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Abstract

A clear contradiction exists between cytotoxic in-vitro studies demonstrating effectiveness of Gemcitabine to curtail
pancreatic cancer and in-vivo studies failing to show Gemcitabine as an effective treatment. The outcome of chemotherapy
in metastatic stages, where surgery is no longer viable, shows a 5-year survival ,5%. It is apparent that in-vitro experiments,
no matter how well designed, may fail to adequately represent the complex in-vivo microenvironmental and phenotypic
characteristics of the cancer, including cell proliferation and apoptosis. We evaluate in-vitro cytotoxic data as an indicator of
in-vivo treatment success using a mathematical model of tumor growth based on a dimensionless formulation describing
tumor biology. Inputs to the model are obtained under optimal drug exposure conditions in-vitro. The model incorporates
heterogeneous cell proliferation and death caused by spatial diffusion gradients of oxygen/nutrients due to inefficient
vascularization and abundant stroma, and thus is able to simulate the effect of the microenvironment as a barrier to
effective nutrient and drug delivery. Analysis of the mathematical model indicates the pancreatic tumors to be mostly
resistant to Gemcitabine treatment in-vivo. The model results are confirmed with experiments in live mice, which indicate
uninhibited tumor proliferation and metastasis with Gemcitabine treatment. By extracting mathematical model parameter
values for proliferation and death from monolayer in-vitro cytotoxicity experiments with pancreatic cancer cells, and
simulating the effects of spatial diffusion, we use the model to predict the drug response in-vivo, beyond what would have
been expected from sole consideration of the cancer intrinsic resistance. We conclude that this integrated experimental/
computational approach may enhance understanding of pancreatic cancer behavior and its response to various
chemotherapies, and, further, that such an approach could predict resistance based on pharmacokinetic measurements
with the goal to maximize effective treatment strategies.
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Introduction

We aim to quantify the link between pancreatic tumor growth

observed in-vitro and that observed in-vivo by providing a novel

integrated experimental/computational approach to predict the

cancer drug response. The most common chemotherapy drug,

Difluorodeoxycytidine (dFdC, or gemcitabine), is a cytidine

analogue which has shown activity as a single agent against solid

human tumors. Multiple studies have evaluated the efficacy of

gemcitabine in the treatment of unresectable and metastatic

pancreatic cancer. However, the success of gemcitabine to treat

pancreatic cancer is limited, resulting only in a slight prolongation

of survival and a moderate improvement in quality of life. An early

study in advanced pancreatic cancer showed a measurable

response in 23.8% of patients with median survival of 5.7 months

and 18% survival at 12 months [1]. Combination therapies

including gemcitabine have been associated with minimal

improvement when compared to gemcitabine alone [2–5].

Laboratory studies have demonstrated the in-vitro efficacy of

treatment strategies employing gemcitabine, but have failed to

confirm the effectiveness of these strategies in-vivo using orthotopic

pancreatic adenocarcinoma mouse models [6–7]. In-vitro conditions

provide cells with unlimited access to oxygen, nutrients and drug,

and lack interactions present in 3D tissue with the extracellular

matrix and with host cells. The in-vivo parameters of intercellular

and extracellular contributors to drug response are poorly

understood because these parameters are difficult to measure in

living tissue. Insufficient vasculature within pancreatic tumors

creates a hypoxic, nutrient-deficient, and toxic environment due

to the impaired blood flow and accumulation of metabolites [8–10].

Further, these hostile conditions select for cells that can survive with

less than normal access to oxygen, nutrient, and pH conditions.

Stressed tumor and host cells release a net balance of pro-angiogenic

growth factors to induce neovascularization; by the time a

pancreatic tumor reaches a clinically detectable size, it is usually

in the vascular growth phase and contains highly aggressive cell

species. Using a mouse model of pancreatic adenocarcinoma,

Tuveson and coworkers recently reported that drug is indeed

inefficiently delivered to pancreatic tumors because of deficient

vasculature and abundant stromal content [11–12].
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The contradictory in-vitro and in-vivo observations illustrate the

