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Diabetes is part of metabolic diseases and is characterized by high blood sugar levels over a prolonged period as result of an
insulin-deficient production or an inappropriate response to insulin by our cells. ,is chronic disease was the direct cause of 1.6
million deaths in 2016 as reported by theWorld Health Organization. Emodin is a natural product and active ingredient of various
Chinese herbs with the chemical formula 1,3,8-trihydroxy-6-methylanthraquinone. Diacerein is another naturally occurring
anthraquinone (1,8-diacetoxy-3-carboxyanthraquinone) commonly used as commercial drug to treat osteoarthritis. ,ese two
anthraquinone derivatives have been shown to exert antidiabetic activities. Emodin seems to enhance the glucose tolerance and
insulin sensibility via activation of PPARc and modulation of metabolic-related genes. Diacerein seems to decrease inflammatory
cytokines and increase insulin secretion enhancing insulin sensibility and therefore improving glucose control. Other naturally
occurring anthraquinone derivatives, such as catenarin (1,4,6,8-tetrahydroxy-3-methylanthraquinone), have been shown to have
antidiabetic activities although few studies have been performed. ,e synthesis of new emodin derivatives is increasing, but these
new molecules have not been tested for diabetes treatment. In the current work, available literature on anthraquinone derivatives’
effects in diabetes disease is reviewed. Moreover, we discuss the chemistry, food sources, bioavailability, and toxicity of the
naturally occurring anthraquinone with antidiabetic effects.

1. Introduction

,e prevalence of diabetes has increased rapidly and it is
expected to double within the next 20 years due to the
increased risk of age and obesity with significant rises in
cardiovascular disease [1]. ,is condition is produced by a

relative deficiency of insulin.,is means an impaired insulin
secretion through a dysfunction of the pancreatic β-cell and
an impaired insulin action through insulin resistance [2].
Oxidative stress has long been considered an important
factor driving obesity-related insulin resistance and subse-
quent diabetes. It is well known that obesity causes features
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of metabolic dysfunction in the adipose tissue.,ese include
reduced insulin-stimulated glucose transport and expression
of glucose transporter type 4 (GLUT4), altered expression of
adipokines, and adipocyte hypertrophy [3]. Several studies
have confirmed antidiabetic actions of natural products with
recognized anti-inflammatory activity [4].

Oxidative stress associated with diabetes is the conse-
quence of some abnormalities such as inflammation, insulin
resistance, dyslipidemia, and hyperglycemia [5]. It has been
demonstrated that high glucose levels caused an anion su-
peroxide overproduction by the mitochondrial electron
chain that affects many metabolic and signaling pathways
involved in diabetic complications [5]. ,e main key factors
implicated in the increase of reactive oxygen species (ROS)
production are mitochondrial respiratory chain, NAD(P)H
oxidases, defects in polyol pathway, and advanced glycation
end-products alterations on this polyol pathway. In addition,
deficiencies in the function of NAD(P)H oxidases are related
to a decrease in the glutathione reductase and glutathione
peroxidase system, altering the reduced/oxidized glutathi-
one ratio. Altogether, they can increase ROS production [5].
,is increase in the ROS levels could be directly associated
with the proinflammatory state observed in diabetic patients,
frequently due to the decrease in adiponectin levels which
have anti-inflammatory properties [6]. Both ROS and re-
active nitrogen species (RNS) could affect various intra-
cellular pathways such as transcription factors (nuclear
factor kappa beta (NF-κB), forkhead box O (FOXO), new
Ets-related factor (Nerf-2)), mitogen-activated kinases,
synthesis of various cytokines, among others [7–9]. High
levels of interleukin 6 (IL-6), IL-1β, and tumor necrosis
factor α (TNF-α) have been observed in diabetic patients
[10]. Many pieces of evidence indicate that high TNF-α and
IL-6 levels are related to health complications of diabetes,
such as renal dysfunction, retinopathy, and cardiovascular
disease [11–14]. Furthermore, it has been observed that high
TNF-α could decrease adiponectin expression and plasma
levels [6]. C-reactive protein (CRP) is another inflammatory
marker that increases in diabetes; indeed, CRP is considered
the best epidemiological marker of type 2 diabetes (T2DM)
associated with cardiovascular diseases nowadays [15].

Advanced glycoxidation and lipoxidation end-products
(AGEs and ALEs) are a heterogeneous group of compounds
also used as biomarkers related to oxidative stress [16] and
diabetic glomerular lesions [17].

