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Transmission‑blocking strategies: 
the roadmap from laboratory bench to the 
community
Daniel Gonçalves* and Patrick Hunziker

Abstract 

Malaria remains one of the most prevalent tropical and infectious diseases in the world, with an estimated more 
than 200 million clinical cases every year. In recent years, the mosquito stages of the parasite life cycle have received 
renewed attention with some progress being made in the development of transmission-blocking strategies. From 
gametocytes to late ookinetes, some attractive antigenic targets have been found and tested in order to develop a 
transmission blocking vaccine, and drugs are being currently screened for gametocytocidal activity, and also some 
new and less conventional approaches are drawing increased attention, such as genetically modified and fungus-
infected mosquitoes that become refractory to Plasmodium infection. In this review some of those strategies focus-
ing on the progress made so far will be summarized, but also, the challenges that come from the translation of 
early promising benchwork resulting in successful applications in the field. To do this, the available literature will be 
screened and all the pieces of the puzzle must be combined: from molecular biology to epidemiologic and clinical 
data.
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Background
Why block transmission?
Malaria remains one of the most prevalent tropical and 
infectious diseases in the world, both, in terms of mor-
bidity and mortality, with around 200 million cases 
estimated in 2013 alone [1]. Four different species con-
sistently infect humans: Plasmodium falciparum, Plas-
modium vivax, Plasmodium malariae, and Plasmodium 
ovale. From these, P. falciparum and P. vivax are the most 
common with the former being by far the most lethal 
[2–5]. Recently, different accounts of human malaria by 
another species, Plasmodium knowlesi, which usually 
infects macaque monkeys, have been reported in South-
east Asia [6].

Since the beginning of the twenty-first Century there 
has been renewed attention towards the disease, and in 
2007 an official research and development agenda for 

malaria eradication (malERA) was established [7]. The 
goal is to completely eliminate and, if possible, eradicate 
the disease from as many areas as possible and control 
the others. The main strategies being followed include: 
the increase of insecticidal nets reach, especially long-
lasting insecticidal nets (LLINs), within affected com-
munities; use of artemisinin-based combination therapy 
(ACT) as first-line treatment; and, support the develop-
ment of a vaccine, with RTS,S/Mosquirix the first being 
made available and recently approved by the European 
Medicines Agency (EMA) for children aged 6  weeks to 
17  months (exclusively against P. falciparum) [8]. Data 
from 2013 showed that since the beginning of the pro-
gramme the malaria mortality rate decreased 26 %, even 
with an increase of 43 % in population living in transmis-
sion areas [1]. In the 2015 report, WHO estimates that 
malaria control interventions averted a total of 663 mil-
lion malaria cases between 2001 and 2015 in sub-Saharan 
Africa, which 69  % are accounted to the use of insecti-
cide-treated mosquito nets (ITNs), 21 % due to ACT and 
10 % due to indoor residual spraying (IRS) [9].
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While these numbers may be interpreted as progress 
towards winning this war, recent findings revealed some 
worrying indicators that Plasmodium is fighting back. 
Artemisinin and its derivatives are considered the current 
last line of defence and have been used in combination 
with other anti-malarials to avoid resistance develop-
ment, but artemisinin-resistant strains of P. falciparum 
have appeared in Southeast Asia with strong indications 
of rapid spread [10–16]. Another worrying indicator is 
Anopheles gambiae (the predominant vector in Africa) 
resistance to pyrethroids in various sub-Saharan regions 
[17–20]. The combined proportion of affected popula-
tion in sub-Saharan Africa with access to IRS and ITNs 
increased from 2  % in 2000 to 59  % in 2014 [9], and is 
responsible for reducing child deaths by an average 18 % 
[1, 21, 22], but also for spreading pyrethroid resistance. 
There are four different classes that can be used in IRS, 
but only pyrethroids are currently recommended for 
LLINs [1, 21].

