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Abstract: Blood vessels respond to injury through a healing process that includes neointimal
hyperplasia. The vascular endothelium is a monolayer of cells that separates the outer vascular
wall from the inner circulating blood. The disruption and exposure of endothelial cells (ECs) to
subintimal components initiate the neointimal formation. ECs not only act as a highly selective
barrier to prevent early pathological changes of neointimal hyperplasia, but also synthesize and
release molecules to maintain vascular homeostasis. After vascular injury, ECs exhibit varied
responses, including proliferation, regeneration, apoptosis, phenotypic switching, interacting with
other cells by direct contact or secreted molecules and the change of barrier function. This brief
review presents the functional role of the evolutionarily-conserved Notch pathway in neointimal
hyperplasia, notably by regulating endothelial cell functions (proliferation, regeneration, apoptosis,
differentiation, cell-cell interaction). Understanding endothelial cell biology should help us define
methods to prompt cell proliferation, prevent cell apoptosis and dysfunction, block neointimal
hyperplasia and vessel narrowing.

Keywords: neointimal hyperplasia; vascular injury; endothelial cell; Notch signaling;
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1. Introduction

Neointimal hyperplasia is an exaggerated wound-healing process that occurs in the vessel wall
after injury. As a major morphological feature of many cardiovascular diseases (CVD), such as
atherosclerosis and hypertension, neointimal hyperplasia is also responsible for the stenosis of vascular
surgery, including bypass grafting, angioplasty and arteriovenous fistula [1,2]. The development of
neointimal hyperplasia is a complex process initiated by the damage of endothelial cells (ECs) and
exposure of vascular smooth muscle cells (VSMCs) to circulating blood elements. The process is
further characterized by proliferative and inflammatory responses including VSMC proliferation and
migration, platelet aggregation, leukocyte recruitment and extracellular matrix (ECM) deposition.
Finally, EC proliferation or regeneration occurs at the lesion [3].

One of the important candidates for triggering neointimal formation is the dysfunction of
endothelium. In the cardiovascular system, the endothelium is not only a barrier between the
circulating blood and VSMCs, but also, it releases factors that regulate vascular tone, vessel growth,
platelet function and coagulation [4]. For the underlying VSMCs, ECs could harmonize their growth
and regression, through direct contact with VSMCs or secreted mediators that affect their proliferation,
migration and death. In addition, ECs can regulate the thickness of intimal ECM through secreting
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enzymes, or inhibitors of these enzymes, which are able to degrade its components. The balance of
these endothelial-derived activities regulates vessel development and vascular remodeling [5].

Recent advances in the understanding of the biology of neointimal formation indicate that
ECs play a central role in the development of intimal hyperplasia during the process of vascular
reconstruction. However, the mechanism of vascular neointimal hyperplasia is complicated, and
a number of different intercellular signaling pathways has been implicated in this process. These
pathways include the vascular endothelial growth factor (VEGF) pathway, the transforming growth
factor-β (TGF-β) pathway, the Notch pathway, the Wnt pathway and many other pathways [6–8].
Among these pathways, the evolutionarily-conserved Notch signaling pathway controls cell fate
through local cell-cell interactions. It plays a key role in the development of the cardiovascular system,
as well as in the stability and remodeling of the vessel wall [9,10]. The purpose of this review is
to summarize certain aspects of Notch signaling in endothelial cell biology and suggest how this
knowledge might be used to reduce neointimal hyperplasia in cardiovascular disease and vascular
surgical procedures.

2. The Notch Signaling Pathway

Notch signaling is significant in determining cell fate and regulating cell proliferation, apoptosis
and differentiation [11,12]. It was originally identified in Drosophila, in which a mutant allele gives rise
to a notched wing [13]. Mammals express four Notch transmembrane receptors (Notch-1, Notch-2,
Notch-3 and Notch-4) and five typical transmembrane ligands (Delta-like 1 (Dll-1), Delta-like 3 (Dll-3)
and Delta-like 4 (Dll-4), Jagged-1 and Jagged-2). Notch receptors are synthesized as single-chain
precursors and cleaved into an extracellular and a transmembrane subunit by furin like convertase in
the Golgi apparatus (Figure 1). These two subunits are held together on cell membrane by non-covalent
bonds. Interaction of Notch receptors with their ligands leads to the transmembrane Notch receptor
cleaved by a disintegrin and metalloproteinases (ADAM) proteases to remove the extracellular
subunit. After that, a multisubunit membrane protease γ-secretase is responsible for the second
proteolytic event that gives rise to the translocation of the Notch intracellular domain (NICD) into
the nucleus. In the nucleus, NICD binds with a transcription factor, RBP-Jκ (also known as CSL for
CBF1/Su(H)/Lag-1), and forms an activated transcriptional complex. Then, the activated complex
upregulates the expression of target genes, such as hairy and enhancer of split (HES)-1, -5, -7 and
HES-related repressor protein (HERP)-1 to -3 [14].