Anthraquinones, also called anthracenediones or diox-
oanthracenes, are polycyclic aromatic hydrocarbons that
represent a class of the quinone family. ,e essential
structure 9,10-anthracenedione (C14H8O2), also called 9,10-
dioxoanthracene, is based on three benzene rings that in-
clude two ketone groups on the central ring (Figure 1(a))
[18]. ,e diversity of the anthraquinone derivatives relies on
the nature and the position of the substituents that replace
the hydrogen atoms on the basic structure such –OH, –CH3,
–OCH3, –CH2OH, –CHO, –COOH, or more complex
groups [18]. When n hydrogen atoms are replaced by hy-
droxyl groups, the molecule is called hydroxyanthraquinone
and their derivative structures absorb visible [18]. Naturally
occurring anthraquinones are a group of secondary

metabolites structurally related to the basic structure 9,10-
anthracenedione and their glycosides. So far, more than 80
naturally occurring anthraquinones have been identified and
isolated from lichens, fungi, or medicinal plants (e.g., Pol-
ygonaceae, Leguminosae, Rhamnaceae, Rubiaceae, Fabaceae,
and Xanthorrhoeaceae) [19–23]. Some of these include
emodin, diacerein, catenarin, physcion, cascarin, and rhein
(Figure 1).

,e biosynthetic pathway of naturally occurring an-
thraquinones is not fully elucidated yet; different biosyn-
thetic mechanisms are proposed as polyketide or shikimate
pathways [19, 24]. Anthraquinones are biosynthesized by the
cyclization of linear octa-β-ketoacyl CoA intermediates from
the addition of one acetyl-CoA to three malonyl-CoA or by
the addition of succinyl benzoic acid (C11H10O5), resulting
from shikimic acid (C7H10O5) and α-ketoglutaric acid
(C5H6O5), to mevalonic acid (C6H12O4) [19, 24]. ,e an-
thraquinones biosynthesized by the polyketide pathway
often exhibit substitutions in both rings A and C [24].

Anthraquinones are being studied since many plants and
herbal preparations containing them have been traditionally
used for different diseases [25, 26]. Among them, isolated
pure emodin or its metabolites are compounds that have
been described to possess a free radical scavenging activity
[27, 28] and an anti-inflammatory activity [29]. In fact,
emodin has been tested to investigate its implication in
diabetes. Some works have related the emodin activity to the
inhibition of different protein kinases activation [30], which
are triggered by environmental factors, such as oxidants and
inflammatory processes. Both activities may justify the use of
emodin for treating diabetes and diabetic complications, as it
has been done traditionally. However, doses and treatment
duration should be taken into account since hepatotoxicity
induced by emodin in cells, and animal models have been
described [31, 32].

2. Methods

,is review summarized available literature on emodin,
diacerein, catenarin and their potential effects on diabetes
treatment. Different databases (Cochrane, EMBASE, Google
Scholar, Medline, Pubmed, Science Direct, Web of Science)
were interrogated with the combined use of different key-
words, such as anthraquinone/s, diabetes, antidiabetic,
catenarin, clinical trial, diacerein, emodin, glucose, glycae-
mic control, human study/ies, hypoglycaemic, insulin sen-
sitivity, insulin resistance, mechanism of action.

3. Food Sources, Bioavailability, and
Toxicity of Anthraquinones

Biologically active anthraquinone derivatives have been
identified in bacteria, fungi, and insects. Food sources in-
cluded extracts of rhubarb, aloe or buckthorn, and other
herbal products such as roots, bark, or dried leaves of senna,
cascara, frangula [33]. Recently, Greco, Turrini, Catanzaro,
and Fimognari [34] reviewed the pharmacological and
toxicity of marine-derived anthraquinones. ,ese deriva-
tives are unwell absorbed from the gastrointestinal tract, but
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they are hewed by the gut bacteria to produce aglycones that
are simply absorbed and considered responsible for some
therapeutic related properties. ,erapeutic properties of
anthraquinones include laxative, anticancer, anti-inflam-
matory, antiarthritic, antifungal, antibacterial, and antiviral
[35]. More specifically, laxative properties have been used for
many centuries; this effect is caused by two independent
mechanisms, an accelerated motility colonic transit and
alterations in colonic absorption and secretion.,e effect on
secretion and absorption is principally induced by a direct
interaction between the laxatives and the epithelial cells,

