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ABSTRACT
Kv1.5 potassium channel, encoded by KCNA5, is a promising target for the treatment of atrial fibrillation,
one of the common arrhythmia. A new series of arylmethylpiperidines derivatives based on DDO-02001
were synthesised and evaluated for their ability to inhibit Kv1.5 channel. Among them, compound DDO-
02005 showed good inhibitory activity (IC50 ¼ 0.72lM), preferable anti-arrhythmic effects and favoured
safety. These results indicate that DDO-02005 can be a promising Kv1.5 inhibitor for further studies.
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Introduction

Atrial fibrillation (AF) is one of the most common clinical arrhyth-
mia with a high prevalence in general population1, which has a
close relationship with other cardiovascular diseases such as
stroke, heart failure and ischaemic heart disease2,3. The atria in
patients with AF can develop sustained, rapid (400–600 per
minute) and irregular impulsion4, leading to a reduced quality
of life.

An important mechanism for AF is atrial electrical remodelling,
which is characterised by significant shortening of atrial effective
refractory period (ERP) and action potential duration (APD)5,6

accompanied by prolonged ventricular conduction. This patho-
logical phenomenon is triggered by the weakening of ultra-rapid
delayed rectifier potassium current (IKur) through ultra-rapid
delayed rectifier potassium channel encoded by KCNA5 (Kv1.5)

gene7–9, which is only expressed in atria10,11. Scientists have dis-
covered that over-expression of Kv1.5 reconstituted a 4-aminopyri-
dine-sensitive outward Kþ current, shortened the action potential
duration, eliminated early after depolarisations, shortened the QT
interval, decreased dispersion of repolarisation, and increased the
heart rate6. The underlying therapeutic principle seems clear that
Kv1.5 current suppression is expected to lead to an extension in
APD and increase the ERP of fibrotic atria12,13.

Kv1.5 channel contains eight subunits, including four identical
pore-forming a-subunits encoded by the KCNA5 gene and four
accessory b-subunits (Kvb1.2, Kvb1.3, and Kvb2.1) that bind to the
N-terminus of the a-subunit to form a4b4 complexes. Every a-sub-
unit contains six transmembrane-spanning segments (S1–S6) with
cytoplasmic N-and C-terminal domains (Figure 1)14. The b-subunit
field received a major boost when rKvb1.1 and rKvb2.1 from
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ratbrain cDNA libraries were isolated by bovine amino acid
sequence14,15. Since then, multiple Kþ channel b-subunit genes
such as Kvb3.1, Kvb4.1, Kvb1.2, Kvb1.3 were cloned from brain
and cardiac resources, respectively16–18. Kvb1.1–1.3 proteins arise
by alternative splicing from the same gene17, whereas Kvb 2.1,
3.1, and 4.1 are derived from distinct genes. Though multiple Kþ

channel b subunit genes were encoded by different genes, they
shared a common conserved core of over 85% amino identity,
which laid a foundation for interaction with Kva subunits.
Phosphorylation of the b-subunit is important in modulation of

a/b interactions11. In Kv1.5 channel, Kv1.5 a-subunits co-assembled
with Kvb1.2 subunits to form the IKur in human atrium19.

So far, two categories of Kv1.5 inhibitors have been discovered:
selective inhibitors, including AVE-0118, MK-0448, S-0100176,
etc., and non-selective inhibitors such as Amiodarone,
Vernakalant and so on (Figure 2). The selectivity of IKur blockers
to prolong atrial versus ventricular ERP can be explained by the
presence of IKur in atria. However, in healthy non-remodeled atria,
the prolongation of AERP can be related to the blockade of INa.
Most of the new drugs developed as selective IKur blockers show

Figure 1. (A) Structure of one Kv1.5 a-subunit with six membrane-spanning domains and the intracytoplasmic accessory b-subunits. (B) a and accessory b-subunits
co-assemble as tetramers to form the functional channel.

Figure 2. Structures of (A) AVE-0118. (B) MK-0448. (C) S-0100176. (D) Amiodarone hydrochloride. (E) Vernakalant hydrochloride.
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mixed ion channel activity, blocking other cardiac Kþ, Ca2þ and
Naþ currents, and their affinity is comparable to IKur, that is, they
produce non-selectivity IKur blockade19. For instance, Vernakalant
inhibits the INa and slow conduction velocity and increase diastolic
threshold of excitation in atria but not in ventricles20–22, and some
IKur blockers such as AVE-0118 inhibits Ito to prolong human APD
at the plateau level23. Therefore, drugs that affect multiple cur-
rents can be much more effective than blockers that affect only
one current, as several different ionic currents contribute to
human atrial AP24.