In recent years, there has been wider interest in mos-
quito stages as potential targets for new transmission-
blocking strategies (TBS) that could help to control, 
and ultimately, eliminate the disease. New TBS being 
studied differ mainly from the classical vector control 
approaches, such as the use of insecticides, because they 
are designed for mosquito survival, thus avoiding selec-
tive pressure towards resistance [23, 24]. Two of the 
major metrics for malaria transmission intensity are: the 
basic reproductive number (R0) representing the num-
ber of new cases deriving from one untreated case in an 
infinite and susceptible human population; and, the ento-
mological inoculation rate (EIR) that measures the rate 
of Plasmodium-infected mosquito bites per person, per 
year [25]. Both are of extreme relevance to TBS, not only 
to provide insights on the impact, but also to set ‘criti-
cal numbers’ as goals for a successful strategy [26–30]. 
Mathematical modelling based on available field data 
shows that it should be enough to reduce transmission to 
R0 < 1 for a certain period of time to irreversibly compro-
mise the sustainability of the disease [31–34]. In addition, 
because malaria transmission is a local feature with the 
source of infection (breeding site) located within a maxi-
mum of a 1-km perimeter [29, 35, 36], TBS are particu-
larly suited to circumscribe small pockets of malaria in 
isolated communities.

There are three main TBS that are being pursued: 
gametocytocidal drugs, transmission-blocking vaccines 
and shifting mosquitoes towards refractory traits. Each 
of these will be briefly reviewed and a short outlook will 
present bench progress and challenges, especially large-
scale implementation and ethical issues, referenced, 
when possible, with clinical, entomological and field data.

Plasmodium life cycle
Due to the apicomplexan nature of the Plasmodium life 
cycle which allows it to survive in different environ-
ments, the parasites are well adapted to their obligatory 
hosts: a vertebrate and the female of the Anopheles genus 
[37–39].

In humans, the first target of the parasites are the liver 
cells (hepatocytes), until the point they are released into 
the blood stream to invade red blood cells in the form 
of merozoites; it is estimated that each sporozoite that 
enters the body originates approximately 1000 erythro-
cyte-infective parasites [40]. Once inside, they reproduce 
asexually in a (48-h cycle for falciparum) while also form-
ing agglomerates of infected cells to avoid spleen clear-
ance [41]. Eventually, some of the merozoites develop 
into gametocytes, the sexual form of the parasite, matur-
ing inside the parasitophorous vacuole until released to 
the peripheral blood, waiting for another mosquito bite 
to propagate the disease [42]. Parasitaemia in sympto-
matic infected humans can range from 100 to more than 
250,000 parasites per µl of blood (hyperparasitaemia) [43, 
44].

When a female Anopheles mosquito bites an infected 
vertebrate host, it results in the ingestion of a certain 
number of gametocytes. Within 15  min, the midgut 
lumen environment triggers the gametocyte egress and 
differentiation into micro and macrogametes [45, 46]. 
The following fusion leads to diploid cells (zygote) that 
will undergo meiotic division resulting in motile ooki-
netes [45, 46]. The main goal of ookinetes is to physi-
cally traverse a thick (1–20 µm) chitin-based peritrophic 
membrane (PM) formed upon blood ingestion, and the 
midgut epithelium [47–49]. The midgut invasion is not 
pacific and leads to apoptosis of the invaded cells [50, 51]. 
After establishing itself at its basal side, a few parasites 
(less than ten in average) will develop into the oocyst 
form, concluding one of the most critical stages in whole 
life cycle (Fig. 1) [45, 46].

Mitotic divisions start occurring at this stage and ulti-
mately sporozoites are formed. Upon egress from mature 
oocysts, sporozoites travel via the haemolymph and 
can be found throughout the mosquito haemocoel until 
some of them reach the salivary glands [45, 46, 52]. Less 
than 20  % of the sporozoites entering the haemocoel 
will establish themselves in the salivary gland with the 
remaining being eliminated [52].

Transmission of sporozoites occurs when the mosquito 
ejects saliva into the skin, probing for a blood vessel. 
Despite some mosquitoes can harbour as many as thou-
sands of sporozoites in their salivary glands, only a small 
number (10–200) are ejected from the salivary ducts [53, 
54]. After their injection into the dermis, they will try to 
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find and invade a hepatocyte as soon as possible before 
detection of the immune system and continue the cycle 
[55].