while motility changes are caused indirectly by epithelial cell
damage that induces watery diarrhea [36]. Absorbed an-
thraquinones that enter into systemic circulation cause a
rapid depletion of extracellular potassium via gastrointes-
tinal routes leading to diarrhea [37]. Apart from these
beneficial effects, anthraquinones may produce potential
damage to cells because of the close similarity in structure
between the toxic analogue, anthracene [38]. ,e well-
known toxicity effects associated with quinone-containing
compounds are trouble for safe pharmaceutical use. Toxicity
has been related to redox cycling, mutagenic and genotoxic
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Figure 1: Structures of 9, 10-anthracenedione (a), emodin (b), diacerein (c), rhein (d), catenarin (e), physcion (f), and cascarin (g).
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effects; to sum, anthraquinone derivatives can produce a
ROS excess, forming complexes with iron that undergo a
redox cycling and oxygen radicals generation [39]. Other
pathway has been established related to the interaction in the
cell differentiation and the interference with DNA un-
winding/DNA strand separation and DNA helicase [40].
Shukla, Asthana, Gupta, Dwivedi, Tripathi, and Das [37]
reviewed the toxicity of plants containing anthraquinones
and suggested that these molecules have genotoxic potential
due to the presence of the quinone group that either have the
capacity to alter the redox system thereby disturbing mi-
tochondrial functions or by nucleophilic addition reactions
with biomolecules including DNA and protein.

4. Main Anthraquinones with
Therapeutic Properties

Among the numerous anthraquinones that nature produces,
this paragraph focuses on such compounds with known
therapeutic potential and that can have a clear role in
diabetes.

4.1. Emodin. Emodin (Figure 1(b)) is chemically known as
1,3,8-trihydroxy-6-methylanthraquinone (C15H10O5) and is
present in various Chinese medicinal herbs such as active
ingredient [4], including Rheum emodi, a Himalayan rhu-
barb [41], Rheum palmatum [42], Polygonum cuspidatum
[43], Polygonummultiflorum [44], Aloe vera [45], and Cassia
obtusifolia [46]. ,ese herbs have been used as traditional
medicines in many countries, especially in East Asia [32].
,is polyphenol has been demonstrated to possess a wide
spectrum of pharmacological effects, such as antidiabetic,
antiviral, antibacterial, antimicrobial, antiosteoporotic, im-
munosuppressive, neuroprotective, hepatoprotective, anti-
cancer, anti-inflammatory, antiatherosclerotic, antiallergic,
antiulcerogenic, cathartic, diuretic, laxative activities, DNA-
binding, and vasorelaxant activities [32, 41, 47–58].

It is reported that emodin is an AMP-activated protein
kinase (AMPK) activator with PPARc-agonist activity
[49, 59, 60]. AMPK is a serine/threonine kinase, activated by
an increase in the AMP/ATP ratio that regulates the whole
body and cellular homeostasis, mitochondrial biogenesis,
autophagy, and cell proliferation, and promotes the as-
sembly of adiponectin [49, 61]. Adiponectin is the main
adipokine secreted by adipose tissue and is associated with
the improvement of insulin resistance and glucose meta-
bolism regulation [62, 63]. Metformin and thiazolidine-
diones are antidiabetic drugs that indirectly trigger AMPK
by inhibition of ATP synthesis and consequently increase
AMP levels [64, 65]. It has been reported that AMPK boosts
GLUT1/4 levels and mediates glucose uptake [66–69].
Emodin regulates glucose utilization, enhancing GLUT4
translocation and [C-14] glucose uptake by activating
AMPK in skeletal muscle and liver cells [69]. Activation of
AMPK decreases PPARc expression [70, 71], a transcription
factor that plays an important role in adipocyte differenti-
ation [72]. Emodin activates PPARc and promotes adipo-
nectin expression and differentiation of 3T3-L1

preadipocytes [49, 73]. ,erefore, emodin, as an AMPK
activator and a PPARc-agonist, has both PPARc-inhibiting
and PPARc-activating activities, so that permits regulating
adiponectin expression in opposite ways [49]. ,is dual
activity makes emodin a key modulator and a potential drug
candidate for the treatment of type 2 diabetes. Furthermore,
emodin has been shown to ameliorate high-fat-diet-induced
insulin resistance by reducing lipid accumulation through
decreasing fatty acid transport protein 1 (FATP-1) in rat
skeletal muscle [74].

