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Abstract

Short tandem repeats (STRs) are highly variable elements that play a pivotal role in multiple 

genetic diseases, population genetics applications, and forensic casework. However, STRs have 

proven problematic to genotype from high-throughput sequencing data. Here, we describe 

HipSTR, a novel haplotype-based method for robustly genotyping and phasing STRs from 

Illumina sequencing data and report a genome-wide analysis and validation of de novo STR 

mutations.

Main Text

The impact of genomics is contingent upon its ability to identify genetic variants. While 

tremendous progress has been made in identifying nearly every type of genetic variation, 
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short tandem repeat (STR) variations remain largely understudied. Composed of repeating 

1–6 base pair motifs, STRs are among the most polymorphic variants in the human genome 

and are present at over 1 million loci. STRs play a key etiological role in more than 30 

Mendelian disorders1 and recent evidence has underscored their profound regulatory role 

and potential involvement in complex traits2–4. Beyond medical genetics, STRs have 

applications in population genetics, forensics, and single cell lineage analysis. While several 

STR callers exist5, 6, they suffer from limited accuracy, difficulties in calling homopolymer 

runs, sensitivity to PCR stutter noise, and limited functionality compared to SNP callers. As 

a result, large-scale projects7–9 are reluctant to report STR genotypes and are essentially 

blind to many of the most variable parts of the genome.

Here, we developed a novel algorithm called HipSTR (Haplotype inference and phasing for 

STRs) to create a mature tool for STR studies. HipSTR builds on our extensive experience 

with STR genotyping5, addresses major limitations of existing STR tools, and is designed 

for Illumina reads (Supplementary Fig. 1). Briefly, HipSTR begins by learning a parametric 

model that captures each STR’s stutter noise profile. Using the genomic location of the 

repeat, it then harnesses this profile and a hidden Markov model (HMM) to realign the STR-

containing reads to candidate haplotypes and mitigate the effects of PCR stutter 

(Supplementary Fig. 2). The realignment framework is highly flexible and can integrate 

population-scale data from other individuals and phased SNP scaffolds to determine the 

most likely alleles, conferring robustness to the genotyping process (Supplementary Figs. 3–

4). The output of HipSTR is a VCF file that consolidates all of an STR’s variants into a 

single line.

We benchmarked HipSTR’s accuracy by comparing its STR calls from whole genome 

sequencing (WGS) data to capillary electrophoresis data, the current gold standard for STR 

genotyping. To this end, we obtained 263 WGS datasets from the Simons Genome Diversity 

Project (SGDP)10 that were sequenced with an Illumina 100bp paired-end PCR-free 

protocol to at least 30× coverage. A subset of these samples also have capillary 

electrophoresis calls for 600 highly polymorphic STRs from the Marshfield panel11, 

providing a challenging test case for STR callers. The capillary calls for a few duplicated 

samples showed an internal consistency of ~98.5%, setting an upper bound on the accuracy 

achievable in our tests. For comparison, we also genotyped the same STRs with two STR-

specific tools: lobSTR5 and RepeatSeq6. We optimized command line options to boost the 

accuracy of each tool and developed a machine learning approach to rank each tool’s calls 

by quality (Supplementary Tables 1–2). Under all settings, HipSTR outperformed these 

tools. HipSTR achieved an overall accuracy of 95.2%, while lobSTR and RepeatSeq 

achieved overall accuracies of 88.2% and 57.8%, respectively (Figure 1; Supplementary Fig. 

5; Supplementary Table 3). After filtering the 10% least confident genotypes, HipSTR again 

exhibited superior performance and its accuracy improved to 98.9%, saturating the capillary 

data’s limit.

