasteur of Shanghai, Chinese Academy of Sciences (Shanghai, China)24. The DNA fragments for 
GP120 peptides G9 and G31 were amplified from a synthetic GP120 sequence encoding HIV-1 (HXB2) envelop 
glycoprotein GP12023. The amino acid sequences of the above viral peptides are listed in Supplementary Table S1. 
Oligonucleotides for cloning were synthesized by Invitrogen (Shanghai, China). Restriction enzymes and DNA 
polymerases were purchased from New England Biolabs (Beverly, MA, USA) or Takara (Dalian, China). The 
vector pET30a and strain E. coli BL21(DE3) were from Novagen (Madison, WI, USA). The kits for DNA purifi-
cation, gel recovery, and plasmid minipreps were obtained from Tiangen (Beijing, China). Sequencing was per-
formed by Invitrogen or SinoGenoMax (Beijing, China). Mouse antisera, kindly donated by Dr. Zhonghua Liu, 
AIDS Research Center, School of Medicine, Tsinghua University (Beijing, China), were obtained by immunizing 
mice with the recombinant HA protein of A/California/04/2009(H1N1) virus. Hyperimmune goat sera, a gift 
from Dr. Guoyang Liao, Institute of Medical Biology of Chinese Academy of Medical Sciences and Peking Union 

Target 
peptide

MW 
(kD)

Aggregate yielda (μg/mg 
wet cell pellet)

Peptide yieldb (μg/mg 
wet cell pellet)

Cleavage 
efficiencyc

Percent 
recoveryd

Peptide 
purity

Peptide

 P1 8.4 31.3 3.6 69.1 43.1 67.4

 P2 4.2 25.8 1.0 53.6 24.8 62.1

 P3 4.3 27.8 3.0 82.3 65.8 69.9

 P4 3.6 20.4 NDe 64.8 NDe NDe

 P5 7.1 15.1 NDe 53.5 NDe NDe

 G9 7.7 15.0 NDe 61.4 NDe NDe

 G31 6.2 22.1 1.5 52.8 31.1 66.0

Peptide with Trx tag

 Trx-P1 21.6 36.8 5.1 68.9 30.0 81.6

 Trx-P2 17.4 31.6 6.3 62.9 48.9 87.6

 Trx-P3 17.5 18.9 6.1 87.8 78.1 84.3

 Trx-P4 16.8 22.7 5.9 69.4 53.0 93.9

 Trx-P5 20.3 24.6 4.8 71.8 48.6 92.3

 Trx-G9 20.9 23.7 0.9 52.9 8.3 67.1

 Trx-G31 19.4 36.2 7.1 63.2 44.8 98.3

Table 1.  Quantification of peptides alone or fused with the Trx tag. aYield of protein aggregate and byield 
of free target peptide released after cleavage from LB culture with a wet cell weight of 2.66 ±  0.99 mg/ml. 
cCleavage efficiency was calculated by dividing the amount of cleaved protein aggregate by that of the total 
aggregate before cleavage. dPercent recovery in terms of mass was calculated by dividing the mass of the free 
peptide released after cleavage by that that could be theoretically obtained from the respective protein aggregate, 
assuming complete cleavage and release. eOut of the detection range.
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Medical College (Kunming, China), were raised against a Chinese pandemic strain of 2009 A (H1N1) influenza 
virus. Goat anti HIV-1 GP120 polyclonal antibody was purchased from Meridian Life Science (Saco, ME, USA). 
Horseradish peroxidase (HRP)-labeled secondary antibodies were from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). All other chemicals were of analytical grade.

Construction of expression vectors. Expression vectors pET-Target peptide (P)-Intein-ELK16(a) and 
pET-Trx-Target peptide (P)-Intein-ELK16(a) were based on plasmid pET30a-LipA-I-ELK16, constructed pre-
viously in our laboratory22. The trxA gene (GenBank: AAA24534.1) encoding thioredoxin (Trx) was ampli-
fied from the E. coli BL21 (DE3) genome using the primers Trx-For and Trx-Rev as listed in Supplementary 
Table S2, digested with NdeI and SpeI restriction enzymes, and then ligated with the similarly digested 
pET30a-LipA-I-ELK16. The resultant plasmid pET30a-Trx-I-ELK16 contained two additional BglII and EcoRV 
sites in between the Trx and intein sequences. For the expression vector pET-P-Intein-ELK16(a), the respective 
target peptide sequence was inserted into the NdeI and EcoRV sites of pET30a-Trx-I-ELK16. For the expres-
sion vector pET-Trx-P-Intein-ELK16(a), the sequence of G31, one of the target peptides, was amplified with 
the introduction of a GS linker sequence followed by a BglII site in the 5′ -terminus using the primers G31-GS 
Linker-For and G31-Rev as listed in Supplementary Table S2. It was then digested with the BamHI and EcoRV 
restriction enzymes and inserted into the BglII and EcoRV sites of pET30a-Trx-I-ELK16 with the same cohesive 
ends, yielding the expression vector pET-Trx-G31-Intein-ELK16(a). Then the other target peptide sequences 
could be directly inserted into the BglII and EcoRV sites of pET-Trx-G31-Intein-ELK16(a). E. coli BL21 (DE3) 
cells were used throughout for cloning and protein expression.