critical need for biologically realistic and predictive mathematical

models that can integrate information about cell proliferation and

death with microvascular deficiency and diffusion gradients in the

microenvironment. Although experimental studies have revealed a

wealth of insight into molecular mechanisms of intrinsic resistance

to gemcitabine in pancreatic cancer [13] and have helped to

elucidate the critical role of the stroma [11–12,14–15], there is a

paucity of mathematical models to quantitatively evaluate the

growth of pancreatic tumors and their treatment response. It was

noted almost 50 years ago that tumor growth in 3D spatial

dimensions could not be satisfactorily modeled by simple

exponential formulations [16], and that this growth could be

better described if fit to a Gompertzian model [17] – a fact

confirmed experimentally even with 3D cell cultures in-vitro (e.g.,

[18]). Recently, Iacobuzio-Donahue and coworkers provided a

quantitative analysis of the timing of the genetic evolution of

pancreatic cancer, showing that it takes at least a decade from

tumorigenesis initiation until the emergence of a parental clone,

followed by ,6.8 years until the emergence of cells capable of

surviving metastasis, and then followed by an additional ,2.7

years until the patient’s death [19]. Michor and coworkers

analyzed the effects of different treatment modalities for pancreatic

cancer using a stochastic model, finding that restraining the tumor

cell growth earlier during treatment may yield better outcomes

than tumor resection [20].

Here, we study pancreatic tumor growth and treatment

response by applying the nonlinear model advanced by Cristini

et al [21] and further developed in [18,22–24], which enables

description of tumor growth through a set of two dimensionless

parameters that relate to mitosis rate, apoptosis rate, cell mobility,

and cell adhesion. This model builds upon a formulation of

previous continuum models [25–27] that describe conservation

laws for concentrations of oxygen/nutrients and cells. We perform

experiments to measure response to gemcitabine for MiaPaca-2

and S2-VP10 cells grown in-vitro, and obtain input parameter

values for the mathematical model. We then apply the model,

taking into account the effects of diffusion gradients in-vivo, to

predict the response with real tumors in live mice. The results

provide a quantitative measure of the extent through which the 3D

microenvironment, including deficient vascularization and diffu-

sion gradients, may affect the drug response of pancreatic tumors

beyond considerations of intrinsic resistance. In this manner we

develop an integrated experimental/computational approach to

theoretically predict the response of pancreatic cancer to drug

treatment in-vivo given input from in-vitro experiments.

Methods

We performed experiments with pancreatic cancer cells in-vitro

to measure proliferation and apoptosis. Cancer cells were also

injected into the pancreas of live mice to grow tumors in-vivo. The

extent of tumor vascularization was assessed from these live

tumors. The experimental measurements were used to set the

mathematical model parameters to calculate the tumor growth,

and the simulation results were then compared to the in-vivo tumor

observations.

Experimental Model
Experiments used pancreatic cancer S2-VP10 cells (generous

gift from Dr.M.Hollingsworth, University of Nebraska [28]) to

represent aggressive tumors and MiaPaCa-2 (ATCC) cells to

represent less aggressive tumors. Cells were maintained under

standard cell culture conditions. Gemcitabine (Eli Lilly) was used

as the cytotoxic drug. Details of experimental methods are given

below.

Cell viability in-vitro. Cell viability (as percentage of

untreated control +SE) was measured as described previously

[29] using ATPlite (PerkinElmer) assay. Briefly, cells incubated

overnight with 2,000 cells per well in 96-well plates were treated

with 100 ml of gemcitabine (0, 3, 30, 300 nM) for 24 hours (n = 4).

Luciferase expressing clones, S2-VP10L and MiaPaCa2-B, were

established by transducing cells with a non-replicating retrovirus

containing firefly luciferase gene (Stratagene). Single cell clones

were isolated and bioluminescence signal was confirmed using

IVIS 100 system (Caliper, Hopkinton, MA). Growth rates and

drug response of parental cells and clones were identical (data not

shown).

Orthotopic model in-vivo. Female severe combined immu-

nodeficient (SCID) mice 6 weeks of age (Harlan Laboratories)

were allowed to acclimate for 1 week before implantation. Strict

adherence to the University of Louisville Institutional Animal Care

and Use Committee (IACUC 11110) approved protocol was

maintained. Orthotopic cell implantation followed procedure in

[30]. Briefly, mice were anesthetized (isoflurane gas), incised (1-cm)

in left upper abdomen quadrant, and the pancreas was exposed by

retraction of the spleen. 2.56106 MiaPaCa-2B (16105 S2-VP10L)

