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Abstract Introduction: Autopsy findings have shown the entorhinal cortex and transentorhinal cortex are
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among the earliest sites of accumulation of pathology in patients developing Alzheimer’s disease.
Methods: Here, we study this region in subjects with mild cognitive impairment (n 5 36) and in
control subjects (n 5 16). The cortical areas are manually segmented, and local volume and shape
changes are quantified using diffeomorphometry, including a novel mapping procedure that reduces
variability in anatomic definitions over time.
Results: We find significant thickness and volume changes localized to the transentorhinal cortex
through high field strength atlasing.
Discussion: This demonstrates that in vivo neuroimaging biomarkers can detect these early changes
among subjects with mild cognitive impairment.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Entorhinal cortex; Mild cognitive impairment; Braak staging; Diffeomorphometry; Shape analysis; Longitudinal
analysis
1. Background

The anatomic localization of the early pathologic changes
associated with Alzheimer’s disease (AD) aligns with the
clinical presentation of most patients in the early symptom-
atic phase of AD. By clinical, cognitive, and functional
criteria, mild cognitive impairment (MCI) is considered an
intermediate state between individuals who are cognitively
normal and those with a clinical diagnosis of dementia
[1,2]. Impairment of episodic memory, that is, the ability
to acquire and retain new information about life events,
that is greater than expected for a person’s age is most
commonly observed in subjects with MCI who progress to
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AD and has been used to define a subtype of MCI called
amnestic MCI [3]. Quantitative studies of autopsied brains
from well-characterized patients at this phase of AD have
demonstrated a substantial loss of neurons in the entorhinal
cortex (ERC) [4–6]. A broad consensus now exists on this
locus for early neurodegeneration and the subsequent
spread of pathology along connectional pathways as
disease progresses causing further symptomatic worsening
through the stages of dementia.

Against this background, localized anatomic change in the
medial temporal lobe observed using structural magnetic
resonance imaging (MRI) has provided an indirect measure
of neuronal injury [7,8]. In particular, entorhinal cortical
atrophy has been identified as one of the MRI measures that
predicts longitudinal progression among symptomatic cases,
with greater atrophy associated with greater clinical disease
severity [9–12] (also see recent review [13]). ERC atrophy
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Table 1

Baseline demographic information for control and mild cognitive

impairment (MCI) groups

Parameter Control MCI
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detected byMRI has also been predictive of progression from
normal cognition to MCI [14]. Such atrophy has been associ-
ated with impairment on multiple memory tests confirming
that this atrophy has clinical relevance for patients [15].

The field of computational anatomy [16] has been working
toward addressing the need for quantitative, well-researched,
standardized structural imaging biomarkers for neurodegener-
ative disease. Patterns of atrophy at the population and individ-
ual level are described quantitatively by constructing smooth
mappings (diffeomorphisms) that identify correspondences
between a well-characterized template image and a given
patient image. Properties of these mappings, such as how
much they expand or contract, are used to give a quantitative
description of biological change. These tools have been previ-
ously applied to a study of the medial temporal lobe [17],
where significant atrophywas found present in themost lateral
portion of the ERC. In this study, we use structural MRI to
investigate the cortical region further lateral, the transentorhi-
nal cortex (TEC), which is one of the sites of the earliest
detected pathology as reported by Braak and Braak [18].

Because of its proximity to meninges and the oculomotor
nerve, as well as the fact that its definition is specified by
distant landmarks rather than local contrast changes [19],
this area is difficult for automatic segmentation techniques.
Although some techniques [20] are addressing these con-
cerns, we choose to use manual segmentations in this study.
In this context, one important source of variability is the con-
sistency of segmentations over time.

Our approach to overcoming this limitation is to develop
a longitudinal filtering procedure, passing a template seg-
mentation through each time point along a continuous trajec-
tory. This allows data to be shared between various time
points, removing noise associated with variable structure
definition over time. The trajectory we choose is modeled
by two geodesics through the space of diffeomorphisms,
one from template to baseline and other from baseline
through each follow up. This leads to a procedure that is
essentially linear regression through the high-dimensional
space of images.