Using the same benchmarking framework, we compared HipSTR to five widely used variant 

callers: GATK HaplotypeCaller (GATK-HC)12, Platypus13, freebayes14, SAMtools15 and 

VarScan16 (Figure 1; Supplementary Fig. 5; Supplementary Table 3). Variant callers that 

require reliable input alignments (SAMtools and VarScan) were the least accurate, 
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highlighting the challenges posed by repetitive regions. Local assembly-based approaches 

demonstrated improved accuracy, but HipSTR outperformed these tools under all relevant 

scenarios. GATK-HC was consistently the second best tool, but it required 4.4x more 

computation time than HipSTR and only achieved comparable accuracy after filtering a 

majority of calls. Analyses of downsampled data from the SGDP indicated that HipSTR also 

consistently outperformed GATK-HC across a wide range of sequencing coverage 

(Supplementary Fig. 6).

To explore the performance of HipSTR with longer Illumina reads, we performed 2×300bp 

targeted MiSeq sequencing of a panel of long forensic STRs in a single individual from our 

lab collection. The resulting HipSTR calls perfectly matched the capillary results even for 

markers with alleles longer than 100bp (Supplementary Table 4), demonstrating that it has 

no intrinsic limitations in calling STRs other than Illumina read lengths.

Next, we evaluated the ability of HipSTR to report not only length polymorphisms but also 

full STR haplotypes. About half of the STRs in the genome display a repeat structure that 

includes short interruptions to the recurrent motif17. Thus, two STR alleles with identical 

lengths can differ in sequence due to distinct evolutionary paths18 (Supplementary Fig. 7). 

Current STR callers and capillary electrophoresis methods only report an STR’s length and 

cannot differentiate between homoplastic alleles. Similarly, general-purpose tools typically 

report multiple unphased variants per STR, limiting the utility of these calls (Supplementary 

Table 5). As HipSTR reports fully phased diploid STR sequences, we sought to test its 

accuracy using the CEPH trio in the Illumina Platinum genomes dataset. For ~70,700 STR 

loci that passed our filters, at least two alleles had identical lengths but different sequences. 

Only 304 of these loci (0.4%) were inconsistent with Mendelian inheritance, highlighting 

the robustness of the reported sequence variations. Next, for the same trio, we measured the 

ability of HipSTR to physically phase the Marshfield STR genotypes onto SNP haplotypes. 

For 178 loci where the algorithm confidently phased the child, we were also able to 

determine the transmitted paternal and maternal STR alleles. In all 178 instances, HipSTR 

correctly phased the paternal STR allele onto the paternal SNP scaffold. Taken together, our 

results highlight that HipSTR not only accurately reports length polymorphisms but also 

adds valuable information about the sequence and haplotype context of STR variants.

We found that HipSTR is scalable and apt to the analysis of large-scale sequencing data. We 

ran HipSTR on 2,000 Illumina whole genome sequencing datasets with at least 30× 

coverage available at the New York Genome Center. Using HipSTR to genotype 1.6 million 

STRs in the human genome only required an average of 10 CPU hours per sample. For each 

genome, HipSTR reported an average of ~360,000 STR loci that differed from the human 

reference.

Encouraged by the accuracy and scalability of HipSTR, we wondered about its ability to 

identity de novo STR mutations (Supplementary Fig. 8). After genotyping ~1.6 million 

STRs in the CEPH trio, HipSTR identified ~745,000 loci with at least one length variation. 

To enhance the specificity of our analysis, we applied stringent quality filters and restricted 

our analysis to ~265,000 STRs. Across these loci, HipSTR identified 423 de novo STR 

variants in which the child possessed an allele length not observed in the parental genotypes. 
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To validate these mutations, we re-ran HipSTR on distinct Illumina datasets generated for 

these samples and compared the variants between runs. Notably, 358 (85%) of the mutations 

replicated as all samples’ allele lengths matched perfectly. These de novo mutations 

predominantly occurred at homopolymer repeats (293/358=81%). To further validate our 

results, we used Sanger sequencing to genotype a subset of these loci. We TOPO cloned the 

STR alleles from each member of the trio and sequenced at least eight independent clones 

per individual, yielding high confidence Sanger calls for four STRs (Figure 2, 

Supplementary Figs. 9–12). In all cases, the Sanger calls confirmed the parental genotypes 

and the de novo allele reported by HipSTR, validating our method.