In order to discover Kv1.5 inhibitors with new scaffold, an in-
house compound library was screened using whole-patch clamp
technique. Compound DDO-02001 with moderate inhibitory
effect on Kv1.5 channel (IC50 ¼ 17.7 lM) was obtained as a lead
compound. To improve the Kv1.5 inhibitory activity, a series of
compounds with arylmethylpiperidines skeleton were designed
(Figure 3) and synthesised, their biological activities were tested
and structure-activity relationships (SAR) were discussed.
Ultimately, the potent Kv1.5 channel inhibitor DDO-02005 was
acquired with acceptable therapeutic effect in atrial fibrillation
model and considerable inhibitory effect on arrhythmia, herein
the arrhythmia was induced by aconitine in rats.

Experimental

Chemistry

All starting materials and solvents were purchased from commer-
cial sources and used without any additional purification. Melting
points (m.p.) were detected by a Melt-Temp II apparatus. All the
reactions were monitored using TLC silica gel plates (GF254,
0.25mm) and visualised under UV light. The 1H-NMR and 13C-NMR
spectra were measured on a Bruker AV-300 instrument using deu-
terated solvents with tetramethylsilane (TMS) as internal standard.
High-resolution mass spectra (HRMS) were obtained on Water Q-
TOF micro mass spectrometer. The purity (�95%) of the target
compounds was verified by High Performance Liquid
Chromatography (HPLC) analysis (Agilent C18 column,
4.6� 150mm, 5 lm).

Synthesis of tert-butyl4-((4-methoxyphenyl)carbamoyl)piperidine-1-
carboxylate (2)
To a solution of 1-(tert-butoxy carbonyl) piperidine-4-carboxylic
acid (1.29 g, 0.01mol) in anhydrous THF (10ml), EDC (0.01mol)
and DMAP (0.01mol) were added. The mixture was stirred at r.t.
for 15min. Then 4-methoxyaniline (0.011mol) was added. The
mixture was poured into water and filtered after stirring for
another 1 h at r.t., then the solid was washed with water and
dried under infra-red light to give white solid. (1.5 g, 45%, m.p.
154–155 �C); 1H-NMR (300MHz, CDCl3) d 7.40 (d, J¼ 9Hz, 2H), 7.26
(s, 1H), 6.85 (d, J¼ 9Hz, 2H), 4.16� 4.21 (m, 2H), 3.79 (s, 3H),
2.74� 2.83 (m, 2H), 2.32� 2.36 (m, 1H), 1.88� 1.92 (m, 2H),
1.59� 1.80 (m, 2H), 1.47 (s, 9H).

Synthesis of N-(4-methoxyphenyl) piperidine-4-carboxamide tri-
fluoroacetate (3)
To a solution of tert-butyl 4–(3-methoxyphenylcarbamoyl) piperi-
dine-1-carboxylate (3.34 g, 0.01mol) in methanol (40ml), trifluoro-
acetic acid (TFA) (1.5ml, 0.02mol) was added. The mixture was
stirred at room temperature for 12 h and concentrated in vacuum
until dryness. The solid was washed with diethyl ether and dried
under infra-red light to give white solid (1.5 g, 43.1%); 1H-NMR
(300MHz, CDCl3) d 9.71 (s, 1H), 7.53� 7.47 (m, 2H), 6.91� 6.86 (m,
2H), 3.78 (s, 3H), 3.09 (dd, J¼ 12.4, 7.1, 5.3 Hz, 2H), 2.99 (dd,
J¼ 12.4, 5.4 Hz, 2H), 3.13� 3.03 (m, 2H), 3.05� 2.95 (m, 2H), 1.96
(dd, J¼ 12.4, 7.1 Hz, 2H), 1.85 (dd, J¼ 12.3, 7.0 Hz, 2H).

Synthesis of 1-(benzo[d]oxazol-2-ylmethyl) piperidin-4-one (5)
To a solution of peridin-4-one hydrochloride (3.96 g, 0.04mol) and
K2CO3 (5 g, 0.036mol) in CH3CN (80ml), 2-(chloromethyl) benzo[-
d]oxazole (5.85 g, 0.035mol) in CH3CN (50ml) was added. The mix-
ture was refluxed for 4 h and filtered. The solvent was evaporated
until dryness. The residue was purified by column chromatograph
over silica gel (EA/PE 1:2). The pure fractions were collected, and
the solvent was evaporated (4.8 g, 60%, m.p. 86–88 �C); 1H-NMR
(300MHz, CDCl3) d 7.70� 7.73 (m, 1H), 7.52� 7.57 (m, 1H),
7.32� 7.39 (m, 2H), 4.02 (s, 2H), 2.98 (t, J¼ 6Hz, 4H), 2.54 (t,
J¼ 6Hz, 4