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Long-term viremia control in chronic HBV patients oc-
curs either spontaneously in inactive carrier (IC) patients or 
therapy-induced by nucleos(t)ide analogues (NUC). To better 
understand the characteristics of viremia control, we evaluated 
gene expression in purified leukocyte subsets from IC versus 
NUC-treated patients, and evaluated the putative modulatory 
effects of hepatitis B surface antigen (HBsAg). We observed 
that gene expression in NUC-treated patients differed mark-
edly from IC patients, especially in dendritic cells, monocytes, 
and CD8+ T cells, while serum HBsAg levels had little effect. 
Nevertheless, based on our findings it cannot be excluded that 
HBsAg may act locally in the infected liver or preferentially af-
fects HBV-specific cells.
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Chronic infection with hepatitis B virus (HBV) is a major global 
health burden. The World Health Organization estimates that 
257 million individuals are living with chronic HBV, which can 
lead to liver fibrosis, cirrhosis, and ultimately hepatocellular 
carcinoma [1].

Chronic HBV patients can be categorized into 4 clinical 
phases, which vary in inflammatory activity and are highly var-
iable in serum levels of alanine transferase (ALT) and viral rep-
lication (HBV-DNA). Patients in the inactive carrier (IC) phase 
(also known as chronic HBeAg-negative HBV infection) are 
characterized by the ability to naturally control viral replication, 
and exhibit low HBV-DNA and normal ALT levels throughout 
an indefinite period of time, likely via immune-mediated con-
trol [2, 3]. In contrast to IC patients, patients with active disease 
(elevated ALT and HBV-DNA) usually receive antiviral therapy 
consisting of nucleos(t)ide analogues (NUC) [3]. These medica-
tions are not curative but are highly effective in reducing HBV-
DNA and normalizing ALT levels. However, even when viral 
replication is controlled and serum ALT levels are normalized 
during the IC phase and during NUC treatment, active trans-
lation of viral antigens, such as hepatitis B surface antigen 
(HBsAg), continues. High serum HBsAg has been postulated to 
be immunomodulatory, which is in line with phenomena seen 
in other chronic viral infections where continuous high antigen 
exposure induces a state of exhaustion, particularly in T cells 
[4]. A clear understanding of whether high concentrations of 
HBsAg in serum are responsible for the lack of an effective im-
mune response to HBV in patients is still lacking.

In this study, we therefore examined the frequencies and 
transcriptome of blood-sorted monocytes, dendritic cells (DC), 
B cells, CD4+ and CD8+ T cells, natural killer (NK), and NKT 
cells of chronic HBV patients who controlled viral replication 
either spontaneously or by effective NUC treatment. In addi-
tion, the putative modulatory effect of HBsAg was evaluated by 
comparing HBsAg-high versus HBsAg-low IC patients.

METHODS

Patient Cohort

Cryopreserved peripheral blood mononuclear cells (PBMCs) 
from chronic HBV patients were selected from the Erasmus 
MC biobank. All patients tested negative for hepatitis D 
virus (HDV), hepatitis C virus (HCV), and human immu-
nodeficiency virus (HIV), and had minimal liver fibrosis 
(METAVIR ≤ F2). As a case-control comparison, 12 treatment-
naive IC patients present in the HBsAg-high (median, 11 513 
IU/mL; range, 5707–24 538 IU/mL) and 8 HBsAg-low (median, 
99 IU/mL; range, 1–189 IU/mL) were included (Supplementary 
Table  1). The categorization of patients as HBsAg-high or 
HBsAg-low was based on the top and 40% serum HBsAg dis-
tribution (high, ≥ 1783 IU/mL; low, ≤ 989 IU/mL) of over 800 
samples available in the Erasmus MC biobank. For testing of 
IC versus NUC patients, 24 treatment-naive IC patients were 

applyparastyle “fig//caption/p[1]” parastyle “FigCapt”

mailto:p.a.boonstra@erasmusmc.nl?subject=
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa614#supplementary-data
https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa614#supplementary-data


1472  •  jid  2022:225  (15 April)  •  BRIEF REPORT

tested against 16 NUC-treated patients with normalized ALT 
levels at least 12 months prior to sample collection who were 
on treatment for a median of 3.5  years (interquartile range, 
3–5 years; Supplementary Table 1). The study and its protocols 
were approved by the institutional ethical review board. All pa-
tients provided informed written consent.

