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Artificial intelligence-enhanced quantum chemical
method with broad applicability
Peikun Zheng1, Roman Zubatyuk2, Wei Wu1, Olexandr Isayev 2✉ & Pavlo O. Dral 1✉

High-level quantum mechanical (QM) calculations are indispensable for accurate explanation

of natural phenomena on the atomistic level. Their staggering computational cost, however,

poses great limitations, which luckily can be lifted to a great extent by exploiting advances in

artificial intelligence (AI). Here we introduce the general-purpose, highly transferable artificial

intelligence–quantum mechanical method 1 (AIQM1). It approaches the accuracy of the

gold-standard coupled cluster QM method with high computational speed of the approximate

low-level semiempirical QM methods for the neutral, closed-shell species in the ground state.

AIQM1 can provide accurate ground-state energies for diverse organic compounds as well as

geometries for even challenging systems such as large conjugated compounds (fullerene

C60) close to experiment. This opens an opportunity to investigate chemical compounds with

previously unattainable speed and accuracy as we demonstrate by determining geometries

of polyyne molecules—the task difficult for both experiment and theory. Noteworthy, our

method’s accuracy is also good for ions and excited-state properties, although the neural

network part of AIQM1 was never fitted to these properties.
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Quantum mechanical (QM) methods used in chemistry are
invaluable for today’s modern science as they allow
insights into electronic structure at an atomistic level,

which are experimentally unattainable. This in turn helps to find
answers to fundamental scientific questions in chemistry and
related fields, such as chemical physics and biology, and assists
applied science in designing better materials and discover new
medicines.

The usefulness of QM methods in practical applications is
determined by their accuracy and computational cost. The trade-
off between these two factors guides the choice of the QM
method. On the one side, we have very accurate, but slow high-
level ab initio QM methods such as coupled cluster with single,
double, and perturbative triple excitations, CCSD(T)1, which has
established itself as the gold standard in most applications, par-
ticularly, for closed-shell molecules2–4. On the other side, we have
very fast semiempirical QM (SQM) methods that have rather
limited accuracy5. The sweet spot of moderate computational cost
and often sufficient accuracy is occupied by density functional
theory (DFT) that has become a workhorse in the investigation of
medium-sized systems (Fig. 1a)6. The efforts for developing faster
and more accurate QM methods is an active research field, but it
is clear that traditional approaches to QM method development
require years of hard human work and typically yield only rela-
tively modest improvements.

Advances in artificial intelligence (AI) bring chemistry research
to a radically new level and provide a much-needed alternative to
the traditional QM method development7,8. AI allows to perform
calculations with both high accuracy and very low computational
cost that was previously unattainable with the traditional QM
methods. Nevertheless, most of the applications of AI to quantum
chemistry are either proof-of-principle or limited to specific

applications. Developing general-purpose AI approaches with
transferability of QM methods remains a big challenge. A sig-
nificant step towards transferable accurate AI approaches is the
family of ANI potentials9–12 that can describe energies and forces
of compounds of different size and composition in equilibrium
and non-equilibrium configurations with accuracy approaching
DFT (i.e., the ANI-1 potential trained on 20M energies of the H,
C, N, and O-containing compounds at ωB97X/6-31G(d), ANI-1x
trained on 5M energies at ωB97X/6-31G(d) selected by active
learning, and ANI-2x extension of ANI-1x to S, F, Cl
elements)9–11, or even coupled cluster QM level (ANI-1ccx12

trained on 0.5M at CCSD(T)*/CBS energies using transfer
learning; CCSD(T)* is an approximation to CCSD(T) based on
multi-step calculations with domain-based local-pair natural-
orbital-CCSD(T)13 and CBS is an extrapolation to complete basis
set, for the complete description of the technical details behind
CCSD(T)*/CBS see refs. 12,14) (Fig. 1a). The ANI potentials are
transferable to much larger systems than those included in the
training data set, because the total energy is calculated within the
local approximation by the sum of the atomic contributions with
each atom feeling the environment only within some cutoff.

While impressive, ANI potentials are however much less trans-
ferable than general-purpose QM methods, because they are limited
to closed-shell, neutral organic compounds, and the use of the local
approximation imposes further limitations on their transferability,
e.g., to large, highly conjugated systems (Fig. 1b, c). A rational
approach is to exploit synergies of AI and QM methods by merging
them7 as well as improving AI-based methods by including the
effects of dispersion and long-range interactions7,15–19. This
approach has already given rise to an increasing number of hybrid
AI/QM methods7,8,20–22, although most of them are either proof-
of-principle or based on relatively slow DFT or trained on data of
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Fig. 1 Simplified scheme of quantum chemistry approximations. Traditional quantum mechanical approaches such as the gold-standard coupled cluster
(CC, blue), work-horse density functional theory (DFT, green), fast and approximate semiempirical quantum mechanical (SQM, red) methods, artificial
intelligence-based ANI (cyan), and the new artificial intelligence–quantum mechanical method 1 (AIQM1, magenta). They are compared with respect to
a cost and accuracy, b cost and transferability, c accuracy and transferability, and d cost, accuracy, and transferability. The accuracy of ANI is with respect
to what it is applicable to. The scheme is an authors’ qualitative interpretation supported by the results of this work.
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limited quantity and quality potentially restricting their transfer-
ability and accuracy.

Here we describe the general-purpose artificial intelligence–
quantum mechanical method 1 (AIQM1) that approaches the cou-
pled cluster accuracy with transferability of the QM methods and
computational speed of the SQM methods (Fig. 1d). AIQM1 stands
on the shoulders of decades-long method development in SQM
methods5 as well as more recent advances in developing NN
potentials15 and combining QM with AI such as Δ-learning23,
leveraging the power of transfer learning for exploiting limited
amount of high-level reference data12, extensive developments in
treating dispersion corrections24,25, efforts in accelerating high-level
approaches13, and hard work and lots of resources invested in gen-
erating highly-accurate diverse reference data14. 1 in AIQM1 stands
for the first iteration of the method as we envision that AIQM
approaches will be further refined by using better reference data for
training and making changes to the methodology, which is currently
the topic of ongoing work in our labs.

