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complicated. Although many methods have been proposed to impute the noisy
scRNA-seq data in recent years, few of them take into account the prior associations
across genes in imputation and integrate multiple types of imputation data to identify
cell types.

Results: We present a new framework, Netimpute, towards the identification of cell
types from scRNA-seq data by integrating multiple types of biological networks. We
employ a statistic method to detect the noise data items in scCRNA-seq data and develop
a new imputation model to estimate the real values of data noise by integrating the PPI
network and gene pathways. Meanwhile, based on the data imputed by multiple types
of biological networks, we propose an integrated approach to identify cell types from
scRNA-seq data. Comprehensive experiments demonstrate that the proposed
network-based imputation model can estimate the real values of noise data items
accurately and integrating the imputation data based on multiple types of biological
networks can improve the identification of cell types from scRNA-seq data.

Conclusions: Incorporating the prior gene associations in biological networks can
potentially help to improve the imputation of noisy scRNA-seq data and integrating
multiple types of network-based imputation data can enhance the identification of cell
types. The proposed Netlmpute provides an open framework for incorporating
multiple types of biological network data to identify cell types from scRNA-seq data.
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Background

The advance of single-cell RNA sequencing (scRNA-seq) technologies nowadays provides
good opportunities to comprehensively investigate the transcriptome-wide variability and
cell heterogeneity at the single-cell resolution [1-3]. Unlike the bulk-cell RNA sequenc-
ing, which performs high-throughput sequencing of RNA refined from millions of cells
and the expression of each gene would be averaged across cells [4, 5], scRNA-seq per-
forms sequencing of RNA refined from a single cell and the expression of genes reflect
the transcriptomic characteristics at the single-cell level. However, scRNA-seq data usu-
ally have relatively higher noise than the bulk-cell RNA sequencing data due to the low
amounts of transcripts in single cells and sequencing technical biases [6, 7]. The most
well-known noise type in scRNA-seq data is the dropout events, where a gene actually
expressed even at a high level but was not detected in sequencing due to the limita-
tion of technical sensitivity [8, 9]. The dropout events can be deemed as a special type
of false zeros in data. In addition, data noise may stochastically occur at systematical
level, even for the gene with high expression level, due to the technical biases [10, 11].
Therefore, it is crucial to develop computational methods to address the noise issues at
both low-expression and high-expression levels in scRNA-seq data in order to facilitate
the downstream researches on scRNA-seq data, such as the identification of cell types
[12, 13], differential gene expression analysis [14, 15] and characterization of dynamic
profiles in rare cell types [16], etc.

Many computational methods for analysing scRNA-seq data have been developed in
recent years from different perspectives, such as imputing the dropout events in sScRNA-
seq data [4, 17, 18], identifying cell types from scRNA-seq data [12, 19] and detecting rare
cell types [20], etc. To address the dropout events in scRNA-seq data, SAVER [17] incor-
porates the similarity information across genes to impute the real expression of genes by
using a Bayesian approach. MAGIC [18] imputes the gene expression of missing values
based on similar cells using a network diffusion approach. However, both SAVER and
MAGIC estimate the expression values of all genes, and this may alter the expression val-
ues which are not affected by the dropout events [4], so they would potentially introduce
new biases into the data. Besides, scmpute [4] only imputes the missing values with high
dropout probability based on similar cells and does not alter the values which are deemed
as real expression items. DrImpute [21] estimates the real values of dropouts by aver-
aging the corresponding gene expression from different clustering results. RESCUE [22]
considers the challenge of dropout effect on the cell-clustering using all genes and uses
a bootstrap strategy to select gene features to promote the robustness of cell-clustering
to improve the data imputation. Although those imputation methods have been demon-
strated to be effective in handling the dropout events to some extent, there are at least two
drawbacks that need to be further addressed at present. Firstly, most existing methods
only consider the cell similarity in dropout imputation, but ignore the associations across
genes. However, there usually exist associations between genes in terms of their biolog-
ical functions or regulation mechanisms. It is necessary to consider these associations
between genes in dropout imputation. Secondly, most existing methods mainly focus on
the imputation of dropout noise at low-expression level, while the stochastic noise may
also occur at high-expression level due to the technical biases [10, 11]. It is essential to
impute the data noise not only at low-expression level but also at high-expression level in
handling the noisy scRNA-seq data.
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In addition, one of the most important analysis missions on scRNA-seq data is to iden-
tify cell types by taking the noise effect into account. CIDR [19] is the first clustering
method to identify cell types by considering the dropout events. While it cannot be used
as an imputation method in general since the imputed values are not stable when one
cell is paired up with different cells [4, 19]. In general, we can use the dropout imputa-
tion methods to perform de-noise on raw scRNA-seq data, and then identify cell types
based on the imputed data. While it is hard to consider multiple types of prior bio-
logical knowledge in the identification of cell types based on scRNA-seq data. Actually,
other types of biological data can be used to guide the imputation of scRNA-seq data,
such as gene functional networks and gene pathways, etc., and thus help to enhance the
identification of cell types. It is still necessary to develop more flexible and accurate meth-
ods to impute the noisy scRNA-seq data, thus to improve the accuracy of downstream
analyses.