Flow Cytometry and Cell-Sorting Analysis

PBMCs were sorted for NK cells (CD3−CD56+), NKT cells 
(CD3+CD56+), CD4+ and CD8+ T cells (CD3+CD4+ and 
CD3+CD8+), monocytes (CD14+ CD19−), B cells (CD19+CD14−), 
and DC (BDCA1+CD19−CD14−) using a fluorescence-activated 
cell sorting (FACS)-ARIA-II (Supplementary Figure 1). Five 
hundred sorted cells of each population were collected in Lyse-
and-Go (ThermoFisher, discontinued) and stored at −80°C. 
Lysates were processed using the GeneChip HT Pico Kit 
(ThermoFischer).

Microarray Analysis

Fragmented biotin-labelled double-stranded cDNA 
was hybridized on a human Clariom GO Screen Assay 
(ThermoFischer) and scanning was done using GeneTitan. 
Gene expression values were normalized by robust multiarray 
average normalization on the microarray probe-level data 
[5], and downstream analysis was done in R version 3.4.2. 
Unsupervised analysis using spectral maps was performed 
and showed no batch effects. To validate that the sorting pro-
cedure yielded pure populations, we evaluated the expression 
levels of key marker genes for each leukocyte population such 
as CD19 for B cells, NKG7 for NK cells, and CD4 and CD8 
for T-cell subsets (Supplementary Figure 2). A  supervised 
analysis was performed using the limma package [6] for com-
parisons between patient groups within cell populations and 
corrected P values for multiple testing across genes ≤ .05 were 
considered significant. The affected pathways were analyzed 
using MLP (mean log P analysis) and GO Biological Process 
[7]. The considered cutoffs for MLP were lower (5) and upper 
(100) threshold for gene set size where 7100 pathways from 
the Biological Process source were used.

Statistical Analysis

Group comparison of clinical parameters was performed using 
2-way unpaired t testing, unless indicated otherwise. Group 
differences in cell frequencies were analyzed by Mann-Whitney 
testing using GraphPad Prism.

RESULTS

Diversity in Cell Frequencies and Gene Expression Profiles of Peripheral 

Sorted Blood Leukocytes Irrespective of Circulating HBsAg Levels

To determine the effect of ongoing HBsAg exposure, gene ex-
pression profiling was performed on FACS-sorted peripheral 
leukocytes obtained from HBsAg-high and HBsAg-low IC 

patients (Figure  1A). IC patients with distinct HBsAg levels 
displayed no significant differences in leukocyte subset fre-
quencies (Supplementary Figure 3). All IC patients were HBeAg 
negative, had low HBV-DNA, and normalized ALT levels 
(Supplementary Table 1). As shown in Figure 1B, comparison 
of the 2 different groups yielded only few or no differentially 
expressed genes (DEG), using adjusted P value ≤ .05 and 1.5 log 
fold-change (logFC) as cutoff, for sorted B cells (GAS6-AS1), 
T-cell subsets (CD4± and CD8± (SLC33A1, OBSCN), NK cells 
and NKT cells, and DC (MOCOS, BPIFAF3, ZN665, and 
MAS4A4E) (Figure 1D). In monocytes, the vast majority of DEG 
(22/35) were upregulated in the HBsAg-low group, although 
some immune-related genes (eg, C6, ADA, and DEFB134) were 
upregulated in the HBsAg-high group (Figure 1B and 1C).