We study a sample of subjects from the Alzheimer’s dis-
ease neuroimaging initiative (ADNI) who are cognitively
normal or have MCI by clinical and cognitive criteria at
baseline. We measure volume changes over time to compute
volumetric atrophy rate due to MCI, and we measure local
volume and thickness over time to compute the spatial distri-
bution of these changes. Regions where atrophy is signifi-
cantly different between groups are identified using
permutation testing, controlling for multiple comparisons
using the maximum statistic.
Number 16 36

Age 71.7 6 6.01 72.0 6 7.61

Female gender 43.8% 50.0%

CDR 0 6 0 1.57 6 0.719

Mini-Mental State Examination 29.4 6 1.03 27.4 6 1.77

Wechsler Memory Scale (WMS) Logical

Memory (Immediate)

14.3 6 2.27 3.42 6 2.55

WMS Logical Memory (Delayed) 15.2 6 3.22 7.06 6 3.22
2. Methods

2.1. Subjects

Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). MRI scans
from subjects who met ADNI criteria for MCI at baseline
were selected for analysis. Inclusion criteria for subjects
with MCI included evidence of impaired performance on
Logical Memory Subtest of the Wechsler Memory Scale
(based on age and education adjusted norms), a score of clin-
ical dementia rating (CDR) �0.5, and a clinical diagnosis of
MCI. TheMCI subjects were all selected to be amyloid b pos-
itive based on cerebrospinal fluid cutoff values established by
the ADNI Biospecimen Core (i.e., less than a cutoff score of
192 pg/mL) [21] and age between 55 and 85 years.

The criteria for control status in ADNI included evidence
of performance within the normal range on the Logical
Memory Subtest of the Wechsler Memory Scale (based on
age and education adjusted norms), a score of CDR 5 0,
and the absence of a clinical diagnosis of MCI or dementia.
Control subjects were included only if they were amyloid b
negative (greater than a cutoff of 192 pg/mL). In total, 36
subjects with amnestic MCI and 16 control subjects were
selected. Their baseline demographics and cognitive scores
are summarized in Table 1.
2.2. Manual segmentation protocol

Analysis included subjects who had no discontinuity in
their collateral sulcus (type I variant described in [22] and
further discussed in [23]) and was restricted to the left side
of the MRI scan. Most subjects examined were found to
have this anatomic variant on the left side, but many had
alternative variants on the right. Only subjects scanned for
at least three time points for more than 2 years were
included. Most were scanned at 6, 12, and 24 months after
baseline. Data for one subject is shown in Fig. 1 left panel.
We denote the ith subject’s jth scan time as tij.

ERC and TEC were segmented manually, using anatomic
boundaries described in [19]. As seen in the coronal plane,
the boundaries can be described by

� Rostral: 4 mm rostral to hippocampal head
� Caudal: 2 mm caudal to gyrus intralimbicus
� Medial: As far as visible gray/white boundary
� Lateral: Deepest part of collateral sulcus

Segmentations were performed in Seg3D version 1 [24].
One example is shown in the coronal plane in Fig. 1 right

http://adni.loni.usc.edu


Fig. 1. Left panel: A time series for one subject with MCI is shown, with structural imaging together with medial temporal lobe segmentations (magenta, hip-

pocampus; cyan, amygdala; red, ERC; green, TEC; blue, perirhinal cortex). Volumetry of the ERC1 TEC is shown indicating a trend of 25% atrophy per year

for more than 2 years. Note that this subject was selected for illustrative purposes and shows atrophy much larger than the average for the population as a whole,

which is 5.6% per year. Right panel: Coronal view of example T1 image. In the left hemisphere, segmentations of the hippocampus (magenta), amygdala (cyan),

ERC (red), TEC (green), and perirhinal cortex (blue) are shown, with collateral sulcus indicated by a yellow arrow. The region we analyze in this work extends

along the medial bank to the deepest part of the sulcus. Bottom panel shows close up of left temporal lobe as indicated by frame. Abbreviations: ERC, entorhinal

cortex; MCI, mild cognitive impairment; TEC, transentorhinal cortex.
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panel, together with nearby medial temporal lobe structures.
Note that the region we consider extends laterally into the
collateral sulcus, beyond the ERC region that has been
studied previously.