In this paper, we propose a new framework, so-called NetImpute, towards the iden-
tification of cell types from scRNA-seq data by integrating multiple types of biological
networks. We first impute the noisy raw scRNA-seq data by incorporating multiple
types of biological networks to obtain different types of imputation data. Then, we
integrate multiple imputation data to identify cell types according to the hierarchical
clustering algorithm. Specifically, the overall NetImpute framework includes two main
models: the imputation model and the integration model. In the NetImpute imputa-
tion model, we take into account the gene associations from the PPI (Protein-Protein
Interaction) network and gene pathways to impute the noise data items in scRNA-
seq data by training a series of regression models based on cell similarity information,
thus to obtain different types of imputation data. Meanwhile, we utilize a statistic
method based on Chebyshev inequality [23, 24] to detect the noise data items in
scRNA-seq data. In the NetImpute integration model, we fuse the similarity infor-
mation across cells from both the PPI-based and pathway-based imputation data to
identify cell types using the hierarchical clustering algorithm. Comprehensive exper-
iments based on three real data demonstrate that: (1) The proposed network-based
imputation model can estimate more accurate values of noise data items, and thus help
to improve the cell typing from scRNA-seq data. (2) Integrating multiple types of impu-
tation data can help to further improve the performance of identifying cell types from
scRNA-seq data.

The main contributions of this study can be summarized as follows: (1) We propose
a new imputation model to estimate the real values of noise data items in scRNA-seq
data by taking into account the association information across genes based on biological
networks. (2) We propose a new statistic method based on Chebyshev inequality to detect
noise data items at both low-expression and high-expression levels and consider the both
types of noise in imputation. (3) We propose a new method integrating multiple types of
imputed data using different biological networks to identify cell types from scRNA-seq
data.

Methods
In this section, we introduce the proposed network-based imputation method and mul-

tiple imputation data fusion framework towards the identification of cell types from
scRNA-seq data.
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Problem overview and computational framework

As presented above, there are two main issues may affect the identification of cell types
from scRNA-seq data at present. Firstly, scRNA-seq data include higher noise than the
bulk RNA-seq data due to the dropout events and high variability in technical replicates
[4, 6, 7]. The dropout events produce plenty of false-positive zero values in scRNA-seq
data since the low RNA input in sequencing and the stochastic noise of gene expres-
sion in individual cells. Besides the dropout events, technical noise in scRNA-seq also
affects the variability of gene expression, even for the high level of expression data [10, 11].
These noise items affect the accuracy of cell-types identification on scRNA-seq data. Sec-
ondly, only gene expression information may not enough to identify cell types accurately
from noisy scRNA-seq data, and the incorporation of multiple types of prior biological
information hopes to improve the accuracy of cell-types identification. In this paper, we
present a new computational framework, which is so-called NetIlmpute, to address the
issues mentioned above by imputing noise values via incorporating multi-type biological
networks. In particular, we first incorporate the PPI network and gene pathways to impute
noise values from dropout events and high expression biases in scRNA-seq data respec-
tively, and then we integrate the imputation data based on multi-type biological networks
to identify cell types from scRNA-seq data. In summary, the main steps of NetImpute
include: (1) PPI network-based imputation for scRNA-seq data. (2) Pathway-based impu-
tation for scRNA-seq data. (3) Imputation data integration and cell-types identification.
Figure 1 shows the illustration diagram of the overall framework of Netlmpute. We
introduce the details of each step respectively in the following sections.

Network-based imputation

Detection of fuzzy cell subpopulations and outliers

We impute the dropout and bias values in scRNA-seq data based on the reliable expres-
sion information of similar cells in subpopulations and gene association knowledge
in biological networks. It is crucial to identify similar cell subpopulations before data
imputation. However, as the existence of dropout events and data biases in high-level
expression, it is difficult to directly estimate accurate cell subpopulations on scRNA-
seq data. Considering the uncertainty of clustering cell subpopulations based on the raw

Input Network-based imputation Integrated clustering of cell types
¢ scRNA-seq gene | A
expression data

Data fusion (" Hierarchical )
! clustering

Distance (PCC)

Fig. 1 The overall workflow of Netimpute framework. The network-based imputation model integrates
biological networks (PPl network and gene pathways) to impute noise data items in raw scRNA-seq data. The
integrated clustering model fuses multiple types of imputation data to identify cell types according to the
hierarchical clustering algorithm
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scRNA-seq data, we preliminarily use the fuzzy clustering method to identify fuzzy cell
subpopulations, in which a cell can belong to more than one cluster in general. Specif-
ically, let X%, be the raw scRNA-seq data, where m is the number of genes (rows)
and # is the number of cells (columns). We first calculate the Pearson distance matrix
D, «» between cells (PCC based distance), then the principal component analysis (PCA)
is performed on Dy, and the reduction output matrix is denoted as Z,x,. The num-
ber of conserved principal components p is decided by calculating the decay rate of the
explained variance between two consecutive components. We require the variance decay
rate between two consecutive components no less than 0.6 and 3 < p < 10 in practice.
Based on Z,, we utilize the fuzzy c-means (FCM) algorithm [25, 26] to cluster all cells
into k subpopulations, in which a cell sample can belong to multiple subpopulations. In
particular, the FCM algorithm can predict the probability of each cell belongs to the i-
th cluster (cell subpopulation). For each cell sample S;, we assign S; to the unique cluster
C; if the possibility of S; € C; is greater than 0.5, otherwise we assign S; to those clus-
ters if the possibility of S; € C; is range from 2/k to 0.5. We assume the samples which
have not assigned to any clusters as outliers and remove them from the sample list in the
downstream data imputation.

Identtification of noise data items at the low-expression and high-expression levels
Once we obtain the preliminary subpopulations of cells, the next step is to identify intra-
cluster gene expression noise in each subpopulation. As previous studies in [4, 21], we
assume that the genes in the same cell subpopulation have roughly similar expression pat-
terns. The gene expression which seriously deviates from the average expression of the
gene in a cell subpopulation is deemed to have high possibility to be a noise item and
needs to be imputed. Since the noise data items include the deviated gene expression
at both low-expression and high-expression levels, the dropout events are automati-
cally attributed to the low-expression noise in our research. Meanwhile, we also consider
the high-expression noise data in imputation. To identify the noise data items of gene
expression in a subpopulation, we utilize the Chebyshev inequality [23, 24] based statis-
tic method to distinguish the noise data from the background expression of genes in a
subpopulation.