cells in 30 mL of DMEM were injected into the tail of the

pancreas. A sterile cotton tipped applicator was used to cover the

injection site for 30 s to prevent peritoneal leakage. The spleen was

returned to the appropriate position in the abdomen, and the skin

and peritoneum were closed in one layer with three interrupted 5-

0 Prolene sutures.

Tumor growth inhibition and survival studies. Bio-

luminescence imaging was used to assess orthotopic implantation

immediately following surgery (Advanced Molecular Imager AMI-

1000-X, Spectral Instruments Imaging). Mice with detectable

leakage from the pancreas were removed from the study. Mice

were injected i.p. with 100 ml of Luciferin (2.5 mg) to undergo

bioluminescence imaging. Region of interest (ROI) analysis was

used to measure light emitted using AMIVIEW software. Mice

were sorted into groups of equal mean bioluminescent signal. Mice

were treated when tumors reached ,1.5 mm radii; while mice

Author Summary

There are few treatment options for advanced pancreatic
cancer. The chemotherapeutic drug Gemcitabine is rou-
tinely used, yet 95% of patients die within 5 years of
diagnosis. Surprisingly, Gemcitabine experiments with
pancreatic tumor cells in the laboratory dish show that
most cells will be killed by this drug. It is obvious that the
dish does not adequately represent the more complex
condition in real tumors. We apply mathematical modeling
to simulate tumor growth to try to understand how results
from the laboratory could be used to predict the treatment
response in real tumors. The model simulates flow of
substances such as oxygen within tumors and how this
flow affects the response of cells to drug treatment. We set
the inputs for the model with values obtained from the
laboratory experiments. The model predicts the treatment
to mostly fail in real tumors regardless of the character-
istics of individual cells. We confirm these results by
treating real tumors in mice, showing that our integrated
experimental/computational approach may improve the
understanding of pancreatic cancer behavior and response
to chemotherapy, and also help to optimize treatment
strategies.

Predictive Modeling of Pancreatic Cancer Response
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implanted with S2VP10L cells were treated beginning 7 days after

injection, mice with MiaPaCa-2B cells were treated beginning 14

days after injection. Treatment groups (n = 8/group) included

saline or 50 mg/kg gemcitabine administered i.p. weekly. Each

mouse was imaged weekly to monitor tumor growth and

metastasis. Treatment efficacy was assessed using bioluminescence

imaging and analyzed using ANOVA with a p-value threshold of

0.05. A sample set of bioluminescent emission data for untreated

mice at day 7 post-orthotopic injection of S2-VP10 tumor cells is

summarized in Table S1.

Mathematical Model of Tumor Growth
We model the growth of pancreatic tumors in vivo building upon

the formulation first described in [21] and further developed in

[18,22–24]. This modeling generally describes tumor-related

variables as continuous fields by means of partial differential

equations (PDE) [23]. Tumors are treated as a collection of tissue,

described by densities or cell volume fractions. Individual cells and

other elements are not tracked. Model variables include the cell

volume fractions and concentrations of cell substrates such as

oxygen and nutrients diffusing from the capillaries. The vascula-

ture itself is not represented but only the diffusion of substances

from it. The equations are solved using numerical solvers [23].

The Supplement contains a detailed summary of the model

formulation and underlying assumptions. Briefly, cells are

represented as a continuous domain in 3D space and receive

substrates (oxygen, nutrients) via diffusion from vasculature within

the tissue. Following classical continuum tumor models by [25–27]

and others, it may be assumed that the cell density is constant in

the proliferating tumor domain; hence, mass changes correspond

to volume changes. The tumor is treated as an incompressible fluid

and the tissue elasticity is neglected. Cell-to-cell adhesive forces are

modeled by a surface tension at the tumor-tissue interface [26].

The growth of the mass is governed by the balance between cell

proliferation and apoptosis, which includes the drug effect. The

rate of mitosis depends on the concentration of cell substrates

(oxygen, glucose), which obey diffusion-reaction equations in the

tumor volume. The bulk source of the cell substrates and drug is in

the vasculature.
Diffusible substances. The diffusion of cell substrates and

drug in a solid tumor, combined with cellular uptake, creates and

maintains gradients of these substances through the 3D tumor

tissue, assumed to be fairly compact. In particular, pancreatic

tumors are typically insufficiently vascularized and with a denser

stroma, which would be reflected in the cell proliferation and

apoptosis values dependent on the availability of cell substrates

and drug in the tumor microenvironment. We assume that the

capillary concentration within the tumor is uniform but insufficient

to adequately support all of the tumor cells, hence maintaining

gradients of diffusible substances (Eq. 1 below). This contrasts with

healthy tissue in which normal cell proliferation and apoptosis

balanced with the availability of oxygen and nutrients from the

vasculature avoids the formation of such gradients.