Moreover, emodin impacts on inflammation processes.
Emodin inhibited the release of TNFα from rat basophilic
leukemia (RBL-2H3) cells [75]. In LPS stimulated
RAW264.7 macrophage cells, emodin suppressed the
upregulation of ICAM-1, MCP-1, and TNFα and the
downregulation of PPARc [76, 77]. In Wistar rats, emodin
reduced corneal inflammation in LPS-induced keratitis due
to its capability of inhibition in NF-κB activation [78].
Emodin also exerted protective effects on lung injury in
septic rats since a reduction of oxidative stress and in-
flammation response during sepsis were observed [79].
Furthermore, emodin attenuated cigarette smoke induced
lung injury inmouse decreasing the associated inflammation
and oxidative damage [80]. ,erefore, emodin may affect
glucose metabolism due to its anti-inflammatory action and
not only through the effect on AMPK [73]. Emodin activated
AMPK, downregulated perilipin, and inhibited NF-κB and
extracellular signal-regulated kinase (ERK), thereby in-
creasing glycolysis and glucose metabolism and suppressing
lipolysis and inflammation [73].

Emodin is the most studied anthraquinone as a potential
therapeutic agent against diabetes and the associated
complications. However, the data available derive from cell
cultures and animal models, whereas clinical trials are still
lacking. Most of the animal studies have been performed
both in a rat model induced by a high-cholesterol diet plus
streptozotocin (STZ) injection that replicates the natural
evolution and metabolic characteristics of human type 2
diabetes and in C57BL/6J mice characterized by high sus-
ceptibility to diet-induced obesity. In a pioneer study, the
effects of emodin were investigated on renal dysfunction in
the STZ-induced diabetic rats with nephropathy [30].
Emodin treatment significantly ameliorated the renal dys-
function in diabetic nephropathy rats, reduced serum cre-
atinine and plasma urea nitrogen and proteinuria, but
evidenced a weak action on blood glucose levels. Similarly, in
another study, the effects of emodin were explored on the
podocyte apoptosis in diabetic nephropathy [81]. ,e ex-
pression of phosphorylated protein kinase RNA-like en-
doplasmic reticulum kinase (P-PERK), phosphorylated
eukaryotic initiation factor 2α (eIF2α), activating tran-
scription factor 4, CCAAT-enhancer-binding protein ho-
mologous protein (CHOP), implicated in apoptosis pathway
and endoplasmic reticulum (ER) stress response, were de-
creased. In a recent study, emodin reduced proteinuria and
alleviated renal fibrosis without affecting hyperglycemia in
STZ-induced diabetic nephropathy rats [82]. ,e mecha-
nisms involved in emodin renoprotective effects suggested
by the authors were the suppression of cell apoptosis and an
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increase of autophagy of podocytes via the AMPK/mTOR
signaling pathway in the kidney.

,e expression of phosphorylated p38mitogen-activated
protein kinase (p38 MAPK), cAMP response element-
binding protein (CREB), and the downstream target gene
fibronectin was downregulated by emodin when compared
with the diabetic group. p38 MAPK is a key factor in the
MAPK signaling pathway associated with diabetic ne-
phropathy and its inhibition could prevent the development
of diabetic nephropathy [83, 84]. Moreover, emodin also
reduced proteinuria and fibronectin expression in early-
stage of STZ-induced diabetic rats [85]. In another study,
emodin administration for two weeks to dyslipidaemic-di-
abetic STZ rats resulted in a dose-dependent reduction of
blood glucose, total cholesterol, triglycerides, free fatty acids,
and malondialdehyde and increased plasma superoxide
dismutase activity [86]. ,e authors indicated that the
protective effects of emodin were possibly mediated by the
upregulation of L-type calcium channels in the pancreas and
heart. Similar results in plasma biochemical parameters were
also obtained when emodin was tested against a high-fat diet
and low dose of STZ-induced diabetic mice [58]. In this
study, glucose tolerance and insulin sensitivity were also
improved in the emodin group. ,e results seem to be
mediated, at least in part, through the activation of per-
oxisomal proliferator-activated receptor-c (PPARc) and the
modulation of its downstream metabolism-related genes. In
addition to the beneficial effects of emodin on blood glucose
levels and lipid profile, this compound also exerted pro-
tection against diabetic cardiomyopathy in the same rat
model [87]. In this way, type 2 diabetes and cardiovascular
complications are closely related to an impaired serine/
threonine kinase (Akt)/glycogen synthase kinase 3 beta
(GSK-3β) pathway. In this study, the animals treated with
emodin evidenced an improvement in diabetes-induced
systolic dysfunction probably associated with a significant
increase in phosphorylation of Akt and GSK-3β. ,e anti-
diabetic and alpha-glucosidase inhibitory action of diverse
1,8-ihydroxyanthraquinones, like rhein, aloe emodin, em-
odin, chrysophanol from Rheum emodi were evaluated [88].
All anthraquinones tested showed good antihyperglycemic
activity, with aloe emodin exhibiting maximum effects. On
the contrary, only emodin exhibited potent intestinal alpha-
glucosidase inhibition showing a mixed-type inhibition,
which could be of great interest in preventing postprandial
glucose spikes. ,e same results were reported more re-
cently, whereas emodin induced the highest α-glucosidase
and α-amylase inhibitory activities in Wistar rats sera [89].
Emodin treatment of fat C57BL/6 mice reduced body weight
gain, improved lipid profile, ameliorated insulin sensitivity,
and reduced the size of adipocytes [90].