Results
Method structure. The AIQM1 method consists of three main
parts (Fig. 2): (1) SQM Hamiltonian, (2) neural network (NN)
correction to the potential, and (3) dispersion corrections. The
AIQM1 total energy EAIQM1 is the sum of the contributions from
these three parts, ESQM, ENN, Edisp, respectively:

EAIQM1 ¼ ESQM þ ENN þ Edisp: ð1Þ

For the first part, we have chosen the orthogonalization- and
dispersion-corrected method 2 (ODM2) Hamiltonian26, which
provides the most consistent and accurate predictions across
different properties (from ground-state to excited-state and
noncovalent interactions) among other SQM methods, particu-
larly those based on neglect of diatomic differential overlap
(NDDO) approximation. We remove the original D3-based
dispersion corrections from the ODM2 approach and denote the
modified approach as ODM2*. Instead, we add the state-of-the-
art D4-dispersion corrections24,25 including Axilrod–Teller–Muto
three-body contributions27,28—the third part of the AIQM1
method. Dispersion corrections are essential to properly describe
dispersion terms in noncovalent interactions as they are poorly
described by both SQM5 and local NN approaches such as ANI-
1ccx29, and these corrections are therefore often added to AI
approaches7,15–19. For the second part, we took the ANI-type of
NN potentials. We preserved the NN-architecture of ANI-1x that
predicts ENN by summing over Natoms atomic contributions EA:11

ENN ¼ ∑
Natoms

A
EA: ð2Þ

We made only two minor modifications to NN model based on
ANI-1x. First, we changed the activation function to GELU
(Gaussian error linear unit) instead of CELU (continuously-
differentiable exponential linear unit), because GELU is infinitely
differentiable. This is important for applications where higher
derivatives are required, e.g., geometry optimization and frequency

Fig. 2 The design of the artificial intelligence–quantum mechanical method 1 (AIQM1). a Flowchart of training the neural network (NN) part of the
AIQM1, AIQM1@DFT*, and AIQM1@DFT methods. b Schematic representation of the components of the AIQM1, AIQM1@DFT*, and AIQM1@DFT
methods (yellow). DFT denotes density functional theory data at ωB97X/def2-TZVPP, CC— approximation to coupled cluster with single, double, and
perturbative triple excitations with complete basis set extrapolation scheme (CCSD(T)*/CBS), E energies, F forces, ODM2*—semiempirical quantum
mechanical (SQM) orthogonalization- and dispersion-corrected method 2 (light brown), D4—the fourth generation of dispersion (subscript disp)
corrections (green), NN – neural networks of ANI-type (blue; corrections to learn also blue). Molecular data sets are in gray.
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calculations. Second, we increased the angular cutoff to 4 Å to
assist with a better description of long-range interactions.
Note that within ANI framework, the scalar values to learn are
centered before fitting NN, i.e., the atomic contributions also
include element-dependent terms obtained by linear fitting to the
reference scalar values.

Our NN corrections only depend on structural parameters
calculated for atoms within a cutoff. Thus, these corrections have
the same limitations as the ANI models and the increased
transferability of AIQM1 comes from the SQM Hamiltonian and
dispersion corrections. For example, NN corrections are exactly the
same for the same molecular geometry, regardless of the molecular
charge or electronic state. In the future, when accurate reference
data exists for diverse charged and/or electronically excited species,
NN corrections can be improved by taking into account charge/
electronic state as, e.g., was recently done in ref. 30.

Method training and validation. We fitted NN using the ANI-1x
and ANI-1ccx data sets14, which contain small neutral, closed-
shell molecules in ground state with up to 8 non-hydrogen atoms
and only considers molecules with the H, C, N, and O elements.
Most of the molecules are drug-like and oligopeptides. The data
sets cover not only equilibrium geometries, but also conforma-
tional space by using various sampling techniques, such as nor-
mal mode sampling and dynamics. The ANI-1x data set contains
5M geometries in total, for which ωB97X/6-31G* energies and
forces were calculated (these energies were used to fit ANI-1x
model). For 4.6M geometries of the ANI-1x data set, ωB97X/
def2-TZVPP energies and forces are available (used previously to
fit another successful general-purpose NN potential AIMNet31).
Only energies for 0.5M geometries are available at CCSD(T)
*/CBS in the ANI-1ccx data set (used to fit the ANI-1ccx
potential). Such a choice of the data sets ensures high accuracy
and transferability, but because of its composition, the best
accuracy of AIQM1 is expected to be for ground-states energies
and forces of neutral, closed-shell molecules, and it is only
applicable to species with elements H, C, N, and O.

The NN weights were obtained in two steps (Fig. 2). In the first
step, we fitted NN weights on the differences between the ground-
state potentials calculated at DFT ωB97X/def2-TZVPP and
ODM2* (see Fig. 3a for the distribution of the learned
differences). This step is based on the Δ-learning23 approach
introduced by one of us and used here to correct the low-level
SQM method to the target accuracy of the higher-level DFT
method with comparatively small additional computational cost.
(Calculations for the entire ANI-1x data set on a single CPU are
ca. 10 times faster with a single ANI-type network NN compared
to SQM calculations, but the difference should become larger for
bigger systems and parallel computing.) The loss function L in
this step is the geometric mean of the loss functions for energy
differences between DFT and ODM2* (LE, scalar values) and
differences in forces (LF, energy gradients ∂ENN=∂R taken with
opposite sign, vector values):

L ¼
ffiffiffiffiffiffiffiffiffiffi

LELF
p

; ð3Þ

with LE and LF defined analogously to the loss functions for
energies and forces used in ANI-2x9.

In this way we trained an ensemble of eight NNs (Fig. 2), which
provides better accuracy than a single NN12 (see Methods). The
method obtained in this first step is denoted by AIQM1@DFT*
and it approaches DFT accuracy at the SQM cost for the hold-out
test set as its mean absolute deviation (MAD) is only 0.7 kcal/mol
for energies and 1.6 kcal/mol/Å for forces (Fig. 3b).

Since AIQM1@DFT* has no explicit dispersion corrections, we
add the D4-dispersion corrections fitted25 for the DFT functional
ωB97X and denote the resulting method as AIQM1@DFT.