The principle of conservation of mass is applied to account for

these diffusible substances within the tumor domain V(t) [21,23]:

the net rate C of cell substrates diffusing across tumor viable

regions minus the amount uptaken by tumor cells in these regions

equals the rate of change of the substrates (at steady state, this rate

is 0). That is,

+2C{C~0 with boundary condition (C)S~1, ð1Þ

where the amount diffusing in space (first term) balances the

cellular uptake (second term).

The boundary between tumor and healthy tissue is S(t), n is the

unit outward normal to S, t is time. Space and time are

normalized with LD (diffusion distance of oxygen) and l{1
R (tissue

relaxation rate), respectively. At the boundary, the tissue is

assumed to be normally vascularized (at maximum and uniform

oxygen/nutrients) [21,23].

Tumor pressure. The change in tissue pressure balances

within the tumor tissue domain. Denoting x as position in 3D

space [21,23], we have:

+2p~0 with boundary condition : (p)S~k{AG
(x:x)S

6
, ð2Þ

where at the tumor boundary, the tissue pressure depends on local

total curvature k and the dimensionless parameters A and G

(below).

Tumor velocity. The tumor growth depends on cell prolif-

eration and death, and extent of vascularization. The resulting

tumor tissue velocity depends on the change in tissue pressure,

nutrient availability, and location of proliferating and dying cells

within the tumor [21]:

V~{n:(+p)SzGn:(+C)S{AG
n:(x)S

6
, ð3Þ

where the velocity V of the tumor boundary depends on the

change in pressure p (second term), rate of change in cell substrates

C (third term), and position in space x (fourth term) [21]. The

tumor is growing when V.0, unchanging when V = 0, and

shrinking otherwise.

The non-dimensional parameter

G~
lM

lR

(1{B) ð4Þ

describes the relative rate of cell mitosis lM to relaxation lR; this

relaxation depends on cell mobility and cell-to-cell adhesion [21].

The non-dimensional parameter

A~
lA=lM{B

1{B
ð5Þ

describes the balance between cell apoptosis lA and mitosis lM

[21]. Both parameters A and G include the extent of vasculari-

zation through the non-dimensional parameter B:

B~
sB

s?

lB

(lBzl)
, ð6Þ

where l is nutrient uptake rate by tumor cells, lB is vasculature-

tissue nutrient transfer rate, sB is nutrient concentration in the

vasculature, and s‘ is nutrient concentration outside the tumor

volume (i.e., in the host tissue) [21,23].

Tumor size. As a first approximation, the bulk tumor shape

is approximated by a sphere (as was observed experimentally). The

evolution of the tumor radius R then depends mainly on the ratio

of cell death to mitosis (parameter A) and ratio of mitosis to

relaxation (parameter G):

V

G
~{A

R

3
z

1

tanh(R)
{

1

R

� �
: ð7Þ

This equation describes spherically-symmetric tumor growth using

Predictive Modeling of Pancreatic Cancer Response
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Eq. (3) [21]. The tumor radius R is non-dimensionalized by LD

(diffusion distance of oxygen).

Three tumor growth regimes can be identified from Eq. (7) (as

described in [21–23]):

(1) Low vascularization: A.0 and G$0 (i.e., B,lA/lM). Tumor

evolution is monotonic and leads to a stationary radius R‘,

i.e., the growth is arrested primarily by lack of oxygen/

nutrients in the microenvironment.

(2) Moderate vascularization: A#0 and G$0 (i.e., lA/lM#B,1).

Tumors grow unbounded, with growth that tends to linear for

A = 0 (with velocity VRG as RR‘) and to exponential for

A,0 (with velocity VRAGR/3 as RR‘).

(3) High vascularization: G,0 (i.e., B.0). Depending on initial

tumor radius size, unbounded growth may occur for A.0;

otherwise, tumor will shrink and die as would also occur for

A,0 (i.e., domination of cell apoptosis, B,lA/lM).

Results

Cytotoxicity In-Vitro
Gemcitabine-induced cytotoxicity varied between MiaPaCa-2

and S2-VP10 cells (Figure 1), with S2-VP10 cells showing higher

sensitivity. At 24 hours, MiaPaCa-2 cells were moderately resistant

with cell viability (percent of control) at 62% when treated with

300 nmol/L. At 24 hours, S2-VP10 cells were more responsive as

24% of cells were viable after treatment with this dosage.

Assuming a mouse weight ,20 g and plasma volume of

,1.2 ml [31], in-vivo bolus concentrations corresponding to the

in-vitro dosages are 2.8261023, 2.8261022, and 2.8261021 mg

Gemcitabine/kg mouse, respectively.