The fact that Notch signaling plays a crucial role in vascular biology has been clearly demonstrated.
Abnormalities in vascular system caused by mutations of Notch receptors (Notch-1, -2, -4), ligands
(Dll-1, -3, Jagged-1, -2) and effectors (HES-1, -5, -7, HERP-1) in mice have been reviewed in detail [15].
The disruption of Dll-4 or RBP-Jκ in mice also results in lethality due to defects in vascular remodeling
or angiogenesis [16]. Human hereditary vascular disorders, such as cerebral autosomal-dominant
arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Alagille syndrome
(AGS), which manifest abnormalities in the cardiovascular system, are caused by mutations of Notch-3
and Jagged-1, respectively [17,18].

Recent studies support the emerging concept that Notch signaling is also involved in the
development of neointimal hyperplasia. The increased Notch-1 signaling mediates neointimal
formation in integrin β3(−/−)-induced arteriovenous graft occlusion through impairing EC
regeneration [19]. Dll-4-mediated Notch activation promotes VSMC proliferation and migration
in vein graft lesions and leads to vein graft failure [20,21]. Moreover, blocking the Notch pathway by
using soluble Jagged-1 or by genetic deletion of the RBP-Jκ gene can inhibit neointimal formation after
vessel injury [22,23].

As mentioned above, the triggering event in neointimal hyperplasia is EC damage. The ligands,
receptors and other components of Notch signaling are expressed in ECs of different vascular
origins [15,24]. During vascular injury, the Notch signal is definitely modulated, resulting in EC
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proliferation, apoptosis and differentiation. How these physiological alterations and barrier function
impairments of ECs contribute to neointimal formation will be discussed later.
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four Notch transmembrane receptors (Notch-1, Notch-2, Notch-3 and Notch-4) and five typical 
transmembrane ligands (Delta-like 1, Delta-like 3 and Delta-like 4, Jagged-1 and Jagged-2). Notch 
receptors are synthesized as single-chain precursors and transported to the Golgi apparatus (Black 
arrow points to the Golgi apparatus). In the Golgi apparatus, the precursors are cleaved into an 
extracellular and a transmembrane subunit by furin and modified by glycosyltransferases Fringe. 
Then the matured proteins are transported and inserted into cell membrane (Black arrow points to 
the cell membrane). Interaction between Notch receptors and their ligands triggers the canonical 
Notch signaling pathway. The transmembrane Notch receptor is cleaved by a disintegrin and 
metalloproteinases (ADAM) to remove the extracellular subunit, and then, a multisubunit membrane 
protease γ-secretase catalyzes the second proteolytic cleavage that gives rise to the translocation of 
the Notch intracellular domain (NICD) into the nucleus (Black arrow points to the nucleus). In the 
nucleus, NICD binds with a transcription factor (Black arrow in the nucleus), RBP-Jκ (also known as 
CSL for CBF1/Su(H)/Lag-1), coactivator Mastermind-like (MAML) proteins, and forms an activated 
transcriptional complex. Then, the activated complex upregulates the expression of target genes (red 
arrow), such as hairy and enhancer of split (HES)-1, -5, -7 and HES-related repressor protein (HERP)-
1 to -3. The deep blue pentagon represents coactivator MAML protein and the light blue hexagon 
represents transcriptional factor CSL. The orange arrows indicate cleavage sites; the arrow with 
dotted line in Golgi aparatus indicates protein glycosylation by Fringe and the arrow with dotted line 
between Notch ligand and receptor indicates the interaction of the two proteins. 

3. Endothelial Cell Proliferation and Regeneration 

Notch signaling is an important regulator of EC proliferation and regeneration. During 
angiogenesis, Notch signaling suppresses EC proliferation and acts as an angiogenic “off” switch by 
making ECs unresponsive to VEGF [25,26]. It is estimated that only 0.01% of cells are actively 
proliferating in the vasculature of the adult [27,28]. Notch activation seems absent in vessels when 
ECs are proliferating at the early stages of angiogenesis; however, Notch is reactivated when ECs 
stop proliferating and vessels begin to stabilize [29,30]. Activation of Notch-1 and Notch-4 by Jagged-
1 or Dll-4 reduces EC proliferation and contributes to contact inhibition of ECs [24,31]. Consistently, 
an extensive literature also reported that genetic or shRNA-mediated Dll-4 blockade in ECs leads to 
increased proliferation [32]. 

Compared with its role in angiogenesis, the role of Notch signaling during neointimal formation 
is more complicated. As shown in Figure 2, Notch activation suppresses EC proliferation, 
regeneration and promotes neointimal formation (Figure 2A). In integrin β3 knockout mice, the 
increased Notch-1 signaling inhibits circulating angiogenic cells’ (CACs) homing and differentiation, 
delays endothelial regeneration and promotes neointimal formation at the sites of arteriovenous 
grafts [19]. It is also reported that endothelial progenitor cells’ (EPCs) activity is greater in Notch-