Let the expression of gene i in cell subpopulation k to be a variable Xi(k), the expectation
of X; ® s E X; (k)) 1 (k) and the variance is D(X; (k)) l.(k) 2, for any & > 0, according to
the Chebyshev mequallty theorem, there is,

&(k)2

px® — a0 <y =1 - 1)

&2
Equation 1 gives the lower bound of P{ |Xi(k) — ;llgk)| < ¢} for any ¢ > 0. Since there is
no limitation to the distribution of variable Xl-(k) in the Chebyshev inequality theorem,
it is applicable for any variables of genes in each cell subpopulation. Specifically, when
£ = «/_a(k) 1-— A(k)z/e = 0.5, this defines the lower bound of P{|X(k) Agk)| < g}
is 0.5. ol.(k) 2 is the expression background variance of gene i in subpopulation group k.
Similar to [24], we define the expression variance of gene i on cell j in subpopulation k as

( )2 k)2 k) _ (k) 2 (k2 _ ~(k)2

(X ;) .Ifol.’l- <o;

, where oy , the expression variance of Xi(;() is not

greater than the background variance of gene i in subpopulation k, X »(/.() is more likely to be

a credible expression data and does not need to be imputed. Otherw1se, if 0(02 > a(k)2
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the expression value Xi(,j'() has high possibility to be a noise data item and it will be selected
as a candidate item that needs to be further imputed. However, it is inflexible to define the
threshold as a certain value 8;102 at both the low-expression and high-expression levels. In
fact, in most data analyses, we hope to flexibly define the selection thresholds of noise data
items at the low-expression and high-expression levels respectively, and thus to control
the fraction of imputation to satisfy different analysis missions. In addition, it is necessary
to define different expression variances for the low-expression and high-expression noise
according to adaptive thresholds in various data distributions. To overcome the inflexible
issue in threshold selection, we adopt an adaptive method, which was first proposed in
image processing [24], to define the discrimination thresholds based on the background
variance in a specific subpopulation. Based on Eq.1, when fixing the ¢, aif;()z < 6i(k)2 can
be estimated by 1 — al.,]].()z /e* > 1— &i(k)z /€%; rather, oig()z > 6i(k)2 can be estimated by
1- (rifjl.()z /g2 < 1— 8;102 /2. In our situation, when giving a fixed &, we want to detect

the noise data items which have variance al.(]lf) 2> 6t(k)2, so the problem is equivalent to

1-—- aiff)z /g2 <1— &i(k)2 /2. For each data X;;) in subpopulation &, we calculate the value
of discrimination function D(Xl.(;()) =1- ol.fjlf) 2/ 2 <T by fixing ¢ = ﬁ&i(k), to decide
whether it is a noise data item. In theory, T = 1 — 6;102 /&2 is the strict upper bound
threshold of D(Xg.()) in discrimination. We also define an adaptive threshold of D(Xi(f))
by relaxing the upper boundas 7' =1 — 6’1-(]()2/8?, where e, = ¢ £ 96i(k), 0 <6 < 1.Since
&t is tuned according to &i(k), the threshold of T can be adapted by the data background
variance once giving a predefined parameter 6. In addition, according to Eq.1, we can test
the noise data items at both the low-expression and high-expression levels. In order to
consider the situation that the dropout events are the main noise data items in the low-
expression aspect in scRNA-seq data, we define different values of T to detect the noise
data items in the low-expression and high-expression aspects respectively as [24],

~ (k)2

05+ 01— %)
&7 , Xl(;) S lll(k)
T: 2 6_‘(/()2 (2)
05+ (1 — 5 ) o
2 Xij® > 1

whereg; = ¢ —Ql&i(k) and gy = ¢ —Qg&i(k), &= ﬁ&i(k), ﬂgk) = j]\il Xl.(f)/N, 0<01,0 <
1. In this study, we set 61 = 0, 6 = 0.5 as the default values. If Xl.(f) < /l?k), the data
point Xg»() belongs to the low-expression aspect of gene i in subpopulation &, otherwise
Xl-(f) belongs to the high-expression aspect of gene i in subpopulation k.

Specifically, for each gene expression data item X;; in subpopulation k, denoted as Xi(f),
oifjl.()z = Xi(j-() — /lgk))z is the variance of Xi(;-() in subpopulation k, we can judge whether
Xl.(’f) is a noise item by,

(k)2

o2
D(Xg?)) =1- ‘8’—2 <T 3)

where ¢ = «/E&i(k). Meanwhile, if Xt(,;() < /ll(»k), Xl.(f) is a low-expression noise item,

otherwise Xi(f) is a high-expression noise item in subpopulation k.
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Imputation of noise data based on biological networks

After identifying the noise items in each preliminary cell subpopulation in scRNA-seq
data, we impute these items with the aid of biological networks. We suppose that the
expression of a gene is affected by their neighborhood genes in the biological network.
Therefore, for the noise items of a gene in one specific fuzzy cell subpopulation, we first
learn a regression model based on the network neighborhood genes’ expression data
which have high confidence to be correct values in the corresponding cell subpopulation.
Then we use the learned regression model to estimate the real values of the gene’s noise
items by integrating the expression of its neighborhood genes in biological network. In
particular, we first identify all noise data items in each fuzzy cell subpopulation and bor-
row the information of genes which have accurate values with high confidence to predict
the real values of noise data items. Let X;; be the expression of gene i on cell j in the fuzzy
subpopulation &, N; is the neighborhood gene set of gene i in the biological network G and
A; is the set of cells in the subpopulation k which have high confidence values for gene i.
To learn the expression associations between gene i and its neighborhood genes N; in G,
we use the regularized non-negative least squares (NNLS) regression model [27, 28] as,