In the second step of NN fitting (Fig. 2), we used transfer
learning32 to reach coupled cluster accuracy using the 0.5M data
points of the ANI-1ccx data set as was done for creating ANI-1ccx
method12. Transfer learning is a powerful technique allowing to
leverage more abundant training data for a related task to obtain the
model for the target task using much fewer training points. For
developing the AIQM1 method, we fixed the weights of the first and
third hidden layers of NN from the first step to only minimize the
loss function LE for differences between the ground-state energies at
CCSD(T)*/CBS and ODM2* with D4 corrections (forces are not
available at CCSD(T)*/CBS and thus not included for training; see
Fig. 3c for the distribution of the learned differences in energies).
The resulting approach is our final AIQM1 method and it
closely approaches coupled cluster level for the hold-out test set
as its MAD for energies is 0.8 kcal/mol (Fig. 3d). Note that although
forces and Hessians are not available at CCSD(T)*/CBS, both forces
and Hessians can be easily calculated with AIQM1 with little
computational cost as first- and second-order derivatives are
implemented for all AIQM1 components (ODM2*, NN, and D4),
which, as we will see later, is of great significance.

In the following we perform validation of our method AIQM1
and its parent variants AIQM1@DFT and AIQM1@DFT* on the
independent test sets not used for fitting their NN parts.
Wherever possible, we compare their performance for a range
of established methods such as ODM2 (as one of the best SQM
methods), B3LYP/6-31G* (because of its popularity), ωB97X/6-
31G* (because it was used for generating reference data for early
ANI-1 and ANI-1x models), ωB97X-D/6-31G* (as a popular
representative of range-corrected DFT methods), ωB97X/def2-
TZVPP (because it was used for generating reference data for
AIQM1@DFT and AIQM1@DFT*), ωB97X-D4/def2-TZVPP (to
test the effect of the D4 corrections), CCSD(T)*/CBS (because it
was used for generating reference data for AIQM1), ANI-1ccx
(best representative of the general-purpose NN potentials), and,
occasionally, other relevant methods.

We cannot compare AIQM1 to ANI-1ccx for ions, radicals,
and excited states, as ANI-1ccx is not transferable to such cases
and they were excluded from statistics; in addition, there is no
implementation for heats of formation at ANI-1ccx. No
comparisons to CCSD(T)*/CBS-optimized geometries were done,
because of prohibitive computational cost for such calculations
and absence of implementation of analytical derivatives. This
method cannot be used for excited states either. To prevent the
paper from becoming unwieldy, we only focus in this text on the
most important benchmarks, while the summary of calculations
with all aforementioned methods can be found in Fig. 4 and
Supplementary Data 1 sheet S1 and details (overview of data sets,
list of compounds, reference data, and data calculated with above
methods, etc.) are provided in the Supplementary Data 1 sheets
S3–S20.

Performance for energies. AIQM1 has an excellent accuracy in
energies for a broad range of data sets not used for fitting its NN
part (Fig. 4). A very important energy-based property is heat
(enthalpy) of formation—a fundamental thermochemical quan-
tity, which is notoriously difficult to accurately predict with
quantum chemistry. Typically, only very computationally
expensive QM methods are able to achieve the desired chemical
accuracy for heats of formation ΔHf (errors below 1 kcal/mol).
Thus, AI was suggested as a potent approach to specifically target
accurate and cost-efficient predictions of heats of formation by
improving upon predictions made by the low-cost QM methods
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Fig. 3 Correlation between the artificial intelligence–quantum mechanical method 1 (AIQM1) variants and reference methods for the hold-out test set.
a Histogram of learned centered differences between ODM2* and ωB97X/def2-TZVPP energies (E, left) and forces (F, right). b Correlation between
AIQM1@DFT* and ωB97X/def2-TZVPP energies and forces. c Histogram of learned centered differences between ODM2* + D4 and CCSD(T)*/CBS
energies. d Correlation between AIQM1 and CCSD(T)*/CBS energies. Root-mean-squared deviations (RMSDs), standard deviations (σ), mean absolute
deviations (MADs), and squared correlation coefficients R2 are also shown on the plots. Errors for energies are in kcal/mol, for forces—in kcal/mol/Å.
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(DFT33–35 and SQM36 methods). In contrast, in our approach we
did not fit NN part to better reproduce the heats of formation; we
merely had to offset the bias in AIQM1 heats of formations at
298 K with respect to the experimental reference data in the
CHNO data set37 by just fitting four parameters—atomic energies
of H, C, N, and O elements, which we treat as energies of free
atoms in the most stable electronic configuration at AIQM1
(Methods). The CHNO data set includes carefully curated 138
heats of formation of various molecules ranging from inorganic
(H2, O2, H2O, NH3, etc.) to diverse classes of organic compounds
(alkanes, alkenes, alkynes, linear and cyclic compounds, mole-
cules with different functional groups, e.g., alcohols, amines,
acids), which allowed development of general-purpose, transfer-
able SQM methods26,37. This set consists of compounds with only
H, C, N, and O elements, hence the name.

AIQM1 performance is remarkable for heats of formation as it
easily reaches chemical accuracy for the CHNO data set (MAD of
0.9 kcal/mol), even though this property was not included in the
training set of its NN part. It is the first time that a QM method
with semiempirical speed has broken this threshold as, e.g.,
ODM2 method with the best-reported accuracy among semi-
empirical methods to date has three times higher MAD of
2.6 kcal/mol. Similarly, AIQM1 has MAD of 0.9 kcal/mol in heats
of formation for the CHNO subset38 of the independent G3/99
test set (G stands for Gaussian)39. This subset contains species
only with H, C, N, and O elements and includes 47 experimental
heats of formation of medium-sized organic species (e.g.,
piperidine, acetal, azulene, phenyl radical etc.). The full G3/
99 set formed a backbone for developing and testing many QM
methods such as popular, but very computationally expensive
composite approaches Gaussian-4 (G4)40 and G4MP241

(approximation of G4 for faster calculations) targeting the
coveted chemical accuracy. AIQM1 accuracy for both the CHNO
and G3/99 sets is on par with G4 and G4MP2 (their MADs are in
the range of 0.65–0.90 kcal/mol, see the Supplementary Data 1
sheets S4 and S5) and thus AIQM1 can be used as a
computationally-efficient alternative to such composite methods.
Noteworthy, AIQM1 is clearly better than DFT approaches tested
here (Fig. 4).