In summary, the main differences between the mos-
quito and humans stages are:

• • the mosquito the parasites are exclusively extracellu-
lar;

• • there are, on average, fewer parasites in the vector 
comparing to the human host (Fig. 1);

• • there are no antibodies produced against Plasmo-
dium in the mosquito despite other mechanisms are 
available to detect and eliminate the parasites [56, 
57];

• • morphology and proteome of Plasmodium differ 
completely from stage to stage, and the only com-
mon cells between hosts (excluding the short period 
of gametocytes in the mosquito) are the sporozoites 
[58, 59];

• • mosquito infection is not lethal per se but can be a 
metabolic and cellular burden, especially during the 
midgut crossing stage. If this comes with a fitness 
cost to the mosquitoes in the field is still not clear, 
with contradictory claims in the literature [60–62].

Gametocyte density and prevalence
The proportion of merozoites committed to sexual devel-
opment and the exact mechanism (including sex ratio 

determination) are not yet fully understood [63–70]. 
Gametocytogenesis differs between Plasmodium species: 
while all of them undergo a five-stage maturation pro-
cess (with some morphological differences), falciparum 
gametocytes, for example, take the longest (10–12  days 
as opposed to less than 48 h for the majority) and are not 
produced simultaneously with the asexual stages. Mature 
gametocytes persistence in the peripheral blood is esti-
mated to be lower in P. vivax (approximately 3 days) than 
in P. falciparum (3.4–6.5 days) [43, 70–72].

High circulating gametocyte numbers do not neces-
sarily result in mosquito infection, and low gametocyte 
densities do not exclude infectivity; a self-regulated or 
host-induced response (fever, antibodies, cytokines) still 
remains unclear [66, 73, 74]. Even so, evidence suggests 
that transmission success is highly dependent on the pro-
portion of mature gametocytes [75].

Despite all the data available on gametocyte prevalence 
and density, measuring gametocytaemia levels reliably is 
still a challenge. The rule of thumb is that the gametocyte 
count by microscopy techniques usually underestimates 
the true number by more than 50 % [70, 76]. More sen-
sitive molecular methods such as quantitative nucleic 
acid sequence-based amplification (QT-NASBA), reverse 
transcriptase PCR (RT-PCR) and RT loop-mediated 
isothermal amplification (RT-LAMP) have been devel-
oped [77–79]. Despite their usefulness, there is the obvi-
ous cost and training barriers for applying any of these 

Fig. 1  Representation of the malaria life cycle. Arrows represent the different stages of infection and parasite density, in humans: 1 invasion of 
hepatocytes, 2 merozoites maturation and release, 3a intra-erythrocytic cycle, 3b gametocytes formation; and, mosquito: 1 gametes egress and 
fertilization, 2 meiotic division and midgut invasion, 3 oocyst fixation and mitotic division, 4 sporozoites release and salivary glands invasion
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technologies in the field when the available resources, 
both human and capital, are already scarce. Thus, a thor-
ough analysis from local authorities and health policy 
makers to invest in the right resources should be made, 
being it microscopy, rapid diagnosis tests (RDT) or 
more advanced molecular biology tools (or a combina-
tion of all), resulting in a clear diagnosis strategy defined 
according to: epidemiological settings of prevalence and 
density; the health impact of the disease using metrics 
like the disability-adjusted life year (DALY) in the local 
population; and economical, not only immediate, such as 
throughput and cost per unit/case and treatment costs 
avoided, but also long term, factoring the costs of mor-
bidity and mortality in the socioeconomic advancement 
of the affected society [80–83].

Various studies have also attempted to estimate the 
relative contribution to mosquito infection of differ-
ent patient age groups [68, 84–88]. Despite some evi-
dent differences in gametocyte density and prevalence 
between adults and children, the data are not conclu-
sive and are hard to compare due to lack of consistency 
in gametocytes estimation methods but also in infection 
models (skin or membrane feeding assays) [29, 89]. The 
non-linear relation, especially at low densities, between 
human parasitaemia and mosquito infectiousness, and 
differences in the endemic settings further enhances the 
challenge in drawing conclusions from these studies. 
A thorough understanding of the factors determining 
transmission would not only allow mathematical models 
to predict the relative contribution of different groups to 
transmission, but also help to find the most efficient way 
to implement a TBS and measure its impact.