Protein expression. E. coli BL21(DE3) cells harboring pET-P-Intein-ELK16(a) or pET-Trx-P-Intein-ELK16(a)  
corresponding to the respective target peptides were inoculated into Luria-Bertani (LB) medium supplemented 
with 50 mg/L kanamycin and incubated at 37 °C with shaking (250 rpm). Isopropyl β -D-1-thiogalactopyranoside 

Figure 3. Antigenic activities of the target viral peptides as characterized by ELISA. Binding activities of the 
HA peptides P1–P3 (A) and P1–P5 with the N-terminal Trx tag (B) against the goat antisera before and after 
immunization, and GP120 peptides G9 and G31 without or with Trx tag against goat anti-GP120 polyclonal 
antibody (C), as determined by ELISA. Trx was used as the negative control. The x-axis shows the dilution 
ratios of the corresponding antisera or polyclonal antibody. The y-axis shows the absorbance at 450 nm after 
development with the substrate 3,3′,5,5′ -tetramethylbenzidine (TMB). (B) was reproduced from ref. 24.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:35430 | DOI: 10.1038/srep35430

(IPTG) was added to a final concentration of 0.2 mM to initiate protein expression when the OD600 reached 
0.4–0.6. Culturing was continued for an additional 10 h. For expression temperatures, 23 °C, 30 °C, 37 °C were 
tested, with G31 (and Trx-G31) used as the model peptide. As shown in Supplementary Fig. S2, the amounts 
of aggregates produced at the three temperatures were similar, however, the peptide yield was lesser at the two 
higher temperatures. For the present study, we thus used the temperature 23 °C. Then cells were harvested by 
centrifugation at 8000 rpm for 20 min and the pellets were stored at − 70 °C until further analysis.

Peptide purification by intein-mediated cleavage and quantification. Harvested cell pellets were 
re-suspended in buffer B1 (20 mM Tris-HCL, 500 mM NaCl, 1 mM EDTA, pH 8.5) to 10 OD culture/ml, followed 
by sonication (Ultrasonic crasher, Scientz JY92-IIN, Ningbo, China). The soluble fractions were isolated from the 
lysates by centrifugation at 11,000 rpm for 10 min at 4 °C. The precipitates were washed twice with buffer B1, resus-
pended in the same volume of Buffer B3 (20 mM Tris-HCl, 500 mM NaCl, 1 mM EDTA, 40 mM Dithiothreitol, 
pH 8.5). Intein-mediated cleavage reactions were performed by incubating the samples at 4 °C overnight. Then 
the soluble and insoluble fractions were separated by centrifugation at 11,000 rpm for 15 min at 4 °C. The protein 
samples were analyzed by denaturing polyacrylamide gel electrophoresis using precast NuPAGE® precast 4–12% 
Bis-Tris gels from Invitrogen, followed by staining with Coomassie Brilliant Blue G-250. The compositions and 
protein concentrations of all samples were determined densitometrically with Quantity One software (Bio-Rad 
Laboratories, Hercules, CA, USA) using bovine serum albumin (BSA) and aprotinin as standards, and were 
adjusted according to the loading volume of the protein samples.

ELISA assay for purified peptides with or without the Trx tag. The soluble fractions containing HA 
and GP120 peptides with or without the Trx tag released after intein-mediated cleavage were desalted and con-
centrated by ultrafiltration with an Amicon®  Ultra-4 centrifugal filter device (3,000 molecular weight cutoff). The 
concentrations of the peptide samples were further determined colorimetrically using the Pierce® Bicinchoninic 
Acid (BCA) Protein Assay Kit from Thermo Scientific (Rockford, IL, USA). For comparison, Trx purified from  
E. coli following the same procedure was used as the negative control. Next, 96-well plates were coated with 
100 ng of purified peptide or Trx in 100 μ L of sodium carbonate bicarbonate buffer (0.5 M, pH 9.6) at 4 °C over-
night. After blocking with 10% fetal bovine serum diluted in 1×  phosphate buffered saline (PBS) with 0.25% 
Tween-20 (PBST), serial dilutions of the respective antisera or polyclonal antibody were added to each well and 
incubated for 1 h at 37 °C, followed by the addition of 1:5000 diluted HRP-conjugated secondary antibody. Assays 
were developed by adding 100 μ L of 3,3′,5,5′ -tetramethylbenzidine (TMB) substrate solution and the reactions 
were stopped with 50 μ L of H2SO4 (1 M). The assays were carried out in triplicate and each well was washed four 
times with PBST between steps. The absorbance at 450 nm was recorded on a SpectroMAX 190 Microtiter reader 
(Molecular Devices, Sunnyvale, CA, USA).
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