Mathematical Model of In-Vivo Response
The relative strength of apoptosis A is the main free parameter

in the equation describing the tumor growth (Eq. 7). This

parameter, in turn, depends on the rates of cell apoptosis lA and

mitosis lM (Eq. 5) and the extent of vascularization B (Eq. 6), all

of which are calculated from the experimental measurements as

described below. The model parameters and their associated

biological meaning are summarized in Table S2.

Parameter B (representing extent of vascularization), is estimat-

ed from microvessel density (MVD) in immunohistochemistry

slides. We assume that tumor growth is associated with a bulk

source of oxygen/nutrients, and, hence, the values of parameters

l, lB, sB, and s‘ (Eqs.3–6) are assumed to be uniform for cells

under similar conditions. This implies that growth is modeled to be

limited by the diffusion of cell substrates [21] through the tumor

(Eq.3). Assuming s‘ is uniform (i.e., surrounding host tissue is

well-vascularized), the nutrient concentration is also assumed

constant outside the tumor and at the tumor-host interface (S).

We estimate the extent of vascularization in normal tissue using

PO2 as a critical cell substrate, which is ,40 mmHg in capillaries

and drops to ,8 mmHg entering the tissue [32]. Therefore, in

Eq.6 for parameter B, sB = 40 mmHg and s‘ = 8 mmHg.

Assuming that the rate of oxygen/nutrient supply balances the

uptake in the tissue, the ratio of these values is 0.5, and thus in

normal tissue B,2.5. To estimate B in tumor tissue, we calculate

the ratio between tumor and normal tissue MVD. Pancreatic

histology (Figure 2A) was used to estimate MVD values

(Supplement), 1.5660.94% and 0.2760.26% in normal and

tumor tissue, respectively, yielding a ratio of 0.17. Scaling B in

normal tissue by the MVD ratio yields a value of B,0.43 in tumor

tissue.

Parameter A, representing the ratio of cell death (lA) to mitosis

(lM) (Eq.5), is calculated by evaluating mitosis and death from the

in-vitro cytotoxicity data. We link rates lM and lA to the

experimental measurements [33]: lM~ 1
T

NC{NI

NI

� �
and

lA~{ 1
T

ln N(d)
NC

, where at time T (day), viable cell counts are NC

(control), NI (initial), and N(d) (treated). With T = 1day, mitosis rate

lM was ,1.23 days21 and ,2.63 days21 for MiaPaCa-2and S2-

VP10 cells, respectively. Apoptosis rate lA was calculated at each

gemcitabine concentration (Table 1). As a first approximation, we

assume these rates are invariant for cells under similar conditions

and during the time of treatment [18,21–23,26,33], thus

simulating an optimal course of treatment. Parameter A is then

calculated with the estimated value of B as a function of

gemcitabine concentration (Figure 2B). Based on the classifica-

tion of the three possible regimes of tumor vascularization by the

model (Methods, Section 2.4), the in-vivo tumors were

designated as mostly moderately vascularized (Table 1).

We modeled the tumor growth from the cytotoxic in-vitro data

using Eq.7. Figure 3A shows the simulated growth for the

MiaPaCa-2 after the beginning of treatment. The model results,

which take into account the diffusion of cell substrates from the

vasculature in the 3D tissue, demonstrate that this growth is

positive regardless of drug concentration. This outcome is contrary

to the in vitro observations (Figure 1), in which cells are treated

under optimal exposure in monolayer. The model results further

show that the overall growth decreases for higher gemcitabine

concentrations. For S2-VP10 the mathematical model shows that

the simulated growth is positive except for the 300 nM drug

concentration (Figure 3B). As with the MiaPaCa-2, the growth

decreases at higher gemcitabine concentrations. Reflecting the in-

vitro data used for parameter calibration, the model results suggest

that the growth of S2-VP10 is marginally more sensitive to

gemcitabine compared to the MiaPaCa-2.

In-Vivo Orthotopic Tumor Growth
To validate the results from the mathematical model, we

evaluated the in-vivo efficacy of a weekly treatment of gemcitabine

in SCID mice (50 mg/kg mouse) with orthotopically implanted

MiaPaCa-2 and S2-VP10 tumors. Tumor growth was examined

longitudinally via bioluminescent imaging. Since cell number and

bioluminescent light emission are linearly proportional [34],

emission signals were used to quantify approximate cell numbers.