Within subject images were aligned rigidly to baseline by
minimizing sum of square difference between T1 voxel in-
tensities. All segmentations were aligned to a template using
four landmarks placed automatically at the corners of the
ERC and TEC. The resulting manual segmentation images
for patient i at time tij are denoted by Jij.
2.3. Diffeomorphic image matching

We compute diffeomorphic mappings used to match a
template binary segmentation image I to target binary seg-
mentation images Jij (corresponding to subject i at time tij)
by integrating a time varying velocity field

d

dt
4t 5 vtð4tÞ

with initial condition 4t 5 Id (identity). The vector fields vt
are chosen to belong to a reproducing kernel Hilbert space V,
with kernel

Kðx; x0Þ5 1

ð2ps2
bÞ3=2

exp

�
2

1

2s2
V

jx2x0j2
�

where j,j denotes the norm of a vector in R3. Smoothness
criteria for vector fields in the space V to generate diffeomor-
phic transformations are discussed in [25].

We choose to parametrize vt by a function p0 supported on
the boundary of an atlas surface as in [26]. Describing this
surface parametrically through a function f : U3R2/R3,
our velocity can be written as
vðxÞ5
Z
U

Kðx; f ðuÞÞp0ðuÞ du

This representation is optimal when images to be matched
are piecewise constant functions [27] and is a parsimonious
model otherwise. The surface f is represented as a discrete
triangulated surface by specifying a list of vertices and faces.
For a further reduction in complexity, we restrict ourselves to
modeling p0, the initial condition to a geodesic flow given by

d

dt
ftðuÞ5 vtðftðuÞÞ; d

dt
ptðuÞ5 2DvTt ðftðuÞÞ

as derived in [27]. Here Dv denotes the matrix of partial
derivatives whose ith row is the gradient vector of the ith
component of v, and T denotes the transpose.

The binary segmentation images to be matched are
deformed using functional composition with the inverse
It5I0ð421

t Þ. The template image I0 and corresponding triangu-
lated surface f0 are estimated from the population in a Bayesian
setting as originally described in [28,29] with details discussed
in [30]. Our initial guess (hypertemplate) used as an input to the
template estimation algorithm was created by (1) computing
the voxel-by-voxel average of each baseline rigidly aligned
segmentation, (2) constructing a smooth triangulated surface
contouring this average image, and (3) constructing a binary
image from this surface by setting insidevoxels to 1 and outside
voxels to 0. The resulting template used is a deformation of this
initial guess that is close to each member of the population (a
population average in the Riemannian sense).

To summarize, in this work we use binary images (I) for
our cost function’s matching term, and we use a surface (f) to
parameterize their deformation. The two are related because
this surface contours the deforming atlas image. Unlike



D.J. Tward et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 9 (2017) 41-5044
discrete images, our surface provides smoothness and well-
defined normals, allowing it to be used as an interpretable
and parsimonious representation.
2.4. Longitudinal mapping

We overcome variability in anatomic definitions over
time by mapping our template simultaneously onto each
scan in a time series. Our approach is to define two geodesic
trajectories parametrized by the functions p0and p1. This
results in diffeomorphisms 40

t (from template to baseline),
indexed by t˛½0; 1�, and 41

t from baseline through the time
series, indexed by t˛½t1; tn�with 41

t1
5 Id.