Transmission‑blocking strategies
Gametocytocidal drugs
One of the first approaches to be explored was the 
gametocytocidal activity of commercially available anti-
malarial drugs [90]. The rationale was to block transmis-
sion by clearing most gametocytes in the human host 
to render those patients non-infectious to mosquitoes. 
ACT (artemisinin-piperaquine) combined with a low 
dose of primaquine (PQ) has been used to help eliminate 
malaria from 17 Cambodian villages [91], although it is 
hard to make a clear distinction between the direct effect 
on gametocytes clearance and the indirect one of ACT 
reducing the numbers of asexual parasites that could 
develop into gametocytes [92]. Nevertheless, recogniz-
ing the importance of reducing transmission, in 2010 
WHO recommended a single dose of PQ of 0.75 mg/kg 
as a gametocytocidal agent (not sufficient for hypnozo-
ite clearance in P. vivax infections), in combination with 
ACT making it the first TBS to be endorsed for field 
application. However, this dose level has restrictions as 

it should not be given to pregnant women or small chil-
dren and because there is the risk of haemolysis in peo-
ple affected with glucose-6-phosphate dehydrogenase 
(G6PD) deficiency, although it most be said that the defi-
ciency is originated from different variants that trans-
late into different phenotypes (from mild to severe) that 
must be accounted when determining PQ safety in such 
patients [93–95]. Finally, in 2012, WHO revised their rec-
ommendation to 0.25 mg/kg in a single dose, but this is 
still not advised for pregnant women and infants [96].

Responsiveness to drugs is something difficult to com-
pare between Plasmodium species. For P. vivax only a 
few clinical data are available because continuous ex vivo 
culture methods are not yet ready to screen drugs for 
gametocytocidal activity [70, 97–102]. Even with in vitro 
culture, where different protocols of sexual stages of P. 
falciparum from gametocytes to ookinetes have been 
recently made available [103, 104], a relevant limitation 
in screening anti-malarials and new molecular entities 
(NMEs) for gametocytocidal activity is the throughput of 
such models. It certainly opened the door for a wide vari-
ety of drugs to be tested using different methods such as 
ATP bioluminescence, confocal fluorescence and Alarm-
Blue oxireduction [105–109], but the variability between 
activity measurements of the same drug, sometimes 
even with the same method (Table 1), and the lack of a 
true high-throughput model that is able to screen more 
than 1000 molecules at a time to effectively search for 
leads and new scaffolds to design the best drugs for these 
stages, indicates there is still a lot of progress to be made. 
There have been some efforts and advances in this direc-
tion [110–112] but still far from the standard screening 
models available for asexual stages [113].

Most of the research is focused on the late gametocyte 
stage but it is also possible to target the mosquito stages 
of the parasites (sporontocidal activity), as demonstrated 
with proguanil, pyrimethamine and most endoperoxides 
[70, 105]. The rate and timing at which gametocytes are 
cleared or neutralized (transmission time-window) is a 
factor to take into account when considering a transmis-
sion blocking drug, for example a single dose of PQ that 
has very short-live and targets only late gametocytes, may 
leave a certain number of gametocytes behind that will 
eventually mature and able to infect mosquitoes [114–
116]. This would not be the case if used in combination 
with a sporontocidal drug, but on the other hand the long 
half-life needed to be effective, is a major challenge to 
overcome.

A theoretical model recently raised concern by predict-
ing a negative impact on drug resistance for gametocyto-
cidal campaigns, by potentially reducing the transmission 
of drug-sensitive sexual forms to a greater extent than the 
drug-resistant ones [117]. Despite the fact that some data 
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suggest resistance is spreading faster at both ends of the 
transmission-intensity spectrum [117–120], this possi-
bility has not been conclusively confirmed or refuted by 
empirical data and, probably, the implications for super-
infection (simultaneous infection with multiple geneti-
cally distinct parasites) should also be accounted [121].