Figure 1. The canonical Notch signaling pathway. Mammal Notch family members are composed
of four Notch transmembrane receptors (Notch-1, Notch-2, Notch-3 and Notch-4) and five typical
transmembrane ligands (Delta-like 1, Delta-like 3 and Delta-like 4, Jagged-1 and Jagged-2). Notch
receptors are synthesized as single-chain precursors and transported to the Golgi apparatus (Black
arrow points to the Golgi apparatus). In the Golgi apparatus, the precursors are cleaved into an
extracellular and a transmembrane subunit by furin and modified by glycosyltransferases Fringe.
Then the matured proteins are transported and inserted into cell membrane (Black arrow points to
the cell membrane). Interaction between Notch receptors and their ligands triggers the canonical
Notch signaling pathway. The transmembrane Notch receptor is cleaved by a disintegrin and
metalloproteinases (ADAM) to remove the extracellular subunit, and then, a multisubunit membrane
protease γ-secretase catalyzes the second proteolytic cleavage that gives rise to the translocation of
the Notch intracellular domain (NICD) into the nucleus (Black arrow points to the nucleus). In the
nucleus, NICD binds with a transcription factor (Black arrow in the nucleus), RBP-Jκ (also known as
CSL for CBF1/Su(H)/Lag-1), coactivator Mastermind-like (MAML) proteins, and forms an activated
transcriptional complex. Then, the activated complex upregulates the expression of target genes (red
arrow), such as hairy and enhancer of split (HES)-1, -5, -7 and HES-related repressor protein (HERP)-1
to -3. The deep blue pentagon represents coactivator MAML protein and the light blue hexagon
represents transcriptional factor CSL. The orange arrows indicate cleavage sites; the arrow with dotted
line in Golgi aparatus indicates protein glycosylation by Fringe and the arrow with dotted line between
Notch ligand and receptor indicates the interaction of the two proteins.

3. Endothelial Cell Proliferation and Regeneration

Notch signaling is an important regulator of EC proliferation and regeneration. During
angiogenesis, Notch signaling suppresses EC proliferation and acts as an angiogenic “off” switch
by making ECs unresponsive to VEGF [25,26]. It is estimated that only 0.01% of cells are actively
proliferating in the vasculature of the adult [27,28]. Notch activation seems absent in vessels when
ECs are proliferating at the early stages of angiogenesis; however, Notch is reactivated when ECs stop
proliferating and vessels begin to stabilize [29,30]. Activation of Notch-1 and Notch-4 by Jagged-1
or Dll-4 reduces EC proliferation and contributes to contact inhibition of ECs [24,31]. Consistently,
an extensive literature also reported that genetic or shRNA-mediated Dll-4 blockade in ECs leads to
increased proliferation [32].

Compared with its role in angiogenesis, the role of Notch signaling during neointimal formation
is more complicated. As shown in Figure 2, Notch activation suppresses EC proliferation, regeneration
and promotes neointimal formation (Figure 2A). In integrin β3 knockout mice, the increased Notch-1
signaling inhibits circulating angiogenic cells’ (CACs) homing and differentiation, delays endothelial
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regeneration and promotes neointimal formation at the sites of arteriovenous grafts [19]. It is also
reported that endothelial progenitor cells’ (EPCs) activity is greater in Notch-1(+/−) EPCs than in
wild type (WT) EPCs, and subsequently, transplantation of Notch-1(+/−) bone marrow accelerates
endothelial recovery after arterial injury in WT mice. Consistently, inhibition of Notch-1 mRNA
expression in EPCs by cholesterol enhances EPCs’ activity and accelerates EC regeneration after
arterial injury in atherosclerosis mice [33].
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Figure 2. Notch signaling modulates endothelial cells’ (EC) fate associated with neointimal hyperplasia.
(A) EC proliferation reduces neointimal hyperplasia. Notch signaling may have dual function in EC
proliferation, which is dependent on the relative level of p21 expression. If the expression of p21 is
above the level, Notch activation inhibits EC proliferation, however, ECs grow and proliferate when
the expression of p21 is below the level. In addition, activation of Notch blocks EC regeneration and
induces neointimal hyperplasia; (B) EC apoptosis contributes to neointimal hyperplasia. Upregulation
of Notch-1, Notch-2, Notch-3 and downregulation of Notch-4, promote EC apoptosis, which further
promotes neointimal hyperplasia; (C) Endothelial-mesenchymal transition (EndMT) contributes to
neointimal hyperplasia. Notch activation can trigger EndMT and promote neointimal hyperplasia. The
canonical EndMT inducer TGF-β (transforming growth factor-β) also can activate the Notch signaling
pathway. FSP-1, fibroblast-specific protein 1; CD31, also known as platelet endothelial cell adhesion
molecule-1 (PECAM-1).

One of the characteristics of pulmonary hypertension is vascular remodeling and vascular
neointimal thickening. Notch-1 and Notch-4 are detected in rat pulmonary artery ECs. Following
the pulmonary hypertension induction, mRNA expression levels of Notch-1 and Notch-4 are all
upregulated in rat pulmonary artery. Furthermore, an in vitro experiment also showed that the vessel
wall thickness of cultured vascular strips from rats increases after hypoxia treatment, which can be
decreased approximately 30% by N-(N-(3,5-difluorophenacetyl)-L-alanyl)-S-phenylglycine t-butyl ester
(DAPT), a specific inhibitor of the γ-secretase [34]. These studies indicated to us that Notch signal in
ECs is involved in neointimal thickness.