HBV Viremia Control in the IC Phase Versus During NUC Therapy Exhibits 

Altered Frequencies and Gene Expression Profiles in Blood Leukocytes

The identification of the underlying mechanisms that deter-
mine viral control are essential for the creation of new treat-
ment strategies. Therefore, we compared blood leukocyte 
composition and transcriptome in 24 IC and 16 NUC-treated 
patients. Although the groups exhibited comparable liver en-
zymes (ALT and aspartate transaminase) and virological char-
acteristics (HBV-DNA and HBsAg; Supplementary Table  1), 
higher frequencies of DC (median, 0.48% vs 0.25%, respec-
tively; P value = .03) and CD8+ T cells (median, 31% vs 22%, re-
spectively; P value = .001) were found in NUC-treated patients 
compared to IC patients, whereas the percentage of CD4+ T 
cells was higher in IC than NUC-treated patients (median 68% 
vs 51%; P value = .002; Supplementary Figure 4). These find-
ings suggest an altered balance between the CD4+ and CD8+ 
T-cell populations in the IC versus NUC-treated groups.

Next, gene expression profiling on FACS-sorted blood leuko-
cytes from IC and NUC-treated patients was conducted. Using 
adjusted P values ≤ .05 and 1.5 logFC as cutoff, we observed 
that DC showed the highest number of DEG (805), followed 
by CD8+ T cells (189), monocytes (42), and B cells (13). In con-
trast, low numbers of DEG to no DEG were detected in CD4+ 
T cells, NK cells, and NKT cells (3, 1, and 0 DEG, respectively; 
Figure 2A).

Among the list of DEGs, DC from NUC-treated patients 
exhibited a higher expression of HLA-related genes (ie, 
HLA-DQB1, HLA-C or HLA-DMB), Interferon Stimulated 
Gene (ISG) (NKAP, IFITM3, IRF2BP2, ISG15, IRAK3, 
and MAPK1), caspases (CASP1, CASP4, and CARD16), 
chemokines and chemokines receptors (CXCL16 and 
CXCR4), and also TLR8 (lowest adjusted P value 7.2e-10; 
Figure  2B). On the other hand, expression of type I  inter-
feron (IFN) genes (IFN-ε and IFN-α13) was higher in IC 
patients. All DEG identified for the CD8+ T cells showed 
higher expression in NUC-treated patients. Among these 
genes, we detected some related to cytotoxicity (ie, KLRD1, 
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KLRG1, GZMH, and GZMB), immune-cell trafficking 
(S1PR1 and CX3CR1), and the transcription factor IKZF5 
from the IKAROS family. Moreover, monocytes exhibited 
an increased expression of Toll-like receptor (TLR)-related 
genes LY6E and STK4 in NUC-treated patients compared to 
IC. Comparable to CD8+ T cells, most of the DEG in B cells 
were increased in NUC-treated patients. Among the genes 
with the highest fold-change, immunoglobulins were the pri-
mary component. The DEG list for all leukocyte populations 
is shown in Supplementary Table 2. Finally, we conducted 
pathway analysis to identify the major biological processes 
driving the difference in gene expression profiles between IC 
and NUC-treated patients. As shown in Figure 2C, in DCs 

this was largely driven by signal recognition particle (SRP)-
dependent protein targeting to membrane and endoplasmic 
reticulum pathways, followed by type I  and II signaling, 
T-cell costimulation, and regulation of production of various 
interleukins (see also Supplementary Table 3). Moreover, 
CD8+ T cells were primarily driven by ubiquitin-related 
pathways (not shown) and monocytes by gap-junction as-
sembly (not shown).

DISCUSSION

In this study, we observed that the gene expression profiles of 
patients with low/undetectable HBV-DNA and normalized 
ALT levels receiving NUC therapy differed markedly from IC 
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Figure 1.  A, Serum HBsAg distribution in IC patients with high and low HBsAg levels (high mean 12 807 IU/mL, minimum 5707 IU/mL, maximum 24 538 IU/mL; low mean 
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genes indicate DEG upregulated in the HBsAg-low group. Genes are ordered by logFC increase. C and D, Volcano plot of DEG in monocytes and dendritic cells from IC patients 
with HBsAg-high versus HBsAg-low. Abbreviations: DEG, differentially expressed genes; HBsAg, hepatitis B surface antigen; IC, inactive carrier; logFC, log fold change; NKT, 
natural killer T cell.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa614#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa614#supplementary-data


1474  •  jid  2022:225  (15 April)  •  BRIEF REPORT

patients. However, distinct serum HBsAg levels only minimally 
affected gene expression profiles of blood leukocyte subsets in 
chronic HBV patients.