Another model suggested that increasing ACT cov-
erage would outperform the addition of any specific 
gametocytocidal drug in reducing transmission [122], 
but even if true, the spreading of artemisinin resistance 
and PQ side effects should suffice for investing time and 
resources in the development of a novel, efficacious, late-
gametocyte/gamete inhibitor.

Transmission‑blocking vaccine
During 2013, the Malaria Vaccine Initiative (MVI) 
updated its roadmap and included the development 
of vaccines interrupting malaria parasite transmission 
(VIMTs) as one of its strategic goals for the next years 
[123, 124]. The vaccine approach aims to achieve trans-
mission reduction through an immunological attack on 
sexual or mosquito stages of the life cycle. To this end, an 
immune response in the human host directed to stage-
specific targets is required.

Surface proteins of gametocytes and gametes (Pfs 2400, 
Pfs 230, Pfs 48/45, Pfg 27), zygote and ookinete stages (Ps 

25, Ps 28) have been the principal candidates [70, 125–
128], but other epitopes from later stages (Ps 21), mol-
ecules such as chitinase, which is important for PM and 
midgut traversal, and alanyl aminopeptidase (AnAPN1), 
an antigen in the midgut surface, important for ookinete 
recognition, were identified as potential targets [129, 
130]. Since there is a population chokepoint occurring, 
the appeal, in terms of resistance spread and elimina-
tion purposes, of targeting later stages in the mosquito 
infection is obvious, even if the quantitative translation 
of reducing parasite numbers in different stages into a 
successful transmission and propagation of malaria is not 
well enough understood [45, 46, 124, 131].

To develop a successful vaccine, choosing the best 
target is just the first step, and the need to find a good 
production and delivery system, complemented by an 
appropriate formulation and potential adjuvants, is also 
important [132, 133]. Apart from killed or attenuated 
whole pathogens (non-practical for mosquito stages) 
[134, 135], large-scale production of protein antigens is 
doable using various recent technologies, either syn-
thetic or recombinant, but correct folding, a prerequisite 
for achieving highly specific high titres in humans is still 
a challenge [136–138]. In the case of malaria and trans-
mission-blocking vaccines (TBVs) in particular, several 
expression systems for recombinant antigens have been 
used, including Escherichia coli, Lactococcus lactis bac-
terium models, Baculovirus, yeast (Pichia pastoris, Sac-
charomyces cerevisae), plant-based systems, and algae 
[138–144]. Particle-delivery technology, such as virus-
like particles (VLP) and nanoparticles, are also being 
pursued [143, 145], and the recently developed DNA vac-
cine technology has been tried but it is still in a very early 
stage of development [146–148].

Some candidates using different antigens, production 
and delivery strategies are currently in preclinical stage 
and being considered for the first tests in humans [149], 
and others, such as AnAPN1, are still at earlier stage but 
nevertheless promising because the antibodies produced 
appear to inhibit both P. falciparum and P. vivax [129]. 
Targeting P. vivax is of particular importance since this 
parasite can stay undetected in the liver in the hypnozo-
ite dormant over 2 years, with PQ being the only medi-
cine to target them at the moment [150]. Two different 
recombinant strategies (using virus-like and conjugat-
ing with Pseudomonas aeruginosa exoprotein A) target-
ing Pfs25 antigen are already in phase I of clinical trials 
[151, 152], and are the first official candidates for VIMTs 
targeting sexual, sporogonic or mosquito-stage antigens 
(SSM-VIMT) but are still a small fraction of the malaria 
vaccine pipeline [153].

In addition to the development of a stand-alone SSM-
VIMT, which would not confer immediate benefit to a 

Table 1  Comparison of  in vitro gametocytocidal activities 
with different methods and anti-malarial drugs

Drug IC50 uM 
(stage 
IV–V)

Method References

Primaquine >10 ATP bioluminescence [107]

7.2 HTS confocal fluorescence [109]

Mefloquine 100 HTS confocal fluorescence [109]

4.7 ATP bioluminescence [107]

Pyronaridine 4.260 HTS confocal fluorescence [109]

3.2 ATP bioluminescence [107]

0.28 ATP bioluminescence [106]

Pentamidine 0.404 ATP bioluminescence [106]

2.85 HTS confocal fluorescence [109]

Methylene Blue 0.287 HTS confocal fluorescence [109]