B =argmin(||X;a, — BYXn,a, 13 + 2l BV
B0

1 . 4
+ 541 =) 18713) @
subject to, 9 > 0,4 > 0,0 <a <1

Recall that X; 4, € R4l represents the vector of expression values of gene i in all cells
of A;, which have high confidence expression values in the subpopulation k. Xy, 4, €
RINil>I4il ig a sub-matrix in the raw expression data, where the row and column coordi-
nates are respectively in N; and A;. B @ js the coefficient vector with length |N;|. A is the
coefficient for both L1 and L2 regularization items, « is a parameter to weight the effect
of L1 and L2 regularization in order to obtain a sparse estimated . Considering there
may be many neighborhood genes for most genes in the biological network, the impu-
tation regression model is affected by many neighborhood genes. We want to obtain a
sparse model for most genes to ease the overfitting in learning. In this study, we set A = 10
and & = 0.5 in default. Finally, the learned imputation model is used to impute the real
expression of gene i on cell j,

S Xij, JEA;

b (5)
Y ﬂ(l)XN[,j’ ] ¢ Ai

In each cell subpopulation k, we construct a separate regression model for each gene
i by incorporating the associations across genes in the biological network to impute the
correct values of noise data items. Figure 2 shows the overall procedure of the proposed
imputation model that estimates the correct values of noise data items for a gene. Based
on each initial fuzzy subpopulation of cells, one noise data item for a gene will have an
estimated value. According to all fuzzy subpopulations of cells in the raw scRNA-seq data,
one noise data item for a gene may have more than one imputed value since there are
overlaps in the fuzzy subpopulations of cells. Therefore, for each noise data item which
may have multiple imputation values, we assign its final value as the maximum one. In
addition, different numbers of initial fuzzy cell subpopulations may affect the final esti-
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Fig. 2 Overall procedure of the network-based imputation model in Netimpute framework. The statistic
method is used to identify noise data items at both the low-expression and high-expression levels. For each
gene’s noise items (star), Netimpute integrates the neighborhood genes in networks (PPl network or gene
pathways) that have high-confidence expression values in a specific fuzzy cell subpopulation to train a
regression model, and then the learned regression model is used to impute the noise data

mation of noise data items, since the imputation independently performs on each fuzzy
cell subpopulation. After testing on various types of real data, we found that setting the
number of fuzzy cell subpopulations close to the true number of cell-type clusters hopes
to obtain more accurate imputation data for the noise data items. Therefore, we recom-
mend setting the number of initial fuzzy subpopulations of cells roughly close to the true
number of cell-type clusters in practice before using the NetImpute for imputation.

PPI network-based imputation

We introduce the PPI network to obtain the association information between genes, and
thus to impute the raw scRNA-seq data using the proposed imputation model. To ensure
each gene has neighborhood genes for reference in imputation, we select the genes which
interact with at least two genes in PPI network. In addition, to acquire more confident
gene expression data, we filter out the genes which have zero values in more than 90%
cells from the raw scRNA-seq data and obtain the expression data of the overlap genes
between the conserved genes in raw scRNA-seq data and the PPI network to perform
the downstream imputation. We set the initial fuzzy subpopulation clusters of cells in
raw scRNA-seq data close to the true number of cell clusters in the PPI network-based
imputation.

Pathway-based imputation

We also incorporate the gene pathway information to consider the biological regulated
associations between genes to impute the raw scRNA-seq data by using the proposed
imputation model. A gene pathway usually describes a separate gene regulation unit in
biological metabolism and it appears as a directed subgraph in the data structure. To
consider more complete gene regulation information, we ignore the specific directed
interactions in each pathway by treating a pathway as a complete interaction subgraph

Page 8 of 21
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between the corresponding genes. We collect all available pathways together to obtain all
candidate pathway genes. In addition, to acquire more confident gene expression data,
we also filter out the genes which have zero values in more than 90% cells from the raw
scRNA-seq data. Finally, we obtain the expression data of overlap genes between the con-
served genes in raw scRNA-seq data and the candidate pathway genes to perform the
downstream imputation. Since a gene may attend multiple pathways in biological regula-
tion, so one noise data item of a gene may obtain multiple imputation values according
to different pathways. To obtain the unique imputation, we select the maximum value as
its final imputation data if a noise data item has multiple imputation values. Specifically,
suppose gene i attends L pathways, Nil is neighborhood gene set of gene i in the /-th path-
way and Bl(i) is the coefficients of the corresponding regression model based on the /-th
pathway, the final imputation value of the noise data item Xi,j of gene i on cellj is,

)A(i,j = mlaX{,BAl(l)XNil,j} (6)

Imputed data fusion and cell-types prediction

We integrate the PPI network and gene pathway information to impute the raw scRNA-
seq data respectively and then fuse the imputed data to identify cell types from scRNA-seq
data. Based on the PPI network and gene pathways imputed data, we first calculate the
Pearson distance matrixes between cells and denote them as M; and M, respectively. To
combine the similarity information of cell samples from both the PPI network-based and
the pathway-based imputation data, we simply concatenate the distance matrixes M; and
M, as the combined distance feature matrix of cell samples. Then, we calculate the inte-
grated similarities of cell samples based on the combined feature matrix. We assume that
a pair cells are similar if they have similarly pairwise neighborhood features. In detail, we
respectively calculate the Pearson distance matrix Dist(P) and Spearman distance matrix
Dist(S) between cell samples, and then we obtain the integrated similarity distance matrix
between cells by,

Dist(M) = Dist(P) —2|—Dist(S) @)

Finally, based on the integrated similarity distance matrix between samples, we use the

hierarchical clustering algorithm [29] to predict cell subpopulations by cutting the den-
drogram based on different distance heights to obtain more accurate cell-type clusters.
Figure 1 shows the overall procedure of integrated cell-types clustering.