Tumor radius was calculated from the bioluminescent data

Figure 1. Gemcitabine toxicity in-vitro for MiaPaCa-2 and S2-
VP10 pancreatic cell lines. Viability for cells treated with varying
concentrations of Gemcitabine was determined after 24 hours of drug
exposure.
doi:10.1371/journal.pcbi.1003231.g001

Predictive Modeling of Pancreatic Cancer Response
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assuming radial symmetry, which was converted to a cell number

using data on cell radius and packing density (Supplement).
From H&E (hematoxylin and eosin) staining, cell radii for

MiaPaCa-2 and S2-VP10 cells were determined to be ,9 and

,7 mm, respectively, and a packing factor for both cell types was

determined to be ,0.761. This packing density was reasonable

based on densities as high as 0.813 using a simulation of congruent

circles [35], and demonstrated simulation of packing fractions as

high as 0.74 [36]. The AUC (area-under-the-curve) for the weekly

treatment was ,337 mg hr/ml; for comparison, gemcitabine

concentration exposure in a 24 hour period in-vitro was

,7,600 nM, representing a dosage .256 the maximum in-vitro.

Median MiaPaCa-2 tumor radius of the untreated mice

increased from 1.3 to ,3.3 mm (150%) during the observation

period (Figure 4A); the median radius of gemcitabine-treated

tumors increased from 1.3 to ,3.5 mm (170%) in these mice.

Treated tumor radius was not significantly different than the

untreated by day 50. Gompertz growth curves [37] of the form

R~dzk � e{e(a{bt)

can be fitted to these data showing that

treatment with gemcitabine delayed the growth by ,3 weeks, but

did not eradicate the tumor (Figure 4A). All of the mice in both

groups did not survive beyond day 68 (Figure 4B). In

comparison, the data for Figure 4C indicates that untreated

S2-VP10 tumor radius increased from 0.36 to ,7.0 mm (1840%).

Tumor radius in gemcitabine-treated mice increased from 0.36 to

,6.5 mm (1700%, or 106 that of the MiaPaca-2). Untreated

growth was not significantly different than treated by day 25.

Comparing untreated and treated growth to fitted Gompertz

growth curves shows that the tumors were essentially unaffected by

the treatment. All of the mice in both groups did not survive

beyond day 25 (Figure 4D).

The mathematical modeling predicted that MiaPaCa-2 and S2-

VP10 tumors would be resistant to gemcitabine by taking into

consideration diffusion gradients in 3D and a moderate extent of

vascularization. Except for the 300 nM drug treatment of S2-

VP10, this prediction is in agreement with the in-vivo data and in

contrast to the in-vitro cytotoxicity results.

Discussion

It has been hypothesized that nearly all cancers develop a

common set of basic characteristics, namely self-sufficiency in

growth signals, insensitivity to anti-growth signals, evasion of

apoptosis, limitless replicative potential, sustained angiogenesis,

and tissue invasion and metastasis [38]. By focusing on these

common elements, mathematical modeling may provide insight

into tumor growth and drug response in the 3D in-vivo

environment. In large scaled systems, continuum methods treat

the tumor as a collection of tissue, where densities or volume

fractions of cells are described utilizing partial-differential and

integro-differential equations [23]. Model variables may include

cell volume fractions and cell substrate concentrations, such as

Figure 2. Calculation of MVD and Parameter A. (A) Sample S2-VP10 histology slide stained for Factor VIII (406). (B) Parameter A (non-
dimensional) describing the relative strength of apoptosis calculated from in-vitro measurements as a function of gemcitabine concentration (and
with extent of vascularization parameter B = 0.43).
doi:10.1371/journal.pcbi.1003231.g002

Table 1. Calculated values of cell apoptosis lA and model parameter A (using Eq.5) at various gemcitabine concentrations.

Gem MiaPaCa-2 S2-VP10

(nM) lA (day21) lA/lM A Vascularization lA (day21) lA/lM A Vascularization

0 0 0 27.5461021 Moderate 0 0 27.5461021 Moderate

3 3.1461022 2.5561022 27.1061021 Moderate 2.0461021 7.7661022 26.1861021 Moderate

30 1.4861021 1.2061021 25.4361021 Moderate 8.2561021 3.1361021 22.0561021 Moderate

300 4.6561021 2.7761021 29.3061022 Moderate 1.446100 5.4561021 2.01961021 Low

The model classification of tumor vascularization (see Methods) for MiaPaCa-2 and S2-VP10 tumors is then based on lA/lM and parameter A with B = 0.43.
doi:10.1371/journal.pcbi.1003231.t001

Predictive Modeling of Pancreatic Cancer Response

PLOS Computational Biology | www.ploscompbiol.org 5 September 2013 | Volume 9 | Issue 9 | e1003231



oxygen and glucose. These models use parameters that may be

measurable from laboratory experiments [39].