Notch signaling may have dual function in EC proliferation, which is depending on the relative
level of p21 expression (Figure 2A). Notch-1 expression is increased in human pulmonary artery
ECs after hypoxia treatment, which prompts EC proliferation via downregulation of p21 [35]. Low
levels of p21 may activate cyclin D and induce cell proliferation, but p21 becomes an inhibitor at high
levels [36]. Noseda and others demonstrated that when primary cultured ECs reach confluence, the
activity of Notch signaling is augmented, while p21Cip1 is downregulated [24,36]. They also found
that EC growth arrest is mediated by the repression of mitogen-activated protein kinase (MAPK)/PI3K
(phosphatidylinositol 3 kinase) signaling and by p21Cip1, which prevents nuclear localization of cyclin
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D/cdk4 (cyclin-dependent kinase 4) required for Rb (retinoblastoma gene product) phosphorylation
and S-phase entry [24].

Furthermore, EC behavior is at least partially dependent on reactive oxygen species (ROS) level
downregulated by the Notch pathway. Blockade of Notch signaling can increase ROS in human
umbilical vein endothelial cells (HUVECs), in contrast, suppression of ROS generation abolishes Notch
blockade-induced HUVEC proliferation [37].

4. Endothelial Cell Apoptosis

Except for regulating cell proliferation and regeneration, Notch also affects EC apoptosis and
survival, key cellular behaviors associated with vascular remodeling processes (Figure 2B). Vascular
injury activates Notch signaling promptly, which further destroys the balance between EC proliferation
and apoptosis, eventually influencing neointimal hyperplasia.

During the development of transplant arteriosclerosis (TA), EC apoptosis leads to neointimal
hyperplasia in aortic allografts and allograft dysfunction. EC apoptosis induces the production of
TGF-β1 in both apoptotic and neighboring viable cells, resulting in increased TGF-β1 in the culture
media. In transgenic rat aorta transplantation models, inhibition of EC apoptosis in B-cell lymphoma
(Bcl)-xL(+/+) knock-in rat aortic allografts significantly reduces TGF-β1 production in both allograft
endothelia and blood plasma, which in turn decreases accumulation of SM22α+ cells from transgenic
recipient ECs in neointima and alleviated TA [38].

It has been reported that the transcript levels of Notch-2, -3, and -4 are markedly downregulated
in TA. In Quillard et al.’s research, TA correlates with high levels of tumor necrosis factor (TNF),
TGF-β and interleukin (IL)-10. They also found that Notch-4 expression is decreased in transplants
and cultured ECs. Further knockdown of Notch-4 and HES-1 by small interfering RNA (siRNA)
promotes ECs apoptosis. As expected, silencing Notch-4 or HES-1 drastically inhibits repair of
endothelial injury [39]. Mackenzie et al.’s studies demonstrated that Notch-4 provides endothelial
protection in two ways: inhibition of the c-Jun N-terminal kinase (JNK)-dependent pro-apoptotic
pathway in an RBP-Jκ-dependent manner and induction of an anti-apoptotic pathway through an
RBP-Jκ-independent upregulation of Bcl-2 [40].

However, after Notch-2 ICD transduction in cultured human arterial endothelial cells (HAEC)
and HUVECs or induced Notch-2 expression in HUVECs, EC apoptosis is promoted, notably through
inhibiting the expression of survivin [41,42]. In addition, using a mouse model of pulmonary arterial
hypertension, Li et al. showed that activation of nuclear factor kappa B (NF-κB) upregulates the
expression levels of Notch-3, proapoptotic gene caspase 3 and Bax, downregulates antiapoptotic
gene Bcl-2 expression in lung microvascular endothelial cells, which leads to EC apoptosis and
endothelial-mesenchymal transition (EndMT) occurring in the lung [43]. Moreover, through activating
Notch-1, HES-1 and caspase-3, accelerated cell apoptosis has been observed in human Eahy926 cells
treated with high glucose [44].

All of this evidence supports that Notch activation is involved in neointimal formation through
regulating EC apoptosis and survival. It is possible that the four different Notch receptors have
different roles in EC apoptosis.

5. Endothelial-Mesenchymal Transition

EndMT is a specific form of epithelial-mesenchymal transition (EMT), which is an important
biologic transdifferentiation process that participates in embryogenesis, organ development, tissue
regeneration, organ fibrosis and cancer metastasis [45]. Similar to the process of EMT, when undergoing
EndMT, ECs lose their endothelial specific markers, such as CD31, also known as platelet endothelial
cell adhesion molecule-1 (PECAM-1) or VE-cadherin, gain mesenchymal markers, such as α-smooth
muscle actin (α-SMA) or fibroblast-specific protein 1 (FSP-1, also known as S100A4), lose cell-cell
junctions and acquire invasive and migratory properties [46,47].
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EndMT has emerged as a player in the pathogenesis of vascular neointimal hyperplasia.
Notintimal cells may arise through migration and proliferation of VSMCs; recent studies showed
that the endothelium is also a source of smooth muscle-like cells [48]. It has been reported that
EndMT occurs in myoendothelial cells in human atherosclerotic plaques and porcine aortic tissues.
In vitro and in vivo experiments all showed that ECs exposed to disturbed flow undergo EndMT,
which contributes to neointimal hyperplasia and induces atherogenic differentiation of ECs [49].
Through introducing endothelial-specific deletion of fibroblast growth factor receptor substrate 2
α (Frs2α) in atherosclerotic ApoE(−/−) mice, Chen et al. reported that these double-knockout
mice exhibit extensive development of EndMT and increased neointimal formation. Furthermore,
patients with coronary atherosclerosis showed that the loss of endothelial fibroblast growth factor
receptor1 (FGFR1) expression leads to activation of endothelial TGF-β signaling and the development
of EndMT in atherosclerotic plaques [50]. In vivo murine cell lineage-tracing models also presented
that endothelial-derived cells contribute to neointimal formation through EndMT, which is dependent
on the activation of the TGF-β mediated Smad2/3-Slug signaling pathway [51].