0.49 ATP bioluminescence [107]

0.012 ATP bioluminescence [106]

Diihydroartemisin 0.00217 HTS confocal fluorescence [109]

3.56 ATP bioluminescence [107]

Artesunate 2.53 HTS confocal fluorescence [109]

2.3 ATP bioluminescence [106]

10.48 ATP bioluminescence [107]

Epoximicin 0.00042 ATP bioluminescence [107]

0.0014 Alamar Blue [108]

0.00066 HTS confocal fluorescence [109]
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vaccine recipient, a vaccine targeting both SSM and other 
stage-malaria antigens is being studied. Examples of such 
an approach are the fusion of circumsporozoite protein 
(CSP), Pfs 25 and glutamate-rich protein (GLURP) with 
Pfs 48/45 [154–156]. Just as targeting antigens from 
multiple parasite stages may create synergies, the use 
of a vaccine and drug together could also maximize the 
impact on transmission for a longer period than a drug 
alone could. It was also suggested that a SSM-VIMT 
could be coformulated or co-administrated with another 
health intervention (as Mosquirix with hepatitis B) that 
targets the same population to render it directly benefi-
cial to recipients, and overcome some of the ethical issues 
associated with this kind of intervention [157, 158].

Refractory mosquitoes
Mosquitoes have their own natural mechanisms to fight 
Plasmodium, with a small percentage of them being 
refractory to the infection [38, 56, 57]. Researchers have 
recently started to explore possible ways to exploit this 
observation in the malaria elimination effort. The idea 
is to (naturally or artificially) emulate the refractoriness 
processes in the laboratory and somehow introduce it in 
the field, in such a way that will eventually shift the mos-
quito population towards a Plasmodium-resistant vector 
phenotype. Some of the strategies were borrowed from 
other vectors and disease control programmes and are 
already tested in the field on a small scale, and others still 
are in an early stage of research [158–161]. They fall into 
three categories: population replacement, artificial gene 
drive mechanisms and third-party modified organisms as 
delivery systems. Their common feature is the expression 
of at least one effector molecule responsible for malaria 
refractoriness. Since this requisite is not met with popu-
lation suppression methods, such as the release of insects 
carrying a dominant lethal genetic systems (RIDL), it is 
not included in this topic.

An ideal effector molecule will not convey a fitness 
cost to the insect host and could be used in combination 
to target different stages of the parasite development. 
Some candidates already tested include phospholipase 
A2 (PLA2), shown to inhibit ookinete invasion through 
an unknown mode of action [162], and salivary gland and 
midgut peptide 1 (SM1) that is thought to block recogni-
tion sites for sporozoites and ookinetes [163].

Population replacement can be achieved by releas-
ing either genetically modified (GM) mosquitoes that 
express a killing or disabling agent for the malaria para-
sites [164], or naturally refractory mosquitoes previ-
ously selected and reared in the laboratory [162]. For 
large-scale implementation in the field, mosquito releases 
would probably need to be preceded with intensive insect 

elimination campaigns to reduce the native population. 
Release should be done in a controlled manner backed 
up with a mathematical model giving insight for the 
stage, numbers, timing, and location that would maxi-
mize the desired genetic shifting of the population [165]. 
Even if the fitness cost of the desired trait is designed to 
be minimal, it is very likely that this shifting will not be 
incremental and self-sustainable, and in order to main-
tain the modifications, periodic releases of additional 
insects might be needed [161]. Not only is it difficult and 
costly to rear such large numbers of mosquitoes to have 
a meaningful impact on levels of transmission of the dis-
ease, there is also the ethical issue behind releasing bit-
ing female Anopheles, and before being implemented, a 
careful sensibilization campaign should be made within 
affected communities.