Results

Datasets and data processing

To evaluate the effectiveness of the proposed imputation method-NetImpute, we used
three public scRNA-seq datasets in the Gene Expression Omnibus (GEO) database in
our experiemnts (also collected by https://hemberg-lab.github.io/scRNA.seq.datasets).
These three scRNA-seq datasets include: (1) The scRNA-seq data on differentiation of
human cerebral organoid cells (GSE75140), which was so-called Camp data [30], and 5
initial cell types were annotated on cells; (2) The scRNA-seq data on the cells of human
brain (GSE67835), which was so-called Darmanis data [31], and 8 initial cell types were
annotated on cells; (3) The scRNA-seq data on the cells of human colorectal tumors
(GSE81861), which was so-called Li data [32], and 9 initial cell types were annotated
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on cells. The human PPI network data was downloaded from the PICKLE website [33,
34], where the data was collected from multiple public databases [35-40], which include
15,434 proteins and 161,007 interactions between proteins (PICKLE 2.2). We used the
Retrieve/ID mapping tool from UniProt [41, 42] mapped the gene identities to symbols,
and obtained 15,336 genes and 160,857 interactions between genes. The gene pathway
data was downloaded from the Broad Institution database [43, 44], which includes 5,266
genes in 186 different gene pathways.

In order to be convenient for the evaluation of methods, we removed the cell samples
which have unknown cell-type labels. Meanwhile, the genes that have zero values on more
than 90% cells were also filtered out. Finally, in the PPI network-based and gene pathway-
based imputation analyses, we used the expression data of overlap genes between the
processed scRNA-seq data and the PPI network/pathways genes. Table 1 gives the basic
statistics information of the data used in our experiments.

Netimpute recovers the low-expression and high-expression noise data items
The proposed NetImpute method aims to impute the noise data items in scRNA-seq data
by borrowing gene association information from biological networks. As there are not
ground truth in scRNA-seq data can be used to validate the confidence of the imputed
data. In order to test the performance of NetImpute on the estimate of noise data items,
we first investigate the imputation performance based on the simulation data. Since the
NetImpute method can handle the noise data at both low-expression and high-expression
levels, we simulated different types of noise data and used NetImpute to recover the real
values of them by incorporating gene association information from the PPI network and
gene pathways respectively. Specifically, to generate different types of simulation data, we
selected the genes which have non-zero values in all cells on the human cerebral organoid
cells (Camp data [30]) as the candidate gene pool, and then chose the expression of overlap
genes between the candidate genes and the PPI network/pathways to generate simulation
data including noise data items at low-expression and high-expression levels respectively.
To simulate the low-expression data noise in scRNA-seq data, we randomly selected
5,000 expression values from the selected genes’ expression data, which had real val-
ues with high confidence tested by the Chebyshev inequality theorem as mentioned
above, and replaced their expression values with zeros to introduce the dropouts and
low-expression noise data. Conversely, to simulate the high-expression data noise in
scRNA-seq data, we randomly selected 5,000 expression values from the gene expres-
sion data that had high confidence values, and replaced them with two times of the
maximum value in the raw data to introduce the high-expression noise data. Based
on the simulation data, we used the NetImpute method to recover the real values of
replaced data items in each type of simulated datasets. Figure 3(a-b) show the scatter
plots of the comparison between the real values of replaced items and their estimated
values by incorporating gene interactions in the PPI network. As shown in Fig. 3(a-b),

Table 1 The basic statistics of the datasets

Dataset Camp Darmanis Li
Cells 553 420 561
Genes (PPI-based) 7,856 8,335 11,049

Genes (Pathway-based) 2,520 2,879 3,715
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Fig. 3 The scatter plots of imputation in the simulated data. a—b The PPl network-based imputation for the
noise data at the low-expression and high-expression levels, respectively. e-d The pathway-based
imputation for the noise data at the low-expression and high-expression levels, respectively

we can see that there are high correlations between the PPI network-based estimation
data and the real values in raw data at both low-expression (r = 0.818, p < 2.2e — 16)
and high-expression (r = 0.791, p < 2.2e — 16) levels. Meanwhile, Fig. 3(c-d) show
the scatter plots of the comparison between the real values of replaced items and the
estimated values of them at the low-expression and high-expression levels by incorpo-
rating the gene pathway information. As shown in Fig. 3(c-d), we also see that there
are high correlations between the pathway-based estimation data and the real values at
both the low-expression (r = 0.788, p < 2.2e — 16) and high-expression (r = 0.745,
p < 2.2e — 16) levels. In conclusion, these correlation analyses demonstrate that the
proposed NetImpute method can estimate the noise data items accurately by incorporat-
ing the biological network information. We also noticed that the estimation accuracy of
noise data on the simulated data based on PPI network genes is slightly higher than the
estimation based on pathway genes. The reason of this may be that the PPI network is
overall larger than the pathway network and incorporates more interaction information
among genes.