As a major regulator of cell phenotype, Notch is involved in the process of EndMT. Noseda et al.
provided the first evidence that Jagged-1/Notch interactions induce endothelial-to-mesenchymal
transformation. Notch activation in ECs results in morphological, phenotypic and functional
changes, which is consistent with mesenchymal transformation [52]. Notch and TGF-β/smad3
signaling synergistically induce Snail expression in ECs and promote EndMT in cardiac cushion
morphogenesis [53]. Blocking the Notch signaling pathway by using DAPT, EndMT in rat corneal
ECs induced by TGF β1, -β2 or -β3 is prevented and the transformed ECs are reversed to a normal
phenotype [54].

Neointimal hyperplasia occurs seriously in arteriovenous fistulas (AVFs) of chronic kidney disease
(CKD) mice or patients. ECs of AVFs in CKD mice or patients express mesenchymal markers (FSP-1
and/or α-SMA) and exhibit increased expression and nuclear localization of the Notch intracellular
domain. Uremic mice also show a decreased expression of VE-cadherin, whereas the expressions
of Notch-1, -4, RBP-Jκ and Notch target genes are increased in ECs of AVFs. Blockade of the Notch
pathway by DAPT or by RBP-Jκ knockout suppresses neointimal formation in mice [23]. Thus, data
in the literature suggest that the Notch pathway is correlated with EndMT and contributes to the
neointimal hyperplasia in vascular remodeling (Figure 2C).

6. The Contact Interaction between Endothelial Cells and Smooth Muscle Cells

Vessel wall is mainly composed of ECs and parietal cells (VSMCs and pericytes). The direct
communication between ECs and VSMCs through myoendothelial gap junctions and microprojections
has been widely known [55,56]. In addition, Notch ligand-receptor interaction is another direct
communication means between ECs and VSMCs. Contact-mediated activation of Notch signaling
plays important roles in cell and vessel maturation, survival and homeostasis. In these processes,
different Notch receptors may have specific roles [57].

In vertebrates, ECs can express three Notch ligands (Dll-4, Jagged-1 and -2) and all of the known
Notch receptors (Notch-1, -2, -3 and -4), while VSMCs express ligand Jagged-1 and three receptors
(Notch-1, -2 and -3) [15]. We summarized the effects of ECs-VSMCs interaction mediated by different
Notch receptor-ligand on neointimal formation in Table 1A. During vascular development, VSMCs
recognize Notch ligand Jagged-1 on ECs and induce the expression of integrin αvβ3 in VSMCs, which
facilitates VSMCs adhering to endothelial basement membrane and promotes vessel maturation [58].
In post-development vessels, the endothelial protein kinase B (PKB, also known as Akt) deletion
reduces the expression of endothelial Jagged-1 and leads to the gradual loss of VSMCs due to
diminished Jagged-1/Notch signaling. It sustains that contact-mediated activation of Notch signaling
is critical in maintaining vascular stability and homeostasis [59]. Among the Notch signaling molecules,
EC membrane ligand Jagged-1 is required for the induction of Notch-3 in VSMCs and inducing VSMC
differentiation [60,61]. Neither the addition of soluble Jagged-1 nor EC-conditioned medium induces
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VSMC differentiation, while co-cultured ECs with VSMCs induce VSMC differentiation; furthermore,
knockdown Jagged-1 expression in ECs can abrogate the co-cultured VSMC phenotype change. All of
this evidence strongly supports that the direct heterocellular cell-cell contact is necessary for regulating
VSMC differentiation via Jagged-1/Notch-3 signaling [62].

Table 1. The Notch pathway-mediated interaction between endothelial cells (ECs) and vascular smooth
muscle cells (VSMCs).

A. The Direct Contact between ECs and VSMCs Mediated by Notch

Ways of
Interaction Ligand Receptor Function Possible Effect on

Neointimal Hyperplasia

Direct Contact

ND VSMC Notch-1 VSMC migration [64]↑ Promotion

EC Jagged-1 VSMC Notch-2
VSMC differentiation [63]↑

NDVSMC proliferation [63]↓

EC Jagged-1 VSMC Notch-3
VSMC differentiation [60–63]↑

PromotionVSMC secretion [63]↑
VSMC migration [64]↑

VSMC Jagged-1 EC Notch-1 EC proliferation [65]↑ Inhibition
ND EC Notch-2, -3, -4 [15] ND ND

B. The Indirect Communication between ECs and VSMCs Mediated by Notch Activation

Ways of
Interaction Notch Signaling Molecules Secreted

from EC Function Possible Effect on
Neointimal Hyperplasia

Indirect
Communication

Activation

NO
EC proliferation [66,67]↑

InhibitionVSMC proliferation [68]↓
VSMC migration [68]↓

VEGF
EC proliferation↑

InhibitionEC regeneration↑
VSMC proliferation↓

PDGF
VSMC proliferation [69]↑

PromotionVSMC migration [70]↑
VSMC differentiation [71]↑

ND indicates not described; NO: nitric oxide; PDGF: platelet-derived growth factor; VEGF: vascular endothelial
growth factor; ↑ indicates promotion; ↓ indicates inhibition.