Finally, we sought to distinguish de novo STR variants that arose in the germline of the child 

(NA12878) from mutations that arose during cell-line passages of this sample. We used 

HipSTR to analyze the WGS data of her 11 offspring at the 358 STRs with a replicable 

mutation. For 31 loci, the de novo allele was transmitted to at least three offspring and was 

absent from the paternal genotype. For an additional 32 loci, the de novo allele was observed 

in at least three of her offspring, but the husband carried the same allele and the transmission 

could not be fully resolved. As we identified these 31 transmitted mutations by examining 

only ~35% of NA12878’s STRs, the load of de novo STR mutations may rival the 

approximately 70 de novo SNP mutations expected per generation7, 19. However, we cannot 

exclude the possibility that some of these detected mutations are actually due to cell-line 

mutations in NA12878’s parents. Future studies using patient-derived DNA samples will 

therefore be invaluable towards assessing the true contribution of STRs to de novo variation.

To summarize, our results show that HipSTR offers several advantages for STR calling. 

First, the technique is considerably more accurate than other variant callers and has 

exceptional computational tractability. Second, HipSTR offers new capabilities such as 

phasing, haplotyping, and reporting full STR sequences, important features for population 

genetic analyses, forensic work, and STR association studies. Finally, our method enables 

highly specific detection of de novo STR mutations. As HipSTR is limited to Illumina 

sequencing data, future efforts may benefit from adapting it to linked reads or longer reads 

from platforms such as PacBio and Oxford Nanopore. It is our hope that these efforts, in 

addition to applying HipSTR to increasingly rich Illumina datasets, will help unravel the role 

of STRs in human diseases and complex traits.

Online Methods

The HipSTR algorithm

Modeling PCR stutter—PCR stutter artifacts add or remove copies of an STR’s motif to 

sequencing reads, resulting in observed STR sizes that differ from the true underlying 

genotype. To mitigate these effects, we used a model that we developed and extensively 

validated in our previous work to discern between stutter noise and STR mutations on the Y 

chromosome20. HipSTR constructs a stutter model θx for each STR locus x, which contains 

the probability that stutter adds (u ) or removes (d ) repeats from the true allele in an 

observed read, and a geometric distribution with parameter ρs that controls the size of the 

stutter-induced changes. In our framework, the probability of observing a stutter artifact of δ 
repeat units is:
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To estimate each locus’ stutter model parameters, we extract the size of the STR observed in 

each read for all individuals in the population. We then use an Expectation-Maximization21 

approach to learn the parameters. The E-step computes each sample’s genotype posteriors:

Here, R denotes the set of all reads, gi denotes the phased genotype for the ith individual, 

nreads,i denotes the number of reads for the ith individual, rm,i denotes the number of repeats 

in the mth read for the ith individual, ra denotes the number of repeats in the ath allele and fj 

denotes the frequency of the jth allele. For each possible phased genotype, the E-step also 

computes the conditional probability that each read originated from either allele:

Given N samples, A alleles and Q reads, the M-step then updates the stutter model 

parameters and allele frequencies using these probabilities:

Intuitively, the update rules for the stutter probabilities u and d compute the fraction of times 

a read’s STR allele is either larger or smaller than its underlying allele. The update rule for 

the step size parameter ρs is more involved, but it first restricts the computation to reads with 

non-zero stutter. It then computes the inverse of the mean weighted step size, consistent with 

a maximum likelihood estimator for a geometric distribution.

Generating candidate alleles—To identify an initial set of STR alleles, HipSTR selects 

reads that fully span the STR. It requires that both ends of a read match the reference 

genome for at least 10bp and that neither end of the read has a longer exact match with the 

reference genome 15bp upstream or downstream from its alignment. Based on this subset of 
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reads, HipSTR includes a sequence as a candidate allele if it is present in two or more and at 

least 20% of a sample’s reads.

HipSTR also uses an iterative approach to identify new candidate alleles. At the end of every 

round of genotyping, it computes the maximum-likelihood genotype for each sample and 

realigns every read relative to the most probable allele in its sample’s genotype. Each of 

these alignments generates a sequence in the STR region. If the same sequence is observed 

in a sample in two or more alignments with stutter artifacts, HipSTR selects the sequence as 

a new candidate allele.