As an alternative strategy, gene drive mechanisms have 
been explored to reduce the number of insects needed 
(males only) to propagate in a self-sustainable manner 
without additional releases [161, 164]. Many solutions 
have been studied, starting from transposable elements 
that will be integrated randomly across the genome, or 
‘selfish genes’, such as the homing endonuclease genes 
(HEGs) that are transmitted horizontally within a popu-
lation by using the host cell DNA repair machinery. The 
linkage between the drive mechanism and the refrac-
tory system deserves special attention and must be engi-
neered in a way that, in case it is broken, there is a safety 
system to prevent modified insects overtaking the popu-
lation [161, 164]. A system consisting of synthetic genetic 
elements, with mosquito regulatory regions and the HEG 
I-SceI11-13, has already been demonstrated to substan-
tially increase its transmission to the progeny of An. gam-
biae [166], and very recently a Cas9-mediated gene drive 
mechanism was published with very interesting results 
[167–169].

Finally, life organisms, such as bacteria and fungi [170–
172], and even viruses [173], have been proposed to be 
engineered as expressing systems for refractory genes 
inside the mosquitoes. The diversity of the midgut flora 
in adult Anopheles is well known and includes Escheri-
chia, Alcaligenes, Pseudomonas, Serratia, and Bacillus, 
which could be used as paratransgenesis vehicles [174]. 
One such system has been demonstrated with Escheri-
chia coli expressing a fusion protein of ricin and a single-
chain antibody against Pbs2, inhibiting oocyst formation 
by 95  % in Anopheles stephensi [175]. The bacterium 
Wolbachia is a special case that has received much atten-
tion lately, as it was observed that infected Anopheles 
became refractory to malaria to a significant extent with-
out the need of further genetic manipulation, although 
the detailed molecular mechanisms are still unclear. 
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Wolbachia inserts a drive mechanism through cytoplas-
mic incompatibility, meaning that only when both female 
and male are infected, the fertilized eggs will hatch nor-
mally and the bacteria is transovarially transmitted to 
the next generation [160, 161, 176]. Another possibility is 
the use of entomopathogenic fungi: fungal spores may be 
extremely robust and have the advantage to infect mos-
quitoes directly via the cuticle. Fungal spores can be inte-
grated into a number of delivery systems, such as indoor 
spraying or odour-baited traps [159, 177, 178]. One such 
example is Metarhizium anisopliae, modified to express a 
fusion protein between SM1 and scorpine (antimicrobial 
toxin), which was able to reduce P. falciparum sporozoite 
counts by 98 % in An. gambiae [178].

Future perspectives
A successful wide-scale implementation of TBS for 
malaria elimination campaigns is still some way in the 
future. Each strategy has its own unique challenges but 
there are some common questions and technical limita-
tions that need to be overcome and answered. One of 
the central questions in TBS research is the quantita-
tive and qualitative relationship between transmission 
reduction and its impact in the parasite reservoir. Sev-
eral studies have been made [45, 46, 69, 84–88, 124, 131], 
but there is still a huge knowledge gap to be filled. Better 
data are needed for human-to-mosquito (and vice versa) 
transmission rates, prevalence and density of different 
mosquito stages, and the relation with geographic and 
demographics (both human and mosquito). The current 
limited availability of such data is both a challenge and 
an avenue for further research to translate TBS from the 
laboratory bench to the field.

Testing the efficacy of a future transmission-blocking 
drug or vaccine is a further important requirement. Ran-
domized cluster approaches can be used but the end-
points to assess the clinical relevance of such therapeutics 
are still not clear [137, 157, 179]. The ideal endpoint 
should be the reduction of new human infections from 
the same epidemiological source following the introduc-
tion of the intervention, but is very difficult to achieve in 
the field. An alternative is to measure the reduction in the 
total number of cases, but then it is impossible to assess 
the direct contribution of the treatment. Whichever end-
point is chosen, the real world will require a compromise 
between directly quantifiable impact and epidemiological 
relevance.

A major concern of TBS is regulatory approval, because 
a clinical development plan for TBS will certainly be dif-
ferent from those applied to other malaria vaccines and 
drugs. Encouraged by the US Food and Drug Adminis-
tration (FDA) which clearly states that there is no legal 

opposition to licensing, and in view of the momentum of 
new SSM-TBV projects reaching clinical testing, a work 
group of international experts was established to assess 
the requirements of an eventual SSM-VIMT Phase III 
trial [179]. One of the conclusions highlighted the critical 
importance of identifying the minimally required efficacy 
(and coverage) and the need for specific criteria that will 
inform early clinical decision-making.