Except for Notch-3, Notch-2 is also activated in VSMCs co-cultured with ECs. Both Notch-2 and
Notch-3 in VSMCs are mediators of EC-induced differentiated phenotype and contribute to increased
contractile protein expression. However, the two receptors have separate and distinct functions.
Notch-2 is specifically required for the suppression of cell proliferation, while Notch-3 is mainly
responsible for VSMC secretory function [63].

VSMC proliferation, phenotype change and ECM secretion are hallmarks of neointimal formation
in cardiovascular diseases and vascular surgery. Balloon injury induced Notch-1, Notch-3 and Jagged-1
expression in rat carotid arteries. However, soluble Jagged-1 inhibits neointimal formation after balloon
injury or vein graft by decreasing VSMC proliferation and migration through interference with the
Notch signaling pathway [64]. This evidence suggested that inhibition of neointimal formation may
be due to inactivation of the Notch signaling pathway through soluble Jagged-1 competing with EC
Jagged-1 to bind with the Notch receptor.

Reciprocally, VSMCs’ Jagged-1 activate Notch pathway in ECs through the Notch-1 receptor
and induce EC proliferation. Notch signaling-deficient primary VSMCs have reduced proliferation
and migration capacities and a diminished expression of Jagged-1 ligand. After being co-cultured
with such VSMCs, ECs exhibit reduced growth rates and lower levels of activated Notch-1 receptor
(Notch-1ICD) [65]. As discussed previously, EC proliferation and regeneration are critical events
in neointimal formation. Through regulating the contact between ECs and VSMCs, activation of
Notch could be manipulated, which may represent a unique therapeutic target to improve neointimal
formation after vascular injury.

Notch signaling between cells can also be transmitted by exosomes from a distance. Dll-4 is
incorporated into endothelial exosomes; the Dll-4 containing exosomes can freely travel through the 3D
collagen matrix, transfer Dll-4 protein to distant tip cells and induce tip cell retraction [72]. However,
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whether there exists exosome-mediated Notch signaling between ECs and VSMCs in neointimal
formation has not yet been reported.

Taken together, Jagged-1 seems to be the only ligand in the Notch pathway that plays an important
role in both ECs and VSMCs during neointimal formation development. Notch-1 may be the only
receptor in the EC lineage that recognizes the Notch ligand in VSMCs, whereas several receptors
(Notch-2, -3) are involved in the VSMC lineage to recognize the Notch ligand in ECs (Figure 3).
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Figure 3. Notch signaling in cell-cell communication between endothelial cells (ECs) and vascular
smooth muscle cells (VSMCs). In the process of direct cell-cell interaction between ECs and VSMCs, EC
membrane ligand Jagged-1 is recognized by Notch-2, -3 in VSMCs; reciprocally, VSMCs Jagged-1 binds
with EC Notch-1 receptor and activates the Notch downstream pathway in ECs (also see Table 1A). In
addition, activation of Notch signaling induces nitric oxide (NO), platelet-derived growth factor (PDGF),
vascular endothelial growth factor (VEGF) and other factors’ production from ECs via autocrine and
paracrine process; these factors can regulate EC and VSMC proliferation, migration, differentiation and
play different roles in neointimal hyperplasia (see Table 1B).

7. Endothelial Cell Secretory Function

Although the vascular endothelium is made up from only a single layer of ECs, it works as an
“endocrine organ” via an autocrine and/or paracrine process and contributes to vascular homeostasis,
such as angiogenesis, inflammation, platelet aggregation and vascular remodeling [73,74]. The
regulatory molecules derived from ECs include non-growth factors and growth factors, such as
nitric oxide (NO), VEGF, platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF)
and insulin-like growth factor-1, etc. [75,76] (Figure 3). There are many reports about crosstalk between
Notch signaling and the regulatory molecules mentioned above; we refer the readers to the three
main kinds of factors derived from ECs regulated by Notch signaling and their effects on neointimal
hyperplasia (Table 1B).

Mainly produced by endothelial NO synthase (eNOS), NO derived from EC is an important
mediator of normal and pathologic vascular remodeling [77]. NO not only confers anti-platelet
and anti-inflammatory properties to the vessels, but also promotes EC proliferation [66], inhibits
VSMC proliferation and migration [68], controls M1 macrophage polarization [78], regulates
redox balance [79], keeps the stability and function of blood vessels and suppresses neointimal
hyperplasia [80]. A recent study reported that Notch induces Activin A expression, thereby activating
the PI3K/Akt pathway to phosphorylate eNOS and promoting NO production [67]. Inhibition of
Notch decreases endothelial NO production by reduced eNOS expression [81]. In vein grafts of
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aged rats, the reduced expression of Dll-4 and Notch-4 has been found, which is associated with
the decreased eNOS protein expression, reduced eNOS membrane targeting and colocalization with
caveolin-1, as well as significantly thicker neointima [82].