We are given a template segmentation I0 and a target fam-
ily of target segmentations Jij at times tijfor j˛f1;.;Nig.
We seek to minimize the data fidelity function

XN
i51

1

2s2
I
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�
4
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�
2Jij
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L2

wherek,kL2 is the L2 norm of a scalar-valued function,
defined by kIkL25

R
U
jIðxÞj2 dx and s2I is a positive real

number controlling the relative weight of the data fidelity
term in our cost function.

In addition, we include regularization terms of the form

kpk2V� ^

Z Z
U!U

pTðuÞKðf ðuÞ; f ðu0ÞÞpðu0Þ du du0

This is the norm of the initial velocity vector field on our
reproducing kernel Hilbert space of smooth functions. See
[31] for details. Optimal mappings are computed by
minimizing the cost function
C
�
p0; p1
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1c ðfemaleÞi1ei1εij (1)
for s20 and s21 positive real numbers controlling the relative
weight of each regularization term. This implementation is
discussed in [30] with computational details including
graphics processing unit performance discussed in [32].
2.5. Global volume measurement

At each time point, we measure the volume of the region
by summing voxels in the segmentation images and
multiplying by the voxel size. When images are not binary
due to linear interpolation on rigid alignment, we sum their
interpolated value, which we interpret as a voxel that is
fractionally filled by the anatomy of interest.

2.6. Local measurements

Local atrophy measurements are calculated from proper-
ties of the mappings, 41

tij
ð40

1Þ. The local change in volume
between template and subject i time j is estimated at each
vertex xk of our triangulated surface as the determinant of
the Jacobian of the mapping

���D41
tij
ð40

1ðxkÞÞ
���.

The local change in thickness is estimated as the ratio of
the Jacobian determinant to the local change in surface area
(“volume equals surface area times thickness”). This
approach is valid when the template is a thin laminar
structure like the ERC and TEC. Local surface area change
is estimated by computing, for each triangular face of our
template, the deformed triangle area divided by the template
triangle area. This measure is interpolated from faces to
vertices by assigning to each vertex the sum of 1/3 of the
value at its neighboring faces. This choice of interpolation
preserves the total area.
2.7. Mixed-effects modeling

We estimate the atrophy rate using a log-linear mixed-
effects model, treating gender as a fixed effect and patient-
to-patient variability as a random effect. With yij a volu-
metric measurement (either the volume of the structure or
measure of local thickness or volume change at some vertex
on our template) for subject i and scan j, the model can be
written as
where the constants a, b, and c are estimated by maximum
likelihood. Here ei is the patient-specific random effect
with expected value to be estimated and εij is the measure-
ment noise. Both are assumed to be normally distributed
with zero mean, and variance to be estimated by maximum
likelihood. Here MCIi is a binary variable indicating
whether subject i has MCI or is a control. The same is
true for the variable femalei. We choose a log-linear model
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because each volumetric measure analyzed is constrained
to be positive.

The value b1 b0MCIi is related to annual atrophy rate
percentage by the equation

Atrophy rate5 100ð12 expðb1 b0MCIiÞÞ

For small values this is approximately
atrophy rate5 100ð2 b2 b0 MCIiÞ, so for example a value
of b 5 20.02 corresponds to about 2% tissue loss per year.

We test the null hypothesis that a0 5 b0 5 0, using a
likelihood ratio test statistic and permutation testing with
10,000 permutations. The nuisance variable c is estimated
under the null hypothesis, and permutation testing is
performed on the residuals.We address the multiple compar-
ison problem by using the maximum statistic to control
familywise error rate at 5% as described in [33].

2.8. High field atlasing

We visualize our results with respect to an atlas imaged at
high field strength where a partition of the ERC and surround-
ing area could be determined using the protocol described in
[19,34]. An ex vivo specimen of a patient with AD was
scanned at 11 T and manually segmented as shown in
Fig. 2. Details of this procedure are also described in [35].