In addition, emodin reduced the mRNA levels of the
sterol regulatory element-binding proteins (SREBP),
SREBP-1, and SREBP-2, which are involved in the bio-
synthesis of cholesterol in the liver and adipose tissues, fatty
acid, and triglyceride in mammals and also inhibit SREBP
transactivity in Huh7 (human hepatoma) cell line [90].

It is known that 11β-hydroxysteroid dehydrogenase
(11β-HSD) 1 enhances local glucocorticoid action by

converting cortisone into cortisol in humans, and 11-
dehydrocorticosterone into corticosterone in rodents [91].
11β-HSD1 also plays a role in the development of obesity,
insulin resistance, and type 2 diabetes [92]. In an in vitro
assay, emodin showed a potent and selective inhibitory
activity against 11β-HSD1 [93]. Emodin treatment reversed
prednisone-induced insulin resistance in C57BL/6J mice,
improved insulin sensitivity and lipid metabolism, lowered
blood glucose, and hepatic phosphoenolpyruvate carbox-
ykinase (PEPCK), and glucose-6-phosphatase gene expres-
sion. In another study, the inhibition of 11β-HSD1 reduced
LPS-induced proinflammatory innate immune in 3T3-L1
adipocytes by downregulating phosphatase and tensin ho-
molog (PTEN) expression, leading to activation of the
phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(PKB) pathway which inhibits inflammation [94, 95]. ,ese
effects are in association with an attenuation of the ratio of
phosphorylated inhibitor of κB α (p-IκBα)/IκBα and a de-
crease of NF-κB subunit p50. Emodin treatment of STZ
diabetic rats on a high-fat diet also reduced levels of IL-6,
PTEN, Cluster of Differentiation 68 (CD68), and the ratio of
p-Iκβα to Iκβα in visceral fat [95].

Different studies investigated the in vitro effects of
emodin in multiple cell models. In a first approach, the
effects of emodin on adiponectin expression and multi-
merization were investigated in 3T3-L1 adipocytes and in
human embryonic kidney 293T cells. ,e results evidenced
that emodin activated AMPK in both cell types and pro-
moted the assembly of adiponectin in 3T3-L1 adipocytes. In
addition, emodin activated PPARc, thus promoting the
differentiation of preadipocytes and the expression of adi-
ponectin. ,e authors suggested that observed effects on
adiponectin were the final effects resulting from both AMPK
activation and PPARc activation. Another study investigated
the capability of emodin-6-O-β-D-glucoside to protect
against the vascular inflammatory process, which is directly
associated with various diabetic complications induced by
high glucose in primary human umbilical vein endothelial
cells (HUVECs) and in mice [96]. ,e acute treatment with
emodin-6-O-β-D-glucoside significantly reduced vascular
permeability, monocyte adhesion, expression of cell adhe-
sion molecules (VCAM-1, ICAM-1, and E-selectin), for-
mation of ROS, and activation of NF-κB, which were
induced by high glucose concentration. Using the same
endothelial cell model, the beneficial effects of emodin were
evaluated in cytotoxicity tests induced by high glucose.
HUVECs cells evidenced significant damage, which was
prevented coculture with emodin [97]. ,e protective effects
of emodin might be related to the inhibition of Chemokine
C-Cmotif ligand 5 (CCL5) expression and reduced adhesion
of monocytes to HUVECs. Emodin also suppressed acti-
vation of p38 MAPK and ERK1/2 due to high glucose levels.
,e same research group reported that hyperglycemia could
induce proliferation and decreased apoptosis of mesangial
cells leading to renal dysfunction by upregulating cellular
FLICE-inhibitory protein (cFLIP) [85]. Emodin treatment
normalized this alteration via inhibiting cFLIP in rat glo-
merular mesangial cells C line (HBZY-1) which, in turn,
promoted apoptosis and repressed proliferation. Aldose
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reductase is a member of the aldo-keto reductase super-
family that catalyzes the reduction of glucose to its sugar
alcohol sorbitol, playing an important role in the patho-
genesis of diabetic cataracts [98]. Emodin has been reported
to exert good selective inhibitory activity against aldose
reductase both in in vitro and in transgenic mice suggesting a
potential therapeutic in the prevention of cataracts in dia-
betic patients [99]. Furthermore, emodin can also impact
diabetic retinopathy and cataract through inhibition of
retinal neovascularization via modulation of HIF-1α/VEGF
signaling pathway and through decreasing expressions of
VEGFA, HIF-1α, and PHD-2 [81].