It is important to point out the limitations of the AIQM1 as well.
For example, analysis of heats of formation shows that AIQM1 has
relatively large error of −2.9 kcal/mol for the H2 molecule, which is
similar to DFT approaches (error up to 3.7 kcal/mol at ωB97X/6-
31G*), but much larger than errors at G4 (−0.3 kcal/mol) and
G4MP2 (−1.0 kcal/mol) (see Supplementary Data 1 sheet S4).
Possible cause for such a large error is the lack of H2 in the ANI-1x
data set used for fitting NN part of AIQM1. This example shows
that AIQM1 accuracy may deteriorate significantly for cases
underrepresented in its training set, regardless whether molecular
structures are simple or not. On the other hand, it also shows the
path to overcome such problems—by including more such cases in
the training set in the future.

In chemistry, we often have to deal with such relative energies
as isomerization energies, reaction energies, and enthalpies as well
as relative energies between conformers, because relative energies
determine the outcome of reactions and 3D structures of
molecules in thermal equilibrium. AIQM1 not only has good
accuracy for heats of formation, but also faithfully reproduces
other types of relative energies. One example is the heats of
formation ΔHf and isomerization enthalpies ΔHr at 298 K of
organic compounds in the ISOMERS44 data set38,42, for which
AIQM1 has MAD of 0.4 and 0.5 kcal/mol, respectively. The

Fig. 4 Performance of tested methods for diverse benchmarks.Mean absolute deviations (MADs) are provided for all methods and benchmark sets used
in this study. MADs are color coded for easier visual analysis—red values have the highest MAD, green values—the lowest. “―” is used where (all)
calculations were not possible. Data set abbreviation are their established names, i.e., CHNO—compounds with H, C, N, and O elements, G Gaussian, IsoL
isomerization of larger molecules, HC hydrocarbons, IP ionization potentials, EA electron affinities, MGHBL main-group hydrogenic X–H bond lengths,
MGNHBL11 main-group non-hydrogenic X–Y bond lengths; the numbers in data set names usually indicate either the original number of data points in the
data set or a year it was assembled.
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Fig. 5 Selection of data sets for testing performance of the artificial intelligence–quantum mechanical method 1 (AIQM1) for ground-state energies.
a ISOMERS44 set for testing accuracy in predicting heats of formation for 27 molecules (blue numbers) and 17 reaction enthalpies (red numbers),
b reactions in IsoL6/11 set used to test accuracy in isomerization energies, c reactions in HC7/11 set used to test relative energies. Comparison between
errors of CCSD(T)*/CBS, AIQM1, ANI-1ccx, and ωB97X-D4/def2-TZVPP for the reaction energies in the d IsoL6/11 and e HC7/11 benchmark sets.
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ISOMERS44 set contains 27 experimental heats of formation of
several different classes of compounds (hydrocarbons, alcohols,
amines etc.) and 17 isomerization enthalpies derived from these
heats of formations (Fig. 5a). The performance of AIQM1 for the
ISOMERS44 set are therefore much better than performance of
the DFT methods tested here (Fig. 4).

Other types of relative energies, such as zero-point energy-
excluded reaction energies at 0 K are also reproduced by AIQM1
very well. For example, isomerization energies in the subset of the
IsoL6/11 data set43 with five reactions of compounds containing only
H, C, N, and O elements are reproduced by AIQM1 with chemical
accuracy (MAD 0.6 kcal/mol, Fig. 5d), while the MADs of all other
methods tested here are equal or larger than 1.5 kcal/mol, except for
CCSD(T)*/CBS with MAD of 0.5 kcal/mol (Fig. 4). IsoL6/11 is an
acronym for a data set consisting of six isomerization energies of
large organic compounds. Reference energies were calculated at
CCSD(T)-F12a/aug-cc-pVDZ (see Fig. 5b for isomerization reaction
schemes); the whole data set is often used for testing QM methods.

Similarly, for another data set, reaction energies in the HC7/11
set44, AIQM1 accuracy is also very close to that12 of CCSD(T)*/CBS
(MADs of 1.4 and 1.6 kcal/mol, respectively) and clearly outperforms
all other methods having MADs from 2.5 kcal/mol (ANI-1ccx) to
16.9 kcal/mol (ωB97X/6-31G*) (Fig. 4 and Fig. 5e). HC7/11 is widely
used for testing QM methods and it consists of seven difficult cases
for DFT including isomerization and isodesmic energies of
hydrocarbon compounds; reference energies in HC7/11 are either
zero-point energy-excluded experimental values or CCSD(T)/6-311
+ G(d,p) (see Fig. 5c for reaction schemes).

Relative energies of the configurations of the same molecule are
also important as they define, among others, what rotational
conformers are more stable, which in turn is crucial for determining
3D structures of flexible molecules. AIQM1 confidently handles this
task as its median MAD for the popular torsion benchmark set45 is
only 0.19 kcal/mol, which is the same as for much more expensive
ωB97X-D4/def2-TZVPP and lower than other methods tested here

(median MADs range from 0.20 to 0.74 kcal/mol, Fig. 4). We used
the subset of the torsion benchmark set with only H, C, N,
O-containing compounds; it consists of test cases with torsion scans
for 45 fragments grouped into alkyl, aryl, aryl-amide, and bi-aryl
cases with torsion profiles calculated at CCSD(T)/CBS. AIQM1 is
only inferior to CCSD(T)*/CBS and MP2/CBS (median MAD
0.11 kcal/mol)45, which are however much slower than DFT
methods tested here. Now we can turn into investigating the
performance of AIQM1 for predicting geometries themselves.

Performance for geometries. Theoretical prediction of mole-
cular geometries is one of the most common applications of
quantum chemistry, which is essential for chemical research as
conclusive geometries are not always available from experiment.
Geometry optimization is an iterative procedure requiring forces
(and often Hessians), which makes it much more computa-
tionally expensive than energy calculations for a single geometry.
SQM methods are much less accurate for geometries than
common DFT methods and general-purpose NN potentials
fail to deal with subtle conjugation effects, e.g., ANI-1ccx pre-
dicts that all bond lengths in C60 are equal to 1.451 Å, while it is
known from experiment46–49 that bond length between two
adjacent hexagon rings is shorter than bond length between
pentagon and hexagon rings (Fig. 6a).