Computing genotype likelihoods—The genotype likelihood model integrates 

information about every read’s phasing likelihood and alignment likelihood. For the mth read 

for individual i, P(pm,i|h = 1) and P(pm,i|h = 2) denote the phasing likelihoods of the read 

originating from the first and second SNP haplotypes, while P(sm,i|a = j) denotes the 

alignment likelihood of the read to the jth allele. We use a uniform prior for each unphased 

genotype, such that heterozygous phased genotypes have half the prior probability of their 

homozygous counterparts. The likelihoods for the ith sample’s phased genotypes are:

Read phasing likelihoods—To compute the phasing likelihoods for each read, HipSTR 

examines bases in the read or its mate pair that are aligned to heterozygous SNPs with 

known phase. If the read originated from a haplotype, the likelihood of the base bi matching 

the SNP base hj is given by the base quality qbi while the likelihood of it not matching is one 

third of the residual probability. We express this as:

We compute each read’s total phasing likelihood by multiplying Q(bi, hj) for every base bi in 

the read or its mate pair that is aligned to a heterozygous haplotype SNP hj. In practice, SNP 

calls in and around STR regions are likely to be error-prone. We therefore exclude SNPs that 

are within 15 base pairs of the STR region when computing the phasing likelihoods. If no 

phased SNP information is available, HipSTR assigns equal phasing likelihoods to both of 

the strands.

Read alignment likelihoods—HipSTR assumes that each haplotype is composed of two 

distinct types of regions: flanking sequences and STR sequences (Supplementary Figure 1). 

As the sources of error prevalent in these two types of regions differ dramatically, HipSTR 

uses distinct models to align sequences to each type of region (Supplementary Figure 2). It 

then combines the likelihoods from these two different models at the junctions of these 
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regions by requiring that the read match the flanking sequence at the first base preceding the 

STR sequence and at the first base following an STR sequence.

Aligning reads to flanking sequences—In flanking sequences, the alignment model 

accounts for Illumina sequencing errors using a previously described hidden Markov 

model22. To efficiently align reads in these regions, we use three matrices to recursively 

compute the maximum log-likelihood of aligning read bases b1 … bi with haplotype bases 

h1 … hj. The matrices Match and Ins are used to track the log-likelihoods that read base bi is 

aligned to haplotype base hj or an insertion following haplotype base hj, respectively. Matrix 

Del tracks the maximum log-likelihood that base bi is followed by one or more deletions. In 

conjunction with values for tX → Y, the log-probability of transitioning from hidden state X 
to hidden state Y, we use the following recursions to fill in each matrix column-by-column:

Aligning reads to STR sequences—In STR regions, HipSTR utilizes an alignment 

model that accounts for STR-specific errors. As PCR stutter artifacts are prevalent in this 

domain, it assumes that a read’s sequence differs from the underlying haplotype by at most 

one indel whose magnitude D is a multiple of the repeat unit length M. If no stutter artifact 

has occurred, the likelihood of the observed sequence is governed by the agreement between 

each base in the read and its corresponding haplotype base. The probability of no stutter 

artifact and aligning base bi and its preceding bases to an STR sequence h1 … hL of length L 
is:

If a stutter deletion occurs, we assume that it can arise anywhere within the STR region. We 

iterate over these configurations, each of which has a likelihood given by the agreement 

between the sequenced bases and their corresponding haplotype bases:
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Finally, if a stutter insertion occurs, we assume that it can precede any base in the STR 

region. As PCR stutter insertions typically contain sequences that copy the local repeat 

structure, we assume that inserted sequences are periodic copies of the STR sequence 

directly preceding the insertion. We therefore measure the likelihood of inserted bases 

according to their agreement with this sequence. Iterating over each possible insertion 

position results in the likelihood:

Experiments

Constructing a gold standard STR dataset—We downloaded capillary genotypes for 

628 STRs in the Marshfield panel from https://web.stanford.edu/group/rosenberglab/data/

rosenbergEtAl2005/combinedmicrosats-1048.stru and other information from https://

web.stanford.edu/group/rosenberglab/data/pembertonEtAl2009/

Pemberton_AdditionalFile1_11242009.txt. Using the is PCR23 tool, we mapped each STR’s 

primers to the hg19 reference genome. We then used Tandem Repeats Finder24 to scan 

between the primer sites and identified the genomic coordinates of each STR based on the 

published repeat structure.