Another point to consider is the potential therapeutic
effects of emodin in autoimmune diabetes (type I diabetes)
associated with its anti-inflammatory effects. Inflammation
is involved in insulitis and β-cell destruction in type I di-
abetes [19]. It has been reported the emodin could suppress
the C-X-C chemokine receptor type 4 (CXCR4) chemotactic
activity of leukocytes towards pancreatic islets at the insulitis
stage of autoimmune diabetes development [100,101]. ,is
suppression has been evidenced both in in vitro and in
animal models and involved emodin-mediated inhibition of
MAPK pathways. In addition, emodin could enhance HIF-
1α and GSK-3β levels in rats with severe acute pancreatitis
(SAP), suggesting its protective role in such conditions [102].
,e same experimental model (SAP) was used to describe
the decrease of serum amylase and related inflammatory
cytokines (TNF-α and IL-6) thanks to the inhibition of JNK
and p38 MAPK phosphorylation in the animal pancreas
[103]. ,e authors reported that such biomolecular effects of
emodin were partially due to the blockade of ER stress
transducers IRE1α and its downstream molecules. More-
over, emodin could induce apoptosis of inflammation-
related lymphocytes and could diminish the expression of
pre-B-cell colony-enhancing factor (PBEF) in rat peripheral
blood PMNs. PBEF is a key factor for inflammation and
oxidative stress, influencing neutrophil infiltration and al-
veolar permeability [103].

4.2. Diacerein. Diacerein (Figure 1(c)) is another naturally
occurring anthraquinone with the chemical formula 1,8-
diacetoxy-3-carboxylanthraquinone (C19H12O8). ,is mol-
ecule is a symptomatic slow-acting drug in osteoarthritis,
and its active metabolite is rhein (1,8-dihydroxy-3-carbox-
ylanthraquinone, C15H8O6, Figure 1(d)) [19, 104]. As
diacerein shows poor aqueous solubility and partial bio-
availability, recently, a tentative to improve its pharmaco-
logical properties has been reported [105]. A specific
preparation of solid dispersion systems for enhanced dis-
solution of diacerein has been tested in healthy adults and
geriatrics, reporting bioavailability enhancement of the
optimized solid dispersion of diacerein. Similarly, other
studies have pursued the same aim, the improvement of
diacerein solubility and bioavailability [106–110].

As diacerein is well known for its antiosteoarthritis ef-
fects, numerous works analyzed its functions in preclinical
and clinical settings. For a comprehensive review on such
effects, the reader can refer to two recent works that analyzed

extensively the antiosteoarthritis properties of diacerein
[111, 112]. Nonetheless, a very recent clinical trial compared
diacerein to celecoxib in patients affected by knee osteo-
arthritis [113]. ,e study reported that more than 350
subjects were randomly treated with diacerein and celecoxib
for 6 months. Measured outcomes showed no significant
difference between treatment groups, with diacerein being
statistically comparable to celecoxib in knee osteoarthritis
treatment.,e polyphenol had a good safety profile, even if a
rare adverse effect was diarrhea (10.2% vs. 3.7% for
celecoxib).