Optimization with AIQM1 forces successfully distinguishes
these two bond types in C60 and predicts short and long
bond lengths to be 1.393 and 1.467 Å, respectively (Fig. 6a). For
this molecule, we cannot compare AIQM1 predictions with
CCSD(T)*/CBS due to the staggering cost of this coupled cluster
approach (single-point energy calculations take 69 hours on 15
CPU cores), while experimental data are not conclusive as they
range from 1.355 to 1.401 Å for short bond length and from 1.432
to 1.467 Å for long bond length depending on measurement
conditions46–49. Instead, we compare AIQM1@DFT predicting
1.388 and 1.464 Å to ωB97X-D4/def2-TZVPP predictions of
1.379 and 1.449 Å, which are in acceptable agreement (Fig. 6a),
while the cost of geometry optimization with AIQM1@DFT* is
14 s on a single CPU core vs. 31 min on 32 CPU cores at DFT.

For smaller molecules, where reliable data is available, AIQM1
has very good accuracy, much better than, e.g., the accuracy of
ODM2 or ANI-1ccx. AIQM1 is also more consistent than DFT
methods, whose performance strongly depends on the functional
and basis set (Fig. 4). For the CHNO data set37 with experimental
reference data, the MADs of AIQM1, ODM2, and ANI-1ccx are
0.007, 0.015, and 0.011 Å in bond lengths, 0.70°, 2.04°, and 1.00°
in bond angles, and 2.31°, 4.07°, and 5.86° in dihedral angles,
respectively (see, e.g., excellent prediction of water geometry,
Fig. 6b). Similarly, for nine main-group hydrogenic X–H bond
lengths (MGHBL9)50 and 9 main-group non-hydrogenic X–Y
bond lengths (MGNHBL11)50,51 data sets with experimental data
used to test DFT methods, MAD of AIQM1 in bond lengths is
0.004 and 0.002 Å (Fig. 6c), respectively, which is again much
better than ODM2 (0.023 and 0.026 Å) or ANI-1ccx (0.047 and
0.004 Å). The latter two data sets contain small molecules H2,
CH4, NH3, H2O, HF, C2H2, HCN, H2CO, CO, N2, F2, CO2, N2O,
and OH radical (investigated bond lengths are shown in Fig. 6c;
OH radical was excluded from statistics of ANI-1ccx). We only
excluded molecules Cl2 and MgS from the full MGNHBL11
data set.

Predicting polyyne structures. AIQM1 opens the door for cal-
culating geometries with previously unattainable accuracy and
speed, which is crucial for compounds, whose structural determi-
nation is difficult both experimentally and theoretically. One such
case is cyclo[18]carbon C18, which was inspiring the imagination of

Fig. 6 Performance of the artificial intelligence–quantum mechanical
method 1 (AIQM1) for finding ground-state minimum geometries. a Short
and long bond lengths in C60 as calculated at different levels of theory and
compared to experimental values46–49. Note that geometries of C60 are the
same at both AIQM1@DFT and AIQM1@DFT* as well as at both ωB97X
and ωB97X-D4/def2-TZVPP. b All hydrogenic bond lengths in the
MGHBL9 data set50 and non-hydrogenic bond lengths in the MGNHBL11
data set50, 51. c Geometry of a water molecule (one of the molecules in the
CHNO benchmark; note that experimental reference is slightly different
from that in MGHBL9 set in panel b)37. Bond lengths are in Å. Experimental
values in black, AIQM1 values in red, other methods marked with other
colors.
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chemists from 196652, but whose accurate geometrical parameters
are still unknown despite many efforts by both experimentalists and
theoreticians53–56. Experiment only shows that this molecule has
polyynic structure with alternating bond lengths rather than
cumulenic structure with equal bond lengths55 (Fig. 7a). C18 is
extremely challenging for QM methods too: some DFT methods
predict wrong cumulenic structure (Fig. 7a), while others correct
polyynic structure (Fig. 7)53–56. The best theoretical estimates
reported to date are at coupled cluster with single and double
excitations (CCSD), which neglect important triple excitations and
use rather small basis sets (due to the very high computational cost
of CCSD geometry optimizations, the largest basis set used was only
def-TZVP)53,56. We optimized C18 at AIQM1 without imposing any
symmetry constraints in contrast to previous theoretical works
(where such constraints were also necessary to reduce the compu-
tational cost) and report the revised best theoretical estimate of the
geometry with short bond lengths of 1.220 Å and long bond lengths
of 1.364 Å. These calculations only took 2 seconds on a single CPU.
In retrospect, previous unrestricted CCSD (UCCSD/def-TZVP)
calculations56 (bong lengths of 1.215 Å and long bond length of
1.371 Å, Fig. 7a), are much closer to the AIQM1 result than DFT
approaches benchmarked previously56 against UCCSD/def-TZVP

(e.g., the best DFT method was found56 to be ωB97X-D/def2-TZVP
predicting 1.221 Å and 1.344 Å).

As a further demonstration of AIQM1 capabilities for
polyynes, we report a structure of a free molecule of a model
polyyne 1b from ref. 57. It has six C≡C bonds, but whopping 224
atoms due to bulky tris(3,5-di-t-butylphenyl)methyl (Tr*) end
groups used for protection. As we have previously shown58,
electronic properties such as optical band gap of this molecule
strongly depend on its geometry and therefore accurate
optimizations of this class of compounds are of high importance.
Optimization with coupled cluster methods is at the moment
impossible due to their prohibitive cost for such a large number of
atoms, while the truncation of structure will not fully capture the
effect of the end groups. X-ray structure of 1b is available57;
nevertheless, it is well known59–61 that the triple C≡C bond
length determined by X-ray diffraction experiments are severely
shortened due to high electron density in the middle of these
bonds. AIQM1 revises the lengths of the triple C≡C bonds to be
0.013–0.025 Å longer than in previously reported X-ray structures
(Fig. 7b, c). In addition, X-ray structures are significantly
impacted by packing and vibrational effects depending on
temperature and the measured structures have pronounced
S-shaped bend, while a free standing 1b molecule in vacuum is
predicted by AIQM1 to be linear.