Both, compartmental and mechanistic mathematical 
modelling, are paramount for the progress of any of the 
strategies discussed above [180–182]. This was also one 
of the lessons learned during the previous Global Malaria 
Eradication Programme (GMEP) during the 1950s and 
1960s, where dichlorodiphenyltrichloroethane (DDT) 
was widely used as insecticide until the programme was 
discontinued due to a combination of resistance, finan-
cial constraints and negative environmental impact [183]. 
Some studies suggest that despite the immediate suc-
cesses of the programme in certain regions, in others, 
the gain was lost with resurgence appearing in endemic 
proportions [184]. Thus, the aim should be a long-term 
strategy, able to measure and predict its impact locally in 
a specific set of conditions. This will then allow informed 
decisions on how, where, and when is the best way to 
implement a certain TBS, and good models and data are 
crucial to reach that goal [185, 186].

Even if all these challenges are overcome, the cost-
benefit issue remains. Being a disease that targets 
mainly populations of underdeveloped countries, cost is 
always a primary challenge for any type of intervention 
[187]. Not only the benefit should be proven, but the 
cost-per-unit should be optimized to make it affordable 
for mass campaigns. Logistics is another constraint usu-
ally associated with malaria since most affected popu-
lations live in very remote regions. A positive indicator 
came from a recently developed vaccine against men-
ingitis (MenAfriVac®), costing less than US$0.50 per 
dose and able to be removed from constant refrigera-
tion, making it more accessible for handling in remote 
areas of sub-Saharan Africa [157, 188]. Such features 
would be highly desirable for a malaria vaccine, but the 
central question still remains: is it really worth allocat-
ing that many resources to develop and implement TBV 
campaigns in less than optimal efficacy and coverage 
conditions as seen with Mosquirix [189, 190]? If used 
in combination with other tools, the answer might be 
affirmative, the main focus is not to have the maximum 
clinical effect but to strike a precise and coordinated 
blow to the parasite reservoir (human and mosquito) 
to reach a minimum threshold that will compromise its 
propagation and eventual survival in focal, and eventu-
ally global, areas (Figs. 2, 3).
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Finally, there is the ethical issue behind using medi-
cines without direct therapeutic benefit to patients, even 
considering the decreased probability of re-infection. 
Even if there were no direct benefits, one can argue that 
individuals taking TB medicines or vaccines is a matter of 
public health. Education and population sensibilization 
prior implementation, maybe even more than cost and 
efficacy, is therefore crucial for any strategy to succeed.

On the other hand, all strategies presented in the 
‘refractory mosquitoes’ topic are far from implementa-
tion; despite some promising results, more knowledge 
such as the epidemiological effects of releasing modified 
mosquitoes and biopathogens in the field, is needed [164, 
191]. Such unconventional approaches might disfavour 
public awareness and support, but if enough evidence 
of the positive impact for malaria elimination is gath-
ered and its scalability is proven, then they could become 
another weapon in the TBS arsenal.

Conclusions
While it is not expected that TBS will be sufficient to 
eliminate the disease on their own, their application 
has the potential to boost other strategies. TBS should 
be aimed to the lowest endemicity level areas possible 
(R0 < 10) with frequency and timepoints optimized, tak-
ing into account not only the immediate impact in the 
human reservoir of parasites, but also the long term. In 
addition, efforts to find the best solution for endpoints 
and regulatory challenges at clinical trials still need to 
be made and sensibilization campaigns in affected com-
munities to educate about the beneficial issues of TBS 
should be a priority.

Any future conventional vaccine for human stages of 
the disease most likely will be a compromise between 
efficacy, long-lasting immunity and population coverage. 
Even if new drugs and insecticides come to market, or 
resistance against ACT is contained, it is a matter of time 

Fig. 2  Schematic model of malaria infection and possible outcomes from the human perspective. Highlighting potential points of intervention for 
different strategies for malaria eradication available or under study
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until they are rendered ineffective. To achieve malaria 
elimination, all stages should be targeted, preferably at 
once, and some of the TBS described here, or others to 
come, most certainly will have a major role to play.
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