The in-vitro cytotoxicity experiments demonstrated varying

sensitivity between MiaPaCa-2 and S2-VP10 tumor cells to

gemcitabine, with the latter exhibiting higher sensitivity. This is

consistent with in-vitro results by DeRosier et al [40], which showed

moderate resistance of MiaPaCa-2 cells to gemcitabine (100%

viability at 3 nM; 78% viability at 30 nM), and higher sensitivity

of S2-VP10 cells (77% viability at 3 nM; 33% viability at 30 nM).

Based on these results, it would be reasonable to expect that

treatment with gemcitabine in-vivo should demonstrate some

efficacy, especially since the highest in-vitro experimental gemcita-

bine AUC at a concentration of 300 nM was only 1.90 mg-hr/ml

compared with the in-vivo AUC of 337 mg-hr/ml.

Taking into account the diffusion of cell substrates from an

impaired vasculature in the 3D tissue (Eq.1, Methods), the

mathematical model predicted different outcomes using the same

in-vitro data. Before simulating the tumor growth using the model,

several parameters had to be determined from the in-vitro

experiments. The extent of vascularization was estimated by

observing and calculating the MVD ratio from pancreatic tumor

histology, finding that the tumor MVD was significantly lower

than that in normal tissue. This is in accordance with observations

that lower cell oxygen consumption rates in solid tumors and, in

particular, that pancreatic tumor cells are known to tolerate

hypoxic conditions and are therefore more resistant to apoptosis

[11–12]. Lower MVD in tumors has been found in prostate

carcinoma, 29% of normal in lung carcinoma, and 78% of normal

in glioblastoma [41]. In pancreatic cancer, a decrease in the blood

volume fraction has been shown in MRI images as the tumor area

increases [42], and a decrease in MVD has been observed with

increasing tumor grade [43]. Measuring values of lA/lM and the

Figure 3. Tumor growth (V/G) predicted by the mathematical model. Simulated tumor growth (Eq. 7) for radially symmetric (A) MiaPaCa-2
and (B) S2-VP10 in-vivo tumors after treatment beginning when radius R = 1.5 mm, taking into consideration diffusion gradients in 3D and a
moderate extent of vascularization.
doi:10.1371/journal.pcbi.1003231.g003
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parameter A, we applied the mathematical model to calculate the

rate of growth of these tumors, finding that a positive rate of

growth is predicted for all cases but one in-vivo (Figure 3). By

extracting mathematical model parameter values for proliferation

and death from monolayer in-vitro cytotoxicity experiments, and

simulating the effects of spatial diffusion which depend on the

extent of vascularization, the model was able to reasonably predict

the drug response in-vivo.

In agreement with clinical outcomes, the in-vivo results

demonstrated that gemcitabine had no end effect on the growth

of either tumor type and that it did not significantly affect the

mortality rate compared to control. We note that the in-vivo AUC

(337 mg-hr/ml) was at least two orders of magnitude larger than

the in-vitro AUC (1.90 mg-hr/ml). The only impact the gemcitabine

treatment showed was an apparent 3 week delay in the progression

of the MiaPaCa-2 tumors (Figure 4A), contrary to the in-vitro

cytotoxicity results (Figure 1). The mathematical model reflected

this behavior to some extent; the simulated tumor growth

(Figure 3A) decreased between untreated and treated Mia-

PaCa-2 tumors. Further, the in-vivo measurements (Figure 4)

showed S2-VP10 tumor radii in treated mice to be essentially the

same as the untreated, in contrast to the in-vitro results (Figure 1),

indicating higher drug sensitivity of S2-VP10 compared to the

MiaPaCa-2 cells. Although the mathematical model also showed

non-decreasing S2-VP10 growth for the 3 and 30 nM drug

concentrations (Figure 3B), it did incorrectly suggest slight tumor

regression at the highest dosage (300 nM) as well as a more

discernible separation between treated and untreated cases. In

comparison, the in-vitro results at this dosage would suggest a much

more favorable response than that of the simulation. Nevertheless,

we believe that the model accuracy can be improved by

integration of further biological details currently omitted, e.g.,

desmoplasia and autophagy that are well known to characterize

pancreatic tumors [11–12,44]. Additional bioluminescent imaging

beyond once per week may also help to compare the experimental

and theoretical tumor responses.