We hope that the future studies on these polyyne molecules
with better experimental and theoretical methods can provide a
conclusive, independent validation of our predictions with
AIQM1. As indirect validation of AIQM1 serves its low MAD
of 0.004 Å in seven triple C≡C bond lengths present in the
CHNO set (see also Fig. 6c for an example of excellent accuracy of
AIQM1 for the acetylene molecule in the MGNHBL11 set).

Performance for noncovalent interactions. AIQM1 is transfer-
able to noncovalent interactions, which are very challenging even
for the state-of-the-art QM methods and NN potentials. For the
standard benchmark set S66x8 with CCSD(T)/CBS reference
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Fig. 7 Geometries of polyyne compounds. a Correct polyynic (red) geometry
of C18 predicted by AIQM1 (bond lengths in red) and UCCSD/def-TZVP (bond
lengths in black from ref. 56) and its incorrect alternative cumulenic (blue)
geometry predicted by B3LYP/6-31G* (bond lengths in blue). b X-ray structure
of 1b compound from ref. 57 assigning too short triple C≡C bond lengths
(shown in black). c AIQM1 geometry of 1b with revised bond lengths (shown in
red). Bond lengths are in Å. Other bond lengths and the coordinates of AIQM1
geometry are given in the Supplementary Data 1 sheet S23.

Fig. 8 Performance of the artificial intelligence–quantum mechanical
method 1 (AIQM1) for noncovalent interactions. Selection of complexes
with errors ranging from smallest to median to largest values for a the
S66x8 benchmark and b the WATER27 benchmark. In the figure,
interaction energies are shown in kcal/mol, black at reference and red at
AIQM1. Other numbers such as in “(1.25) ethyne⋅⋅⋅ethyne (TS)” correspond
to the scaling of the distance between monomers relative to equilibrium
structures as used for construction of the S66x8 set.
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noncovalent interaction energies62, AIQM1 has rather good
accuracy as its MAD is 0.6 kcal/mol, which is comparable to
ODM2 (0.8 kcal/mol) and DFT, e.g., ωB97X-D/6-31G* (1.2 kcal/
mol) and ωB97X-D4/def2-TZVPP (0.5 kcal/mol) (see Fig. 4 for
MADs and Fig. 8 for selected structures). S66x8 set contains 66
noncovalent complexes in their equilibrium geometries and
geometries with displaced monomers (in total 528 geometries)
and it represents different types of interaction (electrostatic- and
dispersion-dominated as well as mixed types). Hence, AIQM1 is a
good cost-efficient alternative to many DFT methods.

The method performance is particularly good for hydrogen-
bonded complexes. For 27 clusters of neutral water molecules
(H2O)n, and charged clusters H+(H2O)n and OH−(H2O)n
(WATER27 data set63 with revised values64 for (H2O)20 clusters),
AIQM1 has MAD of only 2.1 kcal/mol compared to 4.5 of ODM2
(see Fig. 4 for MADs and Fig. 8 for selected structures). This
makes the method competitive in terms of accuracy with popular
dispersion-corrected DFT approaches, which have similar errors
(see, e.g., ref. 64), but are much slower. AIQM1 is therefore a
promising method for simulating chemical processes in water
solutions, essential for biological processes. It is noteworthy that
this data set contains charged species, which can be adequately
described neither by ANI-1ccx nor by the DFT methods tested
here as the basis sets are not adequate for treating anionic species,
which brings us to the next topic.

Beyond closed-shell, neutral molecules. AIQM1 is transferable
beyond closed-shell, neutral species used for fitting its NN part

and even improves upon the ODM2 method (ANI potentials
cannot be used at all for such simulations). We saw before that
AIQM1 performs well for charged protonated and deprotonated
water clusters. Other examples are proton affinities, where MAD
is improved from 16.6 (ODM2) to 10.5 (AIQM1) kcal/mol for the
proton affinities (PA) data set63 and MAD in adiabatic ionization
potentials (G21IP set)63 from 10.2 to 8.8 kcal/mol (Fig. 4).
Nevertheless, MAD in adiabatic electron affinities (G21EA set)63

is practically the same for both ODM2 and AIQM1 (ca. 14.0 kcal/
mol). All these data sets consist of experimental reference values
for small compounds, and here we used only their subset
with species containing at least two atoms and only H, C, N, O
elements: PA has eight proton affinities of H2, H2O, NH3, and
five unsaturated hydrocarbons, IP21 and EA13 both have nine
(albeit not the same) small organic and inorganic species (see
Supplementary Data 1 sheets S13–S15 for the list of species,
reference, and calculated data). In general, DFT outperforms
AIQM1 (Fig. 4) for the benchmarked cationic species (PA and
G21IP sets), but DFT performance has strong dependence on the
basis set and, e.g., calculations with 6-31G* have similar or even
larger errors than AIQM1, especially after removing the biggest
outlier in AIQM1, which is the proton affinity of the H2 molecule
underestimated by −35.4 kcal/mol (see the Supplementary Data 1
sheet S13).

Anionic species (G21EA set) are even more difficult and
require large, diffuse basis sets for proper QM treatment as is
clear by comparing MAD of DFT approaches, which ranges
from ca. 28 kcal/mol with the 6-31G* basis set to 8.4 kcal/mol
with larger def2-TZVPP basis set; even CCSD(T)*/CBS has a
large error of 8.09 kcal/mol (Fig. 4). Thus, a rather large error
of AIQM1 (14.0 kcal/mol) is not surprising and the proper
treatment of electron affinities remains a big challenge to be
addressed in the future.

Interestingly, geometries are also improved for charged species
as for the CATIONS41 data set38,65, the MADs of AIQM1 and
ODM2 are 0.017 and 0.023 Å in bond lengths, 1.26° and 2.21° in
bond angles, and 0.72° and 2.49° in dihedral angles, respectively.
The CATIONS41 data set consists of 75 bond lengths, 38 bond
angles, and five dihedral angles, determined experimentally and
by using high-level theoretical methods, of small organic (CH+,
C2H3

+, C2H5
+, propargyl cation, cyclopropenyl cation etc.) and

inorganic (triplet and singlet OH+, NO+, NH4
+ etc.) species.