In addition, to further illustrate the superiority of NetImpute on imputation of data
noise in scRNA-seq data, we compared the data distribution of genes by using dif-
ferent imputation methods of scRNA-seq data, including the popular methods-SAVER
[17], scImpute [4] and RESCUE [22]. Specifically, we deem that a better imputation
method can estimate gene expression that has more significant discrimination to sense
specific cell types from scRNA-seq data. Based on the human brain cells data (Dar-
manis data [31]), we selected the genes which have been reported having cell-type
specific function characters in neuronal cells’ diversity to investigate their expression
distribution in different cell types by using various imputation methods. For exam-
ple, the gene TP53BP2 was reported as one of the astrocytes cell-type specific genes
in terms of biological functions [45], while the MBP gene was reported as one of the
oligodendrocytes cell-type marker genes [31, 45], et al. Figure 4 shows the imputed
expression distributions in diverse cell-types’ samples of six example genes, which
have cell-type specific functions in brain neuronal cells. As shown in Fig. 4, com-
paring with other reference methods, the NetImpute imputed data have more similar
expression distribution on the cells of corresponding cell types. This indeed demon-
strates that the proposed NetImpute method can accurately recover the real values of
noise data items, thus to reveal more meaningful biomarkers in sensing of different

cell types.

Page 11 of 21
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Fig. 4 Examples of imputed expression distributions of genes that have cell-type specific functions in human
brain neuronal cell types. The Netimpute imputed gene expression have better distribution patterns in cell
types (have relatively centralized distribution in the same cell types)

Imputation based on PPl network improves the identification of cell types
In order to test whether the imputation of NetImpute based on the PPI network can
help to improve the accuracy of identifying cell types from scRNA-seq data, we com-
pared the accuracy performance of cell-types identification using different imputation
methods on the three scRNA-seq data. Specifically, we compared the performance of
NetImpute with four reference methods, including non-imputed data and imputed data
by SAVER [17], scImpute [4] and RESCUE [22]. Since NetImpute needs to input the PPI
network information, for the fairness of comparison, we used the overlap genes between
the raw scRNA-seq data and the PPI network in all experiments (data details are shown in
Table 1). In NetImpute, it automatically determined the number of principal components
(PCs) in PCA by analysing each data before the initially fuzzy clustering (Camp data: 4
PCs; Darmanis data: 6 PCs; Li data: 7 PCs). As recommended above, in both scImpute
and NetImpute methods, we set the cluster number of cell types as the true number in
the pre-clustering procedure (Camp data: 5; Darmanis data: 8; Li data: 9). The parame-
ters in other methods used their default values. Based on the imputed data, we used the
hierarchical clustering algorithm to identify cell types from each data by cutting the den-
drogram based on different distance heights. To evaluate the accuracy performance of
cell-types identification, we calculated the adjusted Rand index (ARI [46]) and the nor-
malized mutual information (NMI [47]) measurements between the predicted cell types
and the annotated cell types.

Let U = {u1, u, ..., up} to denote the true cell-type labels in p clusters, V' = {v1,v2, ..., vk}
to denote the predicted cell types in k clusters. # is the total number of cells. The overlap
between U and V can be summarized in a contingency table. The ARI can be calculated

as [12, 46]
Pk gy P @y ok by
ARI(U,V) = — l=: j=1 (kz) ; 121(;) ;:1(1)]/1(92) . -
3 (3) + D (-1 () S (D1/6)
where 7;; denotes the number of overlap cells between u; and v; (n; = |u; N V), a; is

the sum of the i-th row in the contingency table, b; is the sum of the j-th column in the
contingency table.
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The NMI is defined as follows [48],

2U(U, V)
NMIU,V) = ———— " — 9)
HU)+HV)
where I(U, V) is the mutual information between U and V. It is defined as
p k
|ul‘ﬁV1’| nluiﬁvj|
IU,Vv) = lo, (10)
;g n Sl x v

H(U) and H(V) are the entropy of U and V respectively. It is defined as

14 k
Ui U 7
HU) = — E ;Llog;l,H(V) =— E ;’log
i=1 j=1

2 (an
n

Since the number of predicted cell types depends on the distance parameter of the
dendrogram cutting in hierarchical clustering, to obtain more accurate cell-types pre-
diction for each method, we used different distance parameters to predict cell types and
selected the best one which obtained the highest ARI performance as the final prediction
parameter for each method.

Figure 5 shows the visualization of cell-type clusters through t-SNE [49] to do dimen-
sion reduction on the processed data by using different methods. As shown in Fig. 5,
we can see that the data imputed by the PPI-based NetImpute method tend to give
more dense data distribution in intra-clusters of cell types and improve the quality of
cell-types separation on most data comparing with other reference methods. For exam-
ple, on Camp data, NetImpute can separate the dosal cortex progenitor and ventral
progenitor cell types almost perfectly, while other methods cannot. To compare the cell-
types prediction performance of each method in experiments, we used various distance
height parameters in hierarchical clustering based on the imputed data and selected the
best cell-types prediction labels as the final results in comparison. Figure 6 shows the
ARI performance of cell-types prediction of each method using different parameters on
each data. We can see that the imputed data using the PPI-based Netlmpute method
tend to give more accurate cell-types prediction on most parameters. This illustrates
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Fig. 5 Visualization of the imputed data based on the PPl network genes. Three scRNA-seq data were used in
experiments and different cell types were denoted with different colors
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Camp Darmanis Li

Fig. 6 The ARI performance of cell-types prediction based on the PPI network-induced data by using
different distance parameters of clustering in three datasets

that the NetImpute method can help to improve the identification of cell types from
scRNA-seq data. Figure 7(a-b) show the ARI and NMI performance of cell-types predic-
tion using different imputation methods on three data. As shown in Fig. 7, the imputed
data using the PPI-based NetImpute obtain better performance on cell-types identifi-
cation on most experimental data. This indeed demonstrates that integrating the gene
association information in PPI network can recover more accurate expression values of
noise data in scRNA-seq data and thus to improve the identification of cell types from
scRNA-seq data.