The mathematical model predicted the general response of the

tumors to treatment by indicating positive growth in-vivo by taking

into account the diffusion of cell substrates (e.g., oxygen) as would

occur in 3D. In contrast, in-vitro monolayer experiments may fail to

predict in-vivo treatment outcomes in part due to culture conditions

representing a single the cell layer closest to the vasculature in-vivo,

Figure 4. Measurement of tumor radii from bioluminescent imaging of untreated and gemcitabine-treated SCID mice. Gompertz
growth curves were fitted to these data to illustrate the tumor growth. (A) MiaPaCa-2 radii and fitting to Gompertz equations R~1:3z2:2 � e{e(2:0{0:1t)

(untreated) and R~1:3z2:2 � e{e(8:5{0:24t)

(treated). (B) Bioluminescence signal shown for representative mice with S2-VP20 tumors. (C) S2-VP10 radii

and fitting to Gompertz equations R~0:36z7:1 � e{e(2:3{0:17t)

(untreated) and R~0:36z7:1 � e{e(2:0{0:14t)

(treated). (D) Bioluminescence signal shown
for representative mice with S2-VP20 tumors. Error bars in (A) and (C) correspond to standard error of the mean.
doi:10.1371/journal.pcbi.1003231.g004
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which exposes cells to maximal oxygen/nutrients and drug.

Further, ambient oxygen concentration in-vitro would prevent cells

from becoming quiescent and thus maintains drug sensitivity,

contrary to what would occur with cells in tumors in-vivo

experiencing heterogeneous oxygenation. Using both experiments

and computational modeling, it has been shown that 3D cell

culture models in-vitro demonstrate significantly increased survival

and drug resistance over monolayers (e.g., [33] and references

therein). As such, parameter values for the mathematical model

may be refined from measurements of 3D cell cultures in vitro.

Since the model represents tumor growth based on physical

principles such as conservation of mass and transport of diffusible

substances, the model as applied here is not specifically tailored to

pancreatic cancers. As such, the model could be applied to

simulate the growth of other solid cancers, e.g., as has been done

previously for brain tumors [45–46] and lymphoma [47].

Particular predictions of treatment response would depend on

the values of the parameters measured from in-vitro and

vascularization data from these other tumors.

This study demonstrated the feasibility of predicting overall

drug treatment effectiveness in an in-vivo orthotopic pancreatic

tumor model using a mathematical model with parameters mainly

set from in-vitro data. We apply a simplified mathematical model

using a minimum set of parameters to predict the tumor growth.

More biologically-complete models might exhibit better predict-

ability as well as broaden the information gained from pharma-

cokinetic measurements; setting additional parameters would

necessitate expanded experimental measurements and increase

the model complexity. Our integrated experimental/computa-

tional approach may also aid in understanding in-vivo experimental

and clinical observations which contradict in-vitro results focusing

mainly on intrinsic resistance mechanisms. The quantification and

prediction of treatment response by considering individual tumor

phenotypes opens the possibility to design and uniquely strategize

innovative targeted treatment experiments. For example, cells

extracted from patient biopsies could be cultured in-vitro and

assessed for cytotoxicity with various drug types and combinations

to determine values for the model parameters for apoptosis lA and

mitosis lM, and thus to calculate the strength of apoptosis A. The

extent of vascularization B could be measured from biopsy

histology stained for a vascularization marker (e.g., CD31). The

model could then be applied to simulate the tumor growth under

various treatment scenarios (varying drug concentration and

dosages) to assess possible performance in-vivo. In this way,

mathematical modeling may help to bridge the gap between in-

vitro and in-vivo experimental strategies in order to achieve more

effective treatment of pancreatic cancer.

Supporting Information

Figure S1 Histology slides of pancreatic tissue. (A) Normal

pancreas H&E staining (inset highlights tissue structure); (B)

Pancreatic S2-VP10 tumor tissue H&E staining (inset highlights a

small blood vessel); (C) H&E histology slide showing S2-VP10

tumor cells (middle and right) next to normal pancreatic cells

(upper left and left); (D) Staining for Factor VIII in section with

S2-VP10 tumor cells (1006), used to identify vessels (arrows) for

calculation of Microvessel Density (MVD) by cross-sectional area

within a given ROI.

(TIF)

Figure S2 H&E histology slide of S2-VP10 tumor cells showing

an example of a circular region examined to determine the

number of cells within the ROI.

(TIF)

Table S1 Sample set of bioluminescent emission data of S2-

VP10 in-vivo tumor growth at Day 0 and Day 7.

(TIF)

Table S2 List of model parameters and associated biological

meaning.

(TIF)
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