,e principal mechanism of action of diacerein is to
decrease inflammatory cytokines via inhibition of inter-
leukin-1β (IL-1β) system and related downstream signaling
[114]. Moreover, diacerein has revealed other properties
such anticatabolic and proanabolic effects on cartilage and
synovial membrane [115]. Diacerein induced the activation
of IL-1β via reduced production of IL-1 converting enzyme
[116], in addition to affecting the sensibility to IL-1 by
decreasing IL-1 receptor [117], and by indirectly increasing
IL-1 receptor antagonist production [118, 119]. ,erefore,
diacerein decreased cytokine concentrations, in particular
IL-1β and TNFα [120–122], both of them involved in
pancreatic β-cell apoptosis and in failure of insulin secretion
[122–124]. Different studies have related an improvement in
pancreatic β-cell function and insulin secretion with several
pharmacological interventions such as anakinra [125], eta-
nercept [126], nonsteroidal anti-inflammatory drugs [127],
or thiazolidinediones [128]. As a result, diacerein has po-
tential usefulness for the treatment of type 2 diabetes, given
the inhibiting effects on IL-1β and TNFα [122] and the
improvement of the hepatic glucose metabolism [129].
Consequently, diacerein has been successfully used to treat
autoimmune diabetes in nonobese diabetic mice similar to
its active metabolite rhein [100].

Diacerein has been showed to alleviate pain in patients
with osteoarthritis and joint pain. Moreover, it has been
studied in in vitro and in vivo experimental models. For
example, it exhibited a high inhibitory activity on N-acy-
lethanolamine-hydrolyzing acid amidase (NAAA), a com-
pound implicated in pronociceptive effects through
inhibition of palmitoylethanolamide (PEA), demonstrating
an analgesic effect [130]. ,e polyphenol was able to block
glutamatergic transmission through both ionotropic and
metabotropic receptors (antinociceptive effect), together
with a reduction of IL-1β and TNF-α [131]. Further, diac-
erein showed antiedematogenic and chondroprotective ef-
fects (in addition to antinociceptive), reducing
metalloproteinase (MMP)-9 and transient receptor potential
vanilloid 1 (TRPV1) expression in the spinal cord of rats, in
addition to astroglial inhibition [132].

Diacerein has been studied in diabetes preclinical
models. ,e first study related to diabetes and diacerein was
performed in nonobese diabetic mice (high similarity with
human type 1 diabetes mellitus) [121]. ,e suffered damage
of the β-cells has been related to augmented levels of
proinflammatory cytokines [133]. In that work, several doses
were used to test diacerein (5, 10, and 50mg/kg/day i.p.
during 24 weeks, n� 30/group) in serum samples. A 40%
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reduction in the incidence of diabetes was observed after the
treatment with the medium dose (10mg/kg/day). Also, a
reduction of the proinflammatory cytokines (IL-1β, IL-12,
TNF-α) in serum was observed in diabetic animals when
compared with the control group. However, an increase in
cytokine genes expression in pancreatic cells was observed in
nondiabetic mice (no data is available for diabetic animals).
Consequently, the authors suggested that diacerein might
induce a posttranscriptional or a posttranslational down-
regulation of cytokines in these animals. In another study,
mice fed with a high-fat diet were used as an animal model of
type 2 diabetes mellitus in which insulin resistance was the
mainmetabolic disturbance [129, 134]. TNF- α, IL-6, and IL-
1β mRNA expressions in several tissues (liver, muscle, and
adipose tissue) and inflammatory cytokines (IL-6 and TNF-
α) in serum were diminished in animals who received the
high-fat diet and diacerein during 10 days (20mg/kg/day)
when compared with the ones that did not receive diacerein
and reaching values similar to controls (animal with a
standard diet). ,ey described an improvement in glucose
tolerance and a decrease in macrophage infiltration in ad-
ipocytes. In addition, similar results were found when au-
thors studied the phosphorylation status of PKR-like ER
kinase (PERK) [134], an indicator of ER stress since it was
previously related to the inflammation process [135].

While different clinical trials have been performed until
now on diacerein and diabetes, our review only discusses two
very recent meta-analyses that deeply analyzed the effects of
diacerein in humans. ,e first meta-analysis proposed by Guo
and collaborators studied diacerein supplementation in T2DM
patients in randomized controlled trials (RCTs). FBG, HbA1c,
body mass index (BMI), C-reactive protein (CRP) were sig-
nificantly improved in the treatment group. However, the
number of works included (5) and the number of subjects (278)
were relatively small, and the authors suggested the more
consistent population studies were necessary to better validate
such data [136]. Another meta-analysis reported different re-
sults for FBG that was not modified by diacerein treatment
[137]. However, HbA1c and BMI were ameliorated as in the
previous meta-analysis. ,ese apparently conflicting results can
be imputable to the different works analyzed and thus to the
number of patients. Nonetheless, both the works came to the
same conclusions: diacerein could provide a substantial con-
tribution to T2DM,with better glycaemic control and a reduced
body weight. ,e supplementation of this polyphenol could
represent an effective therapeutic tool if wide RCTs will confirm
these data.