In order to further illustrate the superiority of PPI-based NetImpute in cell-types iden-
tification, we investigated the expression distribution of the annotated cell-differentiation
genes on human cerebral organoid. Figure 8 shows the expression violin plots of
four example genes that related to cell-differentiation on Camp data [30]. The Camp
data includes five cell-differentiation related cell types on cells. To be consistent
with the functional differential of genes, we investigated the expression variation pat-
terns of those genes in cell-differentiation cell types. Specifically, the UBE3A [50],
NF1 [51, 52], IGFIR [53] and PAFAHI1B1 [54] genes are reported to be related to
the development of brain neuronal cells. As shown in Fig. 8, the PPI-based NetIm-
pute imputed data reveal better expressed variability patterns of related genes in
the differentiation of cell types. In conclusion, the PPI-based Netlmpute can impute
the scRNA-seq data accurately and thus enhance the identification of cell types
in practice.
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Fig. 7 The cell-types prediction performance based on the PPl network-induced data using different
methods in three datasets (the best parameter for each method was used in corresponding data). a The ARI
performance of cell-types prediction. b The NMI performance of cell-types prediction
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Imputation based on pathways improves the identification of cell types

We also tested whether the imputation of NetImpute based on gene pathways can
help to improve the identification of cell types from scRNA-seq data. Similar to the
experiments on the PPI-based imputation, we used the overlap genes between the raw
scRNA-seq data and gene pathways (Table 1) and also used the same analysis pipeline
and parameter setting methods in experiments. Figure 9 shows the visualization of cell-
type clusters using dimension reduction of t-SNE [49] on the pathway-based processed
data by using different methods. We can see that the data imputed by the pathway-
based NetImpute method tend to give more dense data distribution in intra-clusters
and improve the quality of cell-types separation on most data compared with other ref-
erence methods. Specifically, it separates the endothelial, oligodendrocytes and OPC
cell types more clearly than other methods on the Darmanis data. To further evalu-
ate the performance of the identification of cell types based on the imputed data, we
used different distance height cutting parameters in hierarchical clustering to identify
the best cell-types prediction of different methods and compared their performance
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Fig. 9 Visualization of the imputed data based on the pathway genes. Three scRNA-seq data were used in
experiments and different cell types were denoted with different colors
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Camp Darmanis Li

Fig. 10 The ARI performance of cell-types prediction based on the pathway-induced data by using different
distance parameters of clustering in three datasets

on different data. Figure 10 shows the ARI performance on cell-types prediction of
each method based on different clustering parameters on each data. We can also see
that the imputed data using the pathway-based NetImpute method tend to give more
accurate cell-types prediction on most clustering parameters comparing with other
methods. Figure 11(a-b) show the ARI and NMI performance on cell-types predic-
tion using different imputation methods on the three data. As shown in Fig. 11, the
imputed data using the pathway-based Netlmpute method obtain better performance
on cell-types identification on most experimental data. This indeed demonstrates that
integrating the gene association information in pathways can estimate more accurate
gene expression of noise items and thus to improve the identification of cell types from
scRNA-seq data.

Fusion of imputed data is more powerful in identifying cell types

One of the main contributions in this work is that we fuse the imputed data based on
the PPI network and gene pathways to identify cell types from scRNA-seq data. In order
to demonstrate the advantage of data fusion in cell-types identification, we compared
the performance of cell-types prediction on each individual imputed data and the fused
imputed data respectively. In detail, since the reference imputation methods cannot inte-
grate the PPI network and pathway information to impute scRNA-seq data, to be fair for
the methods comparison in our experiments, we only used the expression data of genes
in the PPI network/pathways which intersect with the gene set in raw scRNA-seq data.
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Fig. 11 The cell-types prediction performance based on the pathway-induced data using different methods
in three datasets (the best parameter for each method was used in corresponding data experiments). a The
ARI performance of cell-types prediction. b The NMI performance of cell-types prediction
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Based on the integrated distance information across cells, we used the hierarchical clus-
tering algorithm to identify cell types by using different dendrogram cutting parameters.
Figure 12 shows the ARI performance on cell-types prediction of each method using dif-
ferent distance height cutting parameters. We can see that the NetImpute method has
better prediction performance than other methods under most parameters on Camp and
Darmanis data; while on the Li data, both scImpute and NetImpute have better predic-
tion performance than others, although scImpute looks better than NetImpute under
most parameters. We set the clustering parameter on each type of imputed data as the
one which obtained the best ARI performance. Tables 2 and 3 show the ARI and NMI
performance on the cell-types prediction in terms of different imputation methods and
data sources. As Tables 2 and 3 shown, the NetImpute method obtains better prediction
performance than others not only on the individual data but also on the fusion data in
most data conditions. This demonstrates the NetImpute imputation method can help to
improve the identification of cell types. In addition, we also notice that the fused impu-
tation data based on the PPI network and gene pathways can help further enhance the
identification of cell types to most reference methods. This demonstrates that integrat-
ing multiple types of prior biological data can effectively improve the identification of cell
types from scRNA-seq data.