Tested cations are, however, better described by DFT (Fig. 4) than
by AIQM1.

All in all, there is clearly a room for improvement of AIQM1
method for ionic species. Nevertheless, all the tests were
performed here for rather small molecules, for which reliable
reference data is available, while in case of larger systems, where
the charge is more delocalized, AIQM1 is expected to perform
better as the electronic density will be more similar to the
corresponding neutral species.

Beyond ground-state properties. Finally, AIQM1 method is also
transferable to electronically excited states and, e.g., it can be used
for multi-reference configuration interaction (MRCI) calculations
to predict excitation energies, oscillator strengths and non-
adiabatic couplings for simulating spectra and performing non-
adiabatic excited-state dynamics. Here we use the graphical
unitary-group approach (GUGA) and the same settings (active
space, excitation levels, etc.) for MRCI calculations as previously
used for benchmarking SQM methods (see Methods for
details)26,66,67. AIQM1/MRCI is three orders of magnitude faster
than popular linear-response time-dependent (TD) DFT
approaches such as TD-B3LYP, TD-ωB97X, and TD-ωB97X-D,
while the accuracy in vertical excitation energies is similar for

Fig. 9 Performance of the artificial intelligence–quantum mechanical
method 1 (AIQM1) for excited states. a Mean absolute error (MAD) in
vertical excitation energies for Thiel’s benchmark set66 (AIQM1 in red,
time-dependent density functional theory, TDDFT, in blue). b MAD in bond
lengths for the ExGeom benchmark set26, 66 (AIQM1 vs approximate
coupled cluster singles-and-doubles method (CC2) in red, AIQM1 vs.
TDDFT in blue, TDDFT vs. CC2 in black). c Lengths of C–O bonds in
formaldehyde and acetaldehyde as compared to experiment (experiment in
black, AIQM1 in red, TDDFT in blue, CC2 in green; one value for TDDFT is
missing due to the failed geometry optimization at this level66). Values for
TDDFT (B3LYP/TZVP), CC2, TDDFT vs. CC2, and experiment are taken
from ref. 66.
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these methods (MAD of AIQM1/MRCI is 0.35 eV, which is close
to TD-DFT methods with MAD of 0.32–0.45 eV for the Thiel’s
data set66,67, Fig. 4 and Fig. 9a). Thiel’s set is often used for
benchmarking QM methods and consists of 167 singlet and tri-
plet vertical excitation energies for several states of 28 middle-
sized organic compounds represented by unsaturated linear and
cyclic hydrocarbons as well as heterocycles calculated with mul-
tistate multiconfigurational second-order perturbation theory
(MS-CASPT2/aug-cc-pVTZ) for most compounds and with
equation-of-motion (EOM)-CCSD(T)/aug-cc-pVTZ for nucleo-
bases cytosine, thymine, and adenine.

MRCI calculations are performed using the SQM (ODM2*)
Hamiltonian of AIQM1 and thus, excitation energies are trivially
the same as in ODM2* and ODM2. However, when calculating
forces for molecules in excited states, NN corrections to forces are
added and their effect is not clear as they were trained on ground-
state reference data. Thus, we test AIQM1/MRCI forces, by
performing geometry optimizations of molecules in excited-
states. Such optimizations are of large importance and required,
e.g., for simulating fluorescence spectra, but they are very
computationally expensive with QM methods and thus the low-
cost of AIQM1 makes it potentially attractive for this task. We
tested AIQM1/MRCI performance on the ExGeom set26,66 with
excited-state geometries and AIQM1/MRCI MAD for bond
lengths is 0.018 Å vs. the approximate coupled cluster singles-
and-doubles method (CC2) reference (with TZVP basis set) and
0.019 Å vs. TDDFT reference (specifically, TD-B3LYP/TZVP).
This is rather good result given that uncertainties of the reference
calculations are in the same order of magnitude (MAD of TDDFT
reference vs. CC2 reference is 0.014 Å, Fig. 9b)66. The ExGeom set
consists of more than 500 reference C–C, C–H, C–O, C–N, and
N–H bond lengths of 32 molecules of different classes (e.g.,
aldehydes, ketones, nucleobases, heterocycles) in different excited
states with altogether 100 excited-state equilibrium geometries.
Accurate experimental values are very hard to obtain. However,
for the available experimental bond lengths in the ExGeom data
set, AIQM1/MRCI gives better or similar predictions compared
to TDDFT and CC2 for C–O bond in 1nπ* and 3nπ* excited
states, while its error is much bigger for the 3ππ* excited state of
formaldehyde (Fig. 9c).

Overall, AIQM1 seems to be a better choice than current
routinely used QM methods in terms of performance/cost ratio at
least for some types of excitations, which holds a great promise
for using this method for exploration of dynamical properties
arising from the manifold of electronic states, e.g., by performing
nonadiabatic excited-state dynamics, which should be an
interesting topic for future explorations. In any case, the AIQM1
method is only the first step in the direction of creating a general-
purpose AI-based method for excited-state simulations—an
important, but open topic in chemistry68—as obviously training
models on excited-state properties will be crucial for future
improvements.

Discussion
After initial excitement about great promises AI holds for sub-
stituting QM methods, the focus is shifting towards tighter
integration of AI with QM instead of substituting QM altogether.
This shift is motivated by the need to incorporate correct physical
behavior of QM methods, while at the same time exploiting great
ability of AI to improve low-level QM methods’ accuracy without
compromising their speed.

In this work, we have made a step towards creating general-
purpose AI-improved QM methods useful for a variety of
applications out-of-the-box. Our approach AIQM1 synergistically
combines the best of two worlds—transferability of QM and high

accuracy of AI approaches. The success of this approach only
became possible with great advances over recent years in meth-
odology development of both QM and AI components as well as
generation of numerous carefully curated, high quality reference
data. Thus, AIQM1 allows very accurate prediction of ground-
state properties such as energies and geometries of closed-shell,
neutral organic compounds approaching the gold-standard
CCSD(T)/CBS at the speed of semiempirical QM methods.
Remarkably, it has accuracy improved in comparison to the
parent SQM method (ODM2) also for other cases, not explicitly
considered during training of its NN part, e.g., for charged spe-
cies, showcasing the benefits of using physically-motivated AI.
Thus, AIQM1 method has the potential to become a very useful
tool for routine simulations with high accuracy.