Our findings show that the transcriptome, particularly 
of DC, CD8+ T cells, and, to a lesser extent, monocytes are 
markedly different between IC and NUC-treated patients. 
This was unexpected because, although the mode of viral 
control differs, both groups of patients exhibit prolonged low/
undetectable HBV-DNA and normalized ALT serum levels. 
The distinct gene expression profiles between IC and NUC-
treated patients in DC and CD8+ T cells suggest that distinct 
regulatory processes are active. Indeed, we observed that the 
ISG expression levels in DC and cytotoxicity-related genes in 
CD8+ T cells are increased in NUC-treated patients as com-
pared to IC patients. In contrast to DC, CD8+ T cells, and 
monocytes, differential gene expression was not observed for 
B, NK, NKT, and CD4+ T cells between IC and NUC-treated 

HBV patients, and it does not lead to altered functioning of 
these cell types in the examined patient groups. Thus, it is 
tempting to speculate that although NUC-treated patients 
might experience a partial improvement in their immune re-
sponse against HBV [8], it fails to reconstitute to an immune 
viral control state as seen in IC patients.

The continuous presence of high levels of HBsAg are gen-
erally considered to be an important factor impacting im-
mune cell activity, with HBV-specific CD8+ T cells being 
examined most frequently with respect to the induction of 
T-cell exhaustion [4, 9, 10], thereby impeding the estab-
lishment of a long-lasting and effective immune response 
capable of eliminating or controlling the infection [11, 12]. 
To our surprise, transcriptomic characterization of highly 
pure FACS-sorted blood leukocytes collected from patients 
with highly distinct HBsAg serum levels exhibited only 
minimal modulation of gene expression levels. DEG were 
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only identified for monocytes between the HBsAg-high and 
HBsAg-low groups but not, or in very low numbers, for CD4+ 
and CD8+ T cells, NK, NKT, B cells, and DC (Supplementary 
Figure 5B). Importantly, the inclusion of a smaller cohort of 
NUC-treated patients (Supplementary Table 4; n = 15) with 
contrasting serum HBsAg level recapitulated the cell fre-
quencies data and transcriptomic findings seen in the IC co-
hort with DEG identified solely in antigen-presenting cells 
(Supplementary Figure 5).

Interestingly, a previous study on sorted CD4+ and CD8+ T 
cells from IC patients found the gene expression of TLR-signaling 
(MYD88), cytotoxicity (GZMA, GZMK), and nuclear factor-κB 
signaling (BST2) to be upregulated in patients with less than 
1.5 × 103 versus more than 15 × 104 IU/mL HBsAg [13]. These 
discrepancies might be explained by differences in patient se-
lection, methodology, or cofounding factors—although limited 
information is available in the study. Moreover, assessment of 
the major blood leukocyte population revealed comparable fre-
quencies irrespective of the HBsAg antigenemia level, as previ-
ously reported [14]. In light of these findings, studies evaluating 
the immunological effects—in the context of effective immune 
control—of HBsAg blockers should preferentially also address 
the intrahepatic compartment and HBV-specific responses.

In conclusion, our approach, using ex vivo evaluation of the 
transcriptome of sorted highly pure blood leukocytes, does not 
provide evidence that lower versus higher levels of peripheral 
HBsAg alters gene expression of immunomodulatory proteins 
with suppressive activity on the total polyclonal leukocyte 
population.

On the basis of our findings alone, it cannot be excluded that 
the HBsAg levels observed in this study might still be biolog-
ically excessive and thus capable of negatively modulating the 
immune response at the same level or even higher HBsAg levels. 
Moreover, it cannot be discounted that HBsAg may preferen-
tially act by modulating the activity of HBV-specific cells and 
that more profound effects are delivered locally in the infected 
liver. In addition, NUC-treated patients may fail to reconstitute 
the peripheral immune response comparable to IC patients, 
which might explain HBV relapses during antiviral withdrawal.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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