Discussion

The advance of scRNA-seq technologies provides a great opportunity to investigate
the transcriptional variability characteristics at the single-cell resolution. However, the
dropout events and high background noise are big challenges in scRNA-seq data analy-
ses at present, although many imputation models have been proposed over the past years.
Identification of cell types is one of the most important research purposes on scRNA-seq
analyses to reveal the transcriptional variability among cells. The NetImpute framework
integrates multiple types of biological networks to impute scRNA-seq data accurately and
fuses different types of imputation data to identify cell types automatically. To handle the
dropout events in cell-types clustering, although there are many statistic tools available at
present, most of them only consider the data noise at low-expression level, such as SAVER
[17], scImpute [4], RESCUE[22] and CIDR [19], etc. However, the large amounts of data
noise in scRNA-seq data can also occur at high-expression level since the technical biases
[10, 11]. There are few methods can handle the high-expression noise in scRNA-seq data
currently. The NetImpute imputation model uses a statistic method to detect data noise

T iRaw
T~ TISAVER
scimpute

[_INetimpute

Camp Darmanis Li

Fig. 12 The ARI performance of cell-types prediction based on the fused imputation data (PPI-based and
pathway-based) by using different distance parameters in three datasets
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Table 2 The ARI performance of cell-types prediction on different types of imputation data in three
datasets. The PPI-based, pathway-based and fused imputation data were used in comparison

Camp Darmanis Li
Dataset

PPI Pathway  Fusion  PPI Pathway  Fusion PPl Pathway  Fusion
Raw 0341 0.462 0612 0.726 0.828 0.794 0.678 0.705 0.708
SAVER 0.464 0.445 0.578 0.854 0.881 0.858 0.680 0.720 0.680
scimpute 0.443 0425 0.545 0.655 0.701 0.758 0.750 0.733 0.754
RESCUE 0411 0.305 0554 0816 0.778 0.879 0752 0753 0.799
Netimpute  0.695  0.702 0.673 0.868 0865 0873 0.788 0.773 0.792

at both low-expression and high-expression levels and imputes the noise data items by
integrating gene association information in the PPI network and gene pathways. This
method overcomes the limitation of current methods that they cannot handle the noise
data items at high-expression level. In addition, integrating the prior gene association
information in biological networks to impute the scRNA-seq data provides a new idea to
handle high-noisy scRNA-seq data to obtain more accurate estimation data. Besides, the
NetImpute integration model automatically fuses multiple imputation data to identify cell
types. It provides a new framework to integrate multiple types of biological information
to improve the identification of cell types on the downstream analyses of scRNA-seq data.

One of the most important features in the NetImpute imputation model is that users
need to specify the number of fuzzy cell subpopulations K before running the imputation
algorithm. Similar to scImpute [4], it can be selected by referring the clustering result of
the raw data or the cluster number of user estimate based on the prior data knowledge.
The selection of K determines the cell subpopulation units in fitting of imputation model.
Although we use the fuzzy clustering method to detect the preliminary cell subpopula-
tions in NetImpute to ease the effect of the parameter, we still recommend to set it close
to the true number of cell types in raw data since the NetImpute performs imputation
based on the cell samples in the same subpopulations. Another important feature is the
parameters of 6; and 6, in Eq.2, which control the thresholds of variation to determine the
noise data items at the low-expression and high-expression levels, respectively. Large val-
ues of these two parameters lead to low proportion imputation of data noise. In this study,
considering the large rate of dropout events at low-expression level and relatively small
rate of noise at high-expression level in raw scRNA-seq data, we set ; = 0 and 6, = 0.5
in default. In general, users can set the parameters to control the rate of imputation in
practice.

In the NetImpute integration model, we only fused the imputed data based on the PPI
network and gene pathways to identify cell types at present. Using more complete and

Table 3 The NMI performance of cell-types prediction on different types of imputation data in three
datasets. The PPI-based, pathway-based and fused imputation data were used in comparison

Camp Darmanis Li
Dataset

PPI Pathway  Fusion PPI Pathway  Fusion PPI Pathway  Fusion
Raw 0.496 0.532 0.642 0811 0.853 0.771 0.715 0.806 0.850
SAVER 0.530 0.558 0.643 0.869 0.862 0.847 0.723 0.823 0.840
sclmpute 0.486 0.447 0.565 0.739 0.759 0.791 0.865 0.862 0.863
RESCUE 0.548 0485 0.588 0.827 0.819 0.850 0.893 0.805 0.919

Netimpute  0.704  0.701 0.664 0.863 0.871 0.872 0.900 0.884 0.909
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accurate association information between genes may help to improve performance on
cell-types prediction. Although we used the relatively complete PPI network in this study,
the noise in the PPI network may also affect the imputation model’s learning. More accu-
rate PPI network with considering the noise associations and other types of biological
networks, such as the gene regulatory network, etc., can also be used to extend NetImpute
framework. In addition, we used the linear regression model to impute the noise items
at present. The non-linear prediction model hopes to consider more complex expression
associations among genes and may give more accurate imputations. Besides, in the data
fusion model, we simply concatenated the distance matrixes from multiple types of data
to identify cell types according to hierarchical clustering. The complicated similarity net-
work fusion methods may hope to be used to further improve the accuracy of cell-types
prediction in future.

Conclusions

We propose an integrated framework, NetImpute, to identify cell types from scRNA-seq
data by incorporating biological networks to impute the raw noise data items and fusing
multiple types of imputation data. Comprehensive experiments on three real sScRNA-seq
data demonstrate that: (1) The proposed biological network-based imputation model can
estimate more accurate scRNA-seq data, and the data imputed by NetImpute is helpful to
improve the identification of cell types and reveal the expression patterns of genes in cell
types. (2) The proposed integration model based on multiple types of imputation data has
better performance on the identification of cell types from scRNA-seq data. In conclusion,
the NetImpute model provides a new framework to identify cell types from scRNA-seq
data by integrating multiple types of biological networks. We hope the NetImpute would
be a useful approach to analyse scRNA-seq data in future.
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