Note that the nomenclature in this region is used differently
by different authors. Our high field partition contains a region
referred to the sulcal subfield of the ERC in [34], which is
referred to as the TEC in [19] and throughout our work.
3. Results

3.1. Manual segmentations and longitudinal filtering

Examples of the anatomic structures used in our analysis
are shown in Fig. 3. Our triangulated surface template is
shown at left in cyan, and isocontours of our manual
Fig. 2. High field atlas constructed from an ex vivo specimenwith Alzheimer’s dise

amygdala, hippocampus, entorhinal cortex, and transentorhinal region are indicat
segmentations are shown in red. The results of our mapping
algorithm are shown in blue.

To demonstrate the range of atrophy in the subjects,
Fig. 3 top shows a case with no volume loss on top, and a
case with substantial volume loss on the bottom. To
demonstrate our mapping method’s ability to filter out
variability, Fig. 3 bottom shows a case with low variability
on top and high variability on the bottom. Note that in the
low variability case, defects in the segmentation, such as
holes, are still filtered out. In the high variability case,
variations in the rostral-caudal extent of the cortex are
filtered out.
3.2. Volume results

Measurements of the total volume of ERC and TEC are
shown as a function of elapsed time in Fig. 4. The left side
shows raw measurements. The right side shows data
corrected for the effect of gender and patient variability
(the expected value of ei) under the alternate hypothesis
that there is a difference between the control andMCI group.
The null hypothesis is rejected with P 5 .002.
3.3. Local atrophy results

Our estimated local thickness atrophy rate is shown in Fig. 5
left panel. The top row shows the atrophy for subjects withMCI
(b1b0 from (1)). The second row shows the difference between
MCI and control groups (b0 only). The third row shows the
same, but only in regions where we can reject the null hypoth-
esis ða0 5 b0 5 0Þ with an family-wise error rate of 5%. The
final row shows P values corrected for multiple comparisons.
The global null hypothesis of no difference between MCI
and control groups is rejected with P 5 .0002.

The estimated volume atrophy rate is shown in Fig. 5
right panel. The global null hypothesis is rejected with
ase scanned in an 11 Tmagnetic resonance imaging scanner. Subfields of the

ed in the legend to the left.



Fig. 3. Examples of manual segmentations (red) and outputs of our mapping procedure (blue) over time (left to right). A superior view is shown with medial up

and rostral right. Top to bottom: low atrophy, high atrophy, low variability, high variability.
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P5 .0043. Group differences are found in roughly the same
region for both change in thickness and change in volume,
toward the lateral side of the cortex examined. The local
volume change measure also shows some significant group
differences more medially.

3.4. High field atlasing

These results are mapped, using the same techniques
described previously but with only one time point, onto
our high field atlas partition and are shown in Fig. 6. With
this technique, it can be seen that most of the significant
changes are localized to the TEC (referred to by some
authors as the sulcal region of the ERC). Some changes
are also located more medially in the lateral subfield and
the intermediate caudal subfield. The local volume change
measure also shows some changes in the intermediate
superior subfield.
Fig. 4. Volumetry shown as a function of elapsed time with control subjects show

panel: raw data. Right panel: data corrected by the effect of gender and expected
4. Discussion

This study demonstrates in vivo changes on MRI at the
millimeter scale that colocalizes extremely well with neurofi-
brillary tangles found at autopsy in Braak stages I and II, the
transentorhinal stage [18], and identifies a specific region
whose atrophy could be used as an appropriately designed
and standardized biomarker of disease. Measuring atrophy in
this specific region at the population level may be useful for
determining efficacy of disease-modifying interventions
before cognitive changes occur. This contributes to a growing
body of evidence that imaging biomarkers in the entorhinal re-
gion can be sensitive to changes in early AD. The quantitative
nature of this work overcomes some criticisms of structural
neuroimaging as a biomarker for AD as described in [36].

An important consideration that arises when using this
filtering method is whether the variability being removed
is because of manual segmentation noise or because of
n in blue and mild cognitive impairment (MCI) subjects shown in red. Left

patient variability. The null hypothesis is rejected with P 5 .002.