The contribution of VEGF in neointimal formation has been widely evaluated. Recent studies
demonstrated that VEGF can block neointimal formation through inducing EC growth and reducing
VSMC growth after vascular injury [83]. In addition, bone marrow-derived mesenchymal stem cells
treated with VEGF differentiate into endothelial-like cells and significantly attenuate neointimal
thickness [84]. However, lentivirus-mediated VEGF-A inhibition can decrease the venous neointimal
hyperplasia of AVFs [85]. This evidence suggested that the effect of VEGF on neointimal formation
is complicated. Although there is no direct evidence to support that Notch signaling mediates
neointimal hyperplasia through autocrine or paracrine of VEGF in ECs, inhibition of Notch-1 or
Notch-4 can block thymosin β 4-induced VEGF expression in HUVECs [86]. In contrast, many studies
uncovered that VEGF can activate Notch signaling in ECs and act as an upstream mediator of the
Notch pathway [87,88].

As a smooth muscle cell growth and survival factor, PDGF also plays a prominent role in VSMCs
migrating into the neointima following acute injury or in atherosclerosis. High shear stress inhibits
arterial wall thickening in vivo, which may be related to enhanced activation of PDGF-R alpha in
VSMCs by PDGF isoforms secreted from the endothelium. The neutralizing antibody against PDGF-AA
enhances VSMC migration; in contrast, antibodies against PDGF-BB abolish VSMC migration [70].
VSMC-rich neointimal formation is accelerated in the ligated carotid artery of mice treated with
erythropoietin delta, by which the expression and release of PDGF-B is induced in HUVECs [69].
Findings also showed that PDGF-BB and PDGF-DD are all VSMC phenotypic modulators. PDGF-DD
expression is increased in neointimal lesions in the aortic arch region of apolipoprotein C-deficient
ApoE(−/−) mice. In addition, human ECs exposed to an atherosclerosis-prone flow pattern, as in
vascular regions susceptible to the development of atherosclerosis, exhibit a significant increase in
PDGF-DD expression [71].

Several recent studies reported that Notch signaling is involved in regulating PDGF production
from ECs. Exposure of human brain microvascular endothelial cells to DAPT or silencing of
Notch-1 results in abrogation of cocaine-mediated induction of PDGF-B. The study provided the first
evidence of the involvement of Notch-1 activation in PDGF-B expression [89]. β-catenin, a key signal
molecule of the Wnt/β-catenin-Dll4/Notch signaling cascade in endothelia, its transcriptional activity
directly regulates the endothelial expression of PDGF-B [90]. Conditional medium from matricellular
protein, secreted protein acidic and rich in cysteine (SPARC) overexpressed neuroblastoma cells show
suppressed expression of VEGF, PDGF, FGF and matrix metalloprotein 9 in ECs, which is mediated by
the inhibition of the Notch signaling pathway [91]. Taken together, these findings suggest that PDGF
secretion induced by Notch may be involved in neointimal hyperplasia.

There are also many other EC-derived molecules that have been proven or speculated to influence
neointimal hyperplasia. For instance, apoptotic ECs actively release paracrine mediators’ C-terminal
fragment of perlecan and epidermal growth factor, which inhibit apoptosis of mesenchymal stem cells
(MSC), which are pivotal to vascular repair and neointimal formation [92]. As a secreted glycoprotein
that has been implicated in regulating VSMC proliferation and migration, the downregulated
expression of apolipoprotein D (APOD) is partly caused by paracrine secretion of ECs. In addition,
Notch-3 on mural cells also promotes the downregulation of APOD, possibly through interaction with
the Jagged-1 ligands on ECs [93].

8. Endothelial Cell Barrier Dysfunction

The development of functional blood vessel requires an integrated layer of endothelial cells.
Based on the EC junction, the structural and functional integrity of the endothelium is fundamental
for maintaining vascular homeostasis [94]. Destruction of the protective endothelial barrier will
subsequently lead to vascular injury and neointimal formation. Changes in shear and/or hoop stress,
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direct drug-induced cytotoxicity, mechanical device implant-induced injury or inflammatory response
in vascular surgery or cardiovascular surgery induce vascular injury and cause EC dysfunction [95].
As discussed above, vascular injury is a complex cascade of events involving endothelial denudation,
the release of growth factors and cytokines which triggers platelet degranulation and aggregation,
subsequent inflammatory cells or mediators invading the injured locations, smooth muscle cell
proliferation and migration to form neointimal hyperplasia at the subendothelial space. Reciprocally,
platelet activation and inflammation response lead to delayed re-endothelialization and endothelial
dysfunction [96].