It is only the beginning of the exciting road for AI-improved
QM methods for general-purpose applications. In the near future
we expect tighter integration of AI with QM, further optimizing
both AI and QM parts, training on more and higher quality
reference data, and further extending transferability and accuracy
for all properties of interest to chemists and physicists.

Methods
Neural network training. The neural network training and evaluation was per-
formed with the TorchANI software69. Each NN-part of AIQM1@DFT* consists of
an ensemble of eight ANI-type NNs, which provides better accuracy according to
our tests. The ensemble was trained similarly to the previous procedure12, i.e., the
data set was split into nine equal parts, with one part held out for testing and the
remaining eight parts were used as cross-validation splits for training eight net-
works. Each network was trained on seven cross-validation splits and validated on
one split using standard rotation of splits. During the training of AIQM1@DFT*,
we stopped training NN after 1000 epochs, because we found that longer training
does not improve much the performance for the validation set, but deteriorates
performance for some of the external data sets. When we analyzed the error
between AIQM1@DFT* predicted values and reference DFT values, we found
several outliers with error >0.01 a.u. By recalculating the DFT values for these
outliers, we found their reference values in ANI-1x data set were wrong, so we used
the updated values to train our models. Transfer learning was then used to refit
above eight ANI-type networks to 80% of the entire set with CCSD(T)*/CBS values
to obtain the final NN part of AIQM1 consisting of ensemble of eight NNs; other
10% were used as the validation set and remaining 10% as the hold-out test set.

Calculation of enthalpies. The enthalpies at 298 K were calculated within harmonic
oscillator and rigid rotor approximation in our locally modified version of the
MNDO program70. Calculating heats of formation requires the evaluation of the
atomization energies, which depend on the choice of the atomic energies. Atomic
energies calculated with CCSD(T)*/CBS used for fitting NN-part of AIQM1 lead to
large errors in atomization energies even for moderate-sized molecules such as
naphthalene (error of 25.4 kcal/mol with respect to CCSD(T)/CBS, where the two-
point extrapolation scheme was used with cc-pVDZ and cc-pVTZ basis sets); thus
we fitted atomic energies of H, C, N, and O elements to reduce the error in heats of
formation in the CHNO set. Heats of formation calculated at AIQM1@DFT and
AIQM1@DFT* use atomic energies calculated with ωB97X/def2-TZVPP. All values
of atomic energies are reported in the Supplementary Data 1 sheet S2.

Heats of formation at other levels (G4, G4MP2, DFT) were calculated using a
standard procedure71. The procedure for calculating heats of formation with the
MNDO program for ODM2, AIQM1, AIQM1@DFT*, and AIQM1@DFT is
equivalent, but directly uses experimental reference values for heats of formation of
atomic species at 298 K5, which are slightly different than those used in G4,
G4MP2, and DFT.

Electronic structure and benchmark calculations. All ODM2 and ODM2* cal-
culations were carried out with the MNDO program70. CCSD(T)*/CBS calculations
were performed with the ORCA 4.2.0 software package72,73 following the procedure
defined in literature12. The ωB97X-D4 calculations were performed with ORCA 4.2.0,
and ωB97X-D calculations were performed with Gaussian 1674. The ωB97X/6-31G*
calculations were performed with Gaussian 16, while ωB97X/def2-TZVPP calcula-
tions were performed with ORCA 4.2.0. D4-dispersion corrections were calculated
with the dftd4 program75. We performed benchmarks of AIQM1, AIQM1@DFT*,
and AIQM1@DFT with the locally modified version of the MNDO program70

interfaced to TorchANI69 and dftd475. For benchmarking excited-state properties
with AIQM1/MRCI, we used the same settings (active spaces, excitation levels, etc.) as
in MRCI calculations with ODM2/MRCI26,66,67. Specifically, for benchmarking ver-
tical excitations in the Thiel’s set, we used the single-reference CISDTQ, which closely
approximates full CI and is more accurate than, e.g., MR-CISD approximation to full
CI; the active spaces include all π molecular orbitals for π→ π* excitations and also
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include lone-pair molecular orbitals for n→ π* excitations; the starting reference
electronic configuration is the ground-state SCF determinant. For benchmarking
excited-state geometry optimizations with MRCI, we used MR-CISD level in most
cases as well as MR-CISDT and MR-CISDTQ in a few cases; the active spaces and
reference electronic configurations are the same as provided in the Supporting
Information of ref. 66. All the data for benchmarks can be found in the Supplementary
Data 1. The Supplementary Data 2 with Cartesian coordinates for the CHNO,
CATIONS41, and ExGeom data sets is also provided.

Geometry optimizations. The ωB97X/def2-TZVPP, ωB97X-D4/def2-TZVPP
geometry optimizations were performed with the ORCA program using the default
BFGS algorithm, while B3LYP/6-31G*, ωB97X/6-31G*, ωB97X-D/6-31G* geo-
metry optimizations were performed with Gaussian 16 using the default Berny
algorithm GEDIIS. For ANI-1ccx and AIQM1, the geometry optimizations are
performed by interfacing to the MNDO program using the default BFGS algorithm
for most data sets except for optimizations of C60, C18, 1b (optimized by interfacing
to Gaussian 16) and the torsion benchmark (optimized by interfacing to ASE76

using the LBFGS algorithm).

Data availability
The data (calculated energies and optimized geometries) generated in this study are
provided in the Supplementary Information. Any other relevant data are available from
the authors upon reasonable request.

Code availability
The AIQM1, AIQM1@DFT, and AIQM1@DFT* methods are available as the open-
source code free of charge for non-commercial and non-profit uses, such as academic
research and education, as described in http://MLatom.com/AIQM1. Any other relevant
code is available from the authors upon reasonable request.
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