Fig. 5. Left panel: Local thickness atrophy computed from Jacobian. Right panel: Local volume atrophy computed from Jacobian. First row, atrophy rate for

MCI subjects; second row, difference in atrophy rate between MCI and control groups; third row, results from second row set to zero in regions not statistically

significant 5% FWER; bottom row, P values corrected for familywise error rate.
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true biological variability. Filtering techniques should be
considered in the context of this bias variance trade-off.
We have attempted to address this by resegmenting and re-
filtering eight scans. From repeated segmentations we esti-
mate a median Dice overlap (volume of intersection
divided by average volume) of 0.801 for manual segmenta-
tions and 0.861 for filtered segmentations, the second being
significantly improved (P 5 .0078, signed rank test). These
numbers are significant given that this is a laminar structure
with thickness of only a few voxels, and the large majority of
errors are within one voxel. This improvement in reproduc-
ibility, together with good overall mapping accuracy,
demonstrates that the procedure is likely removing noise
and not the biological signal of interest. This is consistent
with earlier work [37], where the cross-sectional version
of this filtering procedure was shown to improve reproduc-
ibility across repeated scans and visits.

This study used two approaches to be sensitive to early
structural changes in AD. First, motivated by histologic evi-
dence, we focus our analysis on the entorhinal and transento-
rhinal region. Although many authors have studied the ERC,
our region includes tissue lateral to most definitions of the
ERC. A review of publications based on the ADNI dataset
[38] describes the involvement of the ERC volume and thick-
ness in disease progression, whereas the transentorhinal region
is not discussed. Second, our method considers a detailed
spatial distribution of structural changes, as opposed to
analyzing thickness or volume averaged over larger regions.
Although more recent work has been honing in on the transen-
torhinal region, such as [39] that quantifies changes in



Fig. 6. Entorhinal and transentorhinal cortex partition. Bottom left: significant thickness atrophy rate; bottom right: significant volume atrophy rate.
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Broadman’s area 35, our analysis can detect more localized
patterns of atrophy.

This work follows a trend in shape analysis in medical
imaging to account for longitudinal changes explicitly.
Similar approaches (known as geodesic regression) have
been described in a very general setting in [40] and have
been extended to hierarchical models in [41] and to aligning
one time series to another [42]. In [43], several different
approaches to parametrizing the trajectory in longitudinal
mapping are outlined, including the two geodesic techniques
used here, the piecewise geodesic technique used in [42] and
higher order spline techniques. Longitudinal Freesurfer [44]
provides an alternative approach to managing longitudinal
data, where each scan in a time series is analyzed using a com-
mon subject-specific initialization to an optimization process.
Many of these approaches are designed to allow sudden
changes in the time course of the trajectory. The technique
used here was designed specifically to avoid sudden changes,
which in our application were likely a source of noise.

One limitation of this study is the exclusion of anatomic
variants of the collateral sulcus, and our future work will
expand to a larger number of subjects. However, only 16%
of subjects examined did not have the type I variant on the
left side.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed and Google
Scholar) sources and meeting abstracts and presenta-
tions. This included both research and reviews in
Alzheimer’s and mild cognitive impairment defini-
tions and pathology, as well as techniques in statisti-
cal shape analysis. These works are appropriately
cited in this study.

2. Interpretation: Our findings demonstrate in vivo
changes in the transentorhinal cortex in patients
with amnestic mild cognitive impairment using
high-resolution magnetic resonance imaging that
colocalizes with accumulation of neurofibrillary
tangles observed at autopsy in Braak stages I and II
and identifies a specific region whose atrophy could
be used as a biomarker of disease progression.

3. Future directions: The work presented in this study
will be expanded to include subjects with anatomic
variations in the collateral sulcus and to a larger sam-
ple size. The potential role of this approach for deter-
mining efficacy of disease-modifying interventions
before cognitive changes occur will be investigated.
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