Capillary STR genotypes report the lengths of amplified DNA fragments containing the STR 

region. These lengths correctly capture STR variations but also capture indels outside of 

STRs if they fall within the amplified regions. To mitigate the effects of these indels, we 

downloaded assembly-based FermiKit25 calls for each of the 263 SGDP samples from a 

publicly available repository (https://github.com/lh3/sgdp-fermi). For each STR, we 

identified samples with indels located in between the two primer sites. We then masked the 

capillary genotype for a sample if any of its indels occurred more than 15bp upstream or 

downstream from the STR region, as these are unlikely to originate from the STR.

Assessing variant caller performance—We downloaded BWA-MEM alignments26 

for 263 publicly available Simons Genome Diversity Project samples (accession 

ERP010710). Using a BED file containing each STR’s genomic coordinates, we ran every 

tool with default options. For general-purpose tools that have no prior knowledge about 

repetitive regions, we padded the STR regions by 15bp prior to genotyping to improve the 

chance that it captured indels near the STR boundaries. We then explored the effects of 

alternate command line options by rerunning each tool using every combination of the 

settings listed in Supplementary Table 1. The combination of settings that led to the highest 

level of agreement with the capillary genotypes was then selected as optimal. Despite 

multiple attempts, we were unable to run STR-FM27 outside of the Galaxy environment and 

we therefore could not include this tool in our benchmarking experiments.
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Most general-purpose variant callers report multiple unphased variants per STR region. 

Without phase information, it is frequently impossible to determine the lengths of an 

individual’s two STR alleles present at a locus. To overcome this issue, we summed the sizes 

of all indels each caller reported within an STR region for a given sample. The frequency 

with which these sums exactly matched those predicted by the capillary electrophoresis data 

was then used as the variant caller’s accuracy.

To assess how variant filtration affects performance, we selected FORMAT and INFO fields 

from each tool’s VCF file that might be indicative of genotype robustness (Supplementary 

Table 2). We then used gradient boosting to train ensembles of regression trees that convert 

these fields into a confidence level. Using five-fold cross-validation, we trained these 

classifiers on 20% of the calls and ranked the remaining 80% of calls by confidence level. 

Figure 1 and Supplementary Figure 5 depict the relationship between mean accuracy and 

minimum confidence level observed across the five iterations.

To gauge the effect of sequencing coverage on variant caller performance, we used the 

SAMtools view command and the –s option to downsample the SGDP reads to 5×, 10× or 

20× median coverage. We then reran GATK-HC and HipSTR using the command line 

parameters optimized for STR genotyping (Supplementary Table 1) but also specified the --
use-all-reads HipSTR option.

Calling STRs from longer reads—Targeted 300bp paired end sequencing was 

performed on an Illumina MiSeq (supplied by Kailos Genetics). After aligning FASTQ files 

with BWA-MEM, we used HipSTR to call the GlobalFiler markers with the options --

haploid-chrs chrY --no-rmdup --min-reads 10 --read-qual-trim 5. To compare with capillary 

data, we used information from NIST (http://www.cstl.nist.gov/strbase/str_fact.htm) to 

determine the number of repeats present in the hg19 reference genome (Supplementary 

Table 4). We then computed the HipSTR predicted capillary sizes by adding HipSTR’s 

estimated base pair differences (GB FORMAT field) to the number of repeats in hg19.