Endothelial dysfunction is characterized by EC phenotype change with impaired
endothelium-dependent barrier and imbalance between re-endothelialization and apoptosis
or growth inhibiting and growth-promoting substances. Notch signaling cascades are involved
in and partially responsible for EC dysfunction events (Figure 4). For example, apoptotic or
senescent phenotype ECs lose their barrier function. Activation of Notch increases myosin light chain
phosphorylation by activating Rho kinase, which further triggers EC acquiring senescence phenotype
and leads to hyperpermeability of the endothelium [97]. In atherosclerosis, Notch activation induces
EC senescence and prompts the expression and secretion of pro-inflammatory cytokines such as
IL-6, IL-8, IL-1α. Among these factors, the upregulated IL-6 may mediate leukocyte transendothelial
migration [98]. In addition, Notch activation also causes EC to acquire VSMC phenotype, which
leads to ECs losing their barrier function and induces neointimal hyperplasia [23]. Consequently,
attenuation of Notch signaling in ECs might provide a treatment strategy for neointimal formation.
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Figure 4. Endothelial cell (EC) dysfunction caused by Notch signaling leads to neointimal hyperplasia.
When vascular injury occurs, Notch signaling is activated, which further triggers EC phenotype change
and causes EC dysfunction. In these processes, ECs acquire the senescent phenotype, the apoptotic
phenotype or the mesenchymal phenotype and lose their barrier function, which leads to endothelial
hyperpermeability, leakage and inflammatory responses. Furthermore, vascular smooth muscle cell
-like cells can transmigrate into the media and proliferate, resulting in neointimal hyperplasia.

As mentioned above, activation of Notch-2 induces EC apoptosis while Notch-4 plays a protective
role [39,43]. In arterial ECs, pro-inflammatory cytokine TNF-α elicits a switch in Notch expression,
which is characterized by Notch-2 predominance over Notch-4. The events lead to a reduced Notch
activity, then promoting caspase-dependent EC apoptosis and vascular dysfunction [99]. In most cases,
the upregulated expressions of Jagged-1, Dll-4, Notch-1 and Notch-4 are associated with inhibition of
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EC proliferation and vascular dysfunction [100,101]. This evidence proved that loss of ECs could lead
to increased platelet reactivity and VSMC proliferation, thereby facilitating neointimal formation.

EC dysfunction may also be related to the change of the secretory function of ECs. Among
the substances released from ECs, NO is involved in the impairment of endothelium-dependent
vasodilatation. Endovascular interventions are associated with diminished bioavailability of NO
and increased local inflammatory response, which triggers EC apoptosis [102–104]. Reducing eNOS
expression or promoting inducible nitric oxide synthase (iNOS) expression induces EC apoptosis
and dysfunction, which can be mediated through the Jagged-1/Notch pathway [105]. To conclude,
enhanced degradation of NO and decreased eNOS expression and/or activity leads to EC dysfunction
and contributes to neointimal formation. As shown in Figure 4, we summarized the relationship
between Notch signaling and EC dysfunction during neointimal formation development.

9. Limits and Perspectives

We have reviewed here the accumulated evidence that the Notch pathway is involved in multiple
aspects of EC key functions (proliferation, regeneration, apoptosis, differentiation, cell-cell interaction)
and contributes to neointimal formation. However, our review also found a number of apparent
inconsistencies and problems in these studies. Although the relative level of p21 expression may
decide EC growth after Notch activation, no data show the exact expression level or range of p21. The
patterns of Notch-1 to -4 expression can play different roles in EC apoptosis, but which components
function at what apoptosis steps in ECs? Notch signaling seems to induce endothelial mesenchymal
phenotype switch, so does there exist a specific relationship among ligands, receptors, and target
genes in the process of transdifferentiation? How does Notch play a role in EC regeneration and
differentiation? Except NO, how does the Notch pathway play any role in the regulation of other
cytokines secreted from ECs to cause EC dysfunction? How about the crosstalk between Notch
and other signaling pathways? Given that the Notch has a significant role in vascular development,
further understanding of the Notch signaling pathway in the context of vascular biology will likely
provide novel insights into the mechanisms of neointimal formation and new opportunities for rational
therapeutic intervention.
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ADAM a disintegrin and metalloproteinases
AGS alagille syndrome
APOD apolipoprotein D
AVF arteriovenous fistula
AVG arteriovenous graft
bFGF basic fibroblast growth factor
CACs circulating angiogenic cells
CADASIL cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy
CKD chronic kidney disease
CVD cardiovascular diseases
DAPT N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester
Dll delta-like
EC endothelial cell
ECM extracellular matrix
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EMT Epithelial-mesenchymal transition
EndMT Endothelial-mesenchymal transition
eNOS endothelial NO synthase
EPC endothelial progenitor cell
FGFR1 Fibroblast growth factor receptor1
Frs2α Fibroblast growth factor receptor substrate 2 α

FSP-1 fibroblast-specific protein 1
HAEC human arterial endothelial cell
HERP HES-related repressor protein
HES hairy and enhancer of split
HUVEC human umbilical vein endothelial cell
IFNγ Interferon γ

IL interleukin
iNOS inducible nitric oxide synthase
MAML Mastermind-like
MAPK mitogen-activated protein kinase
MSC mesenchymal stem cell
NF-κB nuclear factor κB
NICD Notch intracellular domain
NO Nitric oxide
PDGF platelet-derived growth factor
PECAM-1 platelet endothelial cell adhesion molecule-1
Rb retinoblastoma
ROS reactive oxygen species
α-SMA α-smooth muscle actin
SPARC secreted protein acidic and rich in cysteine
TA transplant arteriosclerosis
TGF-β transforming growth factor-β
TNF tumor necrosis factor
VEGF vascular endothelial growth factor
VSMC vascular smooth muscle cell
WT wild type
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