In relation to glycaemic control, diacerein can impact 3
target organs: adipose tissue, liver, and skeletal muscle. In
the adipose tissue, the polyphenol reduces ER stress,
proinflammatory cytokines, protein-tyrosine phosphatase
1B (PTP1B) while increasing phosphorylated Akt and in-
sulin receptor substrate 1 (IRS-1). In the liver, a drop of
inflammatory status and PTP1B was reported, with aug-
mentation of glucose uptake. In the skeletal muscle, in-
flammatory status, ER stress, PTP1B, gluconeogenesis,
fasting plasma glucose, and fatty acid oxidation were
decremented, while phosphorylated Akt and IRS-1 were
amplified.

4.3. Catenarin. Another interesting naturally occurring
anthraquinone derivative is catenarin (Figure 1(e)) with
chemical formula 1,4,6,8-tetrahydroxy-3-methylan-
thraquinone (C15H10O6). Catenarin presents higher anti-
chemotactic activity than other anthraquinones for the
number and position of hydroxyl groups in the anthra-
quinone structure [19, 100]. ,is compound prevents type 1
diabetes in nonobese diabetic mice via inhibition of leu-
kocyte migration mediated by CCR5 and CXCR4 via the
inactivation of MAPKs (p38 and JNK), MKKs (MKK6 and
MKK7), and calcium mobilization [19, 100]. At the auto-
immune diabetes onset in patients and animal models,
leukocytes infiltrate into the pancreatic islets, a condition
termed insulitis [47, 138]. ,is invasion is mediated mainly
by T and B lymphocytes, dendritic cells, macrophages, and
natural killers cells and contributes to a gradual loss of
pancreatic β-cells, thus leading to an insulin deficiency or
insufficiency and afterward hyperglycemia [139]. Catenarin
and derivatives can suppress diabetes via inhibition of
leukocyte infiltration and consequently insulitis [19, 100].
Cascarin (emodin-6-O-rhamnoside, C21H20O9, Figure 1(g))
and physcion (emodin 3-methyl eter, C16H12O5, Figure 1(f ))
are other anthraquinones which suppress the chemotactic
activity of leukocytes at the insulitis stage during autoim-
mune diabetes development [100]. Emodin and physcion
display kinase and tyrosinase inhibition activity [140, 141],
also showing anticancer properties [52, 142].

,e position of the hydroxyl group seems fundamental
for the antichemotactic activity of anthraquinones. Cate-
narin has four hydroxyl groups, two of them at R4 and R6 in
its anthraquinone ring; emodin has three hydroxyl groups,
one of them at R6; cascarin, rhein, and physcion have two
hydroxyl groups but any of them at R4 and R6; and diacerein
has no hydroxyl group. Of these compounds, catenarin has
the highest antichemotactic activity, followed by emodin,
cascarin, and rhein [100, 101]. ,e presence of the hydroxyl
at R4 and R6 in anthraquinones seems to be related to
antichemotactic activity [19, 100, 101].

Up to now, only one study has been published focusing
on the mechanisms and pathways in which catenarin acts in
a mice diabetes model [100]. ,e authors observed that this
anthraquinone (4, 20, and 40mg/kg i.p., 3 times/week,
during 26 weeks) prevented type 1 diabetes in nonobese
diabetic mice in a dose-dependent manner. ,e authors
reported a reduction of blood glucose and HbA1c levels after
the 26 weeks of treatment when compared to the control
group. Likewise, leukocyte migration typical in this type of
diabetes was suppressed by catenarin via inhibition of the
chemokine receptors CXCR4 and CCR5 in T cells.

5. Conclusions and Future Perspectives

Diabetes is a complex condition in which high glucose levels
occur since the body does not use it properly or is incorrectly
synthesized. Several treatments have been attempted in the
last decades, but natural products could reserve a wide
source of novel molecules to counteract this disease.
According to the last piece of evidences on anthraquinones,
emodin seems the most prosing since its anti-inflammatory
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and antioxidant activities could ameliorate or reduce the
diabetic symptoms and control the related cytokines path-
ways. Although the synthesis of new emodin derivatives has
been increasing in the last years, a lack of preclinical studies
testing these derivatives related to the diabetic condition is
still scarce. In conclusion, the antidiabetic effects of emodin,
diacerein, and catenarin need to be rapidly and thoroughly
studied in future clinical trials to assess their benefits on
diabetic patients.
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