Phased trio SNP scaffolds—We used the HaplotypeCaller module in GATK v3.5-0-

g36282e4 to jointly genotype all members of the CEPH trio using aligned and sorted BAMs 

for runs ERR194147, ERR194160 and ERR194161. In accordance with guidelines for hard 

filtering SNP calls, we used GATK’s SelectVariants and VariantFiltration modules to select 

only those SNPs with a passing FILTER, QD > 2, FS < 60, MQ > 40, MQRankSum > −12.5 

and ReadPosRankSum > −8. Next, we downloaded v5a of Beagle’s28 reference panels for 

Phase 3 of the 1000 Genomes Project from the tool’s website and removed three samples 

that are part of the CEPH pedigree (NA12878, NA12889 and NA12890). Using v4.0-r1399 

of Beagle and these filtered reference panels, we phased the trio’s SNP calls using the ped 
option, phase-its=10, burnin-its=10, impute-its=0 and impute=false.

Generating CEPH trio STR genotypes for the Marshfield markers—We 

downloaded FASTQ files from the Illumina Platinum Genomes Project and an additional 

study of the effects of PCR amplification on sequencing errors29, resulting in data from 

twelve different sequencing runs (NA12878: ERR194147, SRR826463, SRR826467, 

SRR826469; NA12891: ERR194160, SRR826427, SRR826448, SRR826465; NA12892: 
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ERR194161, SRR826428, SRR826473, SRR826471). We individually aligned each run to 

the hg19 reference genome using BWA-MEM and analyzed all of the resulting BAMs 

concurrently using HipSTRv0.2 and the options --def-stutter-model --use-all-reads --min-
reads 25 and --read-qual-trim #. To generate STR genotypes that are phased onto SNP 

scaffolds, we reran HipSTR using the same arguments but also specified the --snp-vcf option 

with the phased SNP scaffolds VCF described above as input.

Evaluating HipSTR’s physical phasing accuracy—We began by restricting our 

analysis to Marshfield markers in which the STR alleles transmitted from each parent to the 

child could be determined from the unphased genotypes alone. We then required that the 

child have a confidently phased STR genotype as indicated by a HipSTR FORMAT field 

with PQ > 0.9 (minimum phased genotype posterior of 90%). Using the SNPs 50kb 

upstream and 50kb downstream of the STR region, we determined the SNP haplotype each 

parent transmitted to the child by requiring that each of the child’s SNP haplotypes exactly 

match one parental haplotype and that these matches involve both a maternal and a paternal 

haplotype. After enforcing all of these requirements, 178 markers were available for 

downstream analyses. For each of these markers, HipSTR’s phased genotypes correctly 

placed the paternally transmitted STR allele onto the paternally transmitted SNP haplotype, 

resulting in perfect phasing accuracy.

Running HipSTR on a population-scale dataset—WGS data for 2000 individuals 

sequenced using 150bp paired-end Illumina reads and more than 30× coverage was 

internally available at the New York Genome Center. Using the BWA-MEM aligned BAMs 

for each sample as input, we jointly genotyped 200 samples at a time with HipSTR and all 

default options. We aggregated the timing statistics across each of the individual runs to 

determine the total run time of ~20,000 CPU hours. NYGC’s IRB committee approved all 

human subject experiments prior to this analysis.

Using HipSTR to identify de novo mutations—We downloaded FASTQs from the 

Illumina Platinum Genomes project containing 200× sequencing data for NA12877 and 

NA12878 (runs ERR174310-ERR174341). As before, we used BWA-MEM to align the 

reads in each of these runs individually. Using all of these BAMs and two previously 

generated BAMs for NA12891 and NA12892 (ERR194160 and ERR194161), we ran 

HipSTR with the options --def-stutter-model --require-pairs --min-reads 25 and a BED file 

containing 1.6 million STR regions.

We applied a series of stringent filters to the call set to reduce the likelihood that genotyping 

errors introduce false positive de novo calls. Using the FORMAT fields available in the 

HipSTR VCF, we required that all three individuals in the trio have a minimum genotype 

posterior (Q) of 0.9, no more than 10% of reads containing either a stutter artifact or a 

flanking sequence indel (DSTUTTER/DP and DFLANKINDEL/DP) and at least 10 reads 

spanning the STR region (MALLREADS). Lastly, we required that the ratio of spanning 

reads supporting the alleles for each individual be at least 20% (computed from 

MALLREADS).
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To identify an initial set of candidate mutations, we examined STRs that satisfied all of these 

requirements. We identified a potential de novo mutation for 423 loci where the child 

(NA12878) had an allele length not observed in either of the parents (NA12891 and 

NA12892).

Validating de novo mutations using orthogonal datasets—We downloaded 

FASTQs containing 300× Illumina sequencing data for NA12878 from the Genome in a 

Bottle consortium and FASTQs for NA12878, NA12891 and NA12891 from the 1000 

Genomes Project (SRR622457, SRR622458 and SRR622459, respectively). After 

generating BAM files using BWA-MEM, we collated these alignments with others generated 

in previous analyses (NA12878: SRR826463, SRR826467, SRR826469; NA12891: 

SRR826427, SRR826448, SRR826465; NA12892: SRR826428, SRR826471, SRR826473). 

We then reran HipSTR using these BAMs and the options --def-stutter-model --require-pairs 
--min-reads 25 and a BED file containing the 423 STR regions with previously detected de 
novo mutations.

Without performing any filtering, we compared the HipSTR calls from these datasets to the 

calls generated during the discovery phase. For 358 of the markers, each member of the trio 

had allele lengths that matched perfectly between the two call sets, resulting in a set of sites 

with high confidence de novo mutations.

Sanger sequencing validation—Primers were designed around the STR coordinates to 

generate 300–600bp PCR products (Supplementary Table 6). Primers were tested using 

isPCR for unique products. Genomic DNA for NA12878, NA12891, and NA12892 was 

obtained from the Coriell Institute (Camden, NJ, USA). DNA was amplified for 30 cycles in 

25 ul reactions according to the manufacturer’s recommended cycling conditions using Q5 

High Fidelity Polymerase (NEB catalog #M0494) to reduce stutter, generating blunt end 

products. Amplicons were purified on magnetic beads (Thermo Fisher Scientific 

ChargeSwitch PCR Clean-Up Kit, catalog #CS12000) and cloned into linearized pMiniT 

(NEB catalog #E1202). Plasmids were transformed into 50ul of chemically competent E. 

coli (Lucigen E. cloni Chemically Competent Cells catalog #60108). Outgrowth cultures 

(50ul) were incubated overnight on ampicillin plates. Individual colonies were selected and 

cultured overnight in 2mL LB + ampicillin (100ug/mL). DNA was extracted and column 

purified (Thermo Fisher Scientific PureLink Quick Plasmid Miniprep Kit, catalog 

#K210010). Sanger sequencing of at least 8 clones per individual per locus was performed 

by Eton Bioscience (Newark, NJ, USA) using the supplied primers for the pMiniT plasmid. 

Only results with flanking sequences upstream and downstream of the STR of sufficient 

quality were included in the final counts.

Assessing de novo transmission to children—We downloaded FASTQs containing 

50× Illumina sequencing data for each of the 11 children of NA12878 (ERR194148, 

ERR218433, ERR324432, ERR324433, ERR194152, ERR324434, ERR194154, 

ERR194155, ERR324435, ERR194157 and ERR194162) and aligned them using BWA-ME. 

Using these BAMs as input, we ran HipSTR with the options --def-stutter-model --require-
pairs --min-reads 25.
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Coordinates—All reported coordinates are based on the hg19 genome build.

Code availability—The latest version of HipSTR and detailed usage information are 

freely available under the GNU General Public License v2.0 at https://hipstr-tool.github.io/

HipSTR

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Performance of variant callers in STR regions
The accuracy of each tool’s calls is shown as a function of sensitivity for the Marshfield 

STR panel. Solid and dashed lines denote tools run using default settings and settings 

optimized for STR genotyping, respectively.
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Figure 2. Experimental validation of de novo STR mutations
The top panel depicts the number of repeats HipSTR identified in each family member for 

four STRs with a predicted de novo mutation (novel allele in bold). The bottom three panels 

illustrate the number of clones with repeat sizes predicted (red) or not predicted (gray) by 

HipSTR during Sanger sequencing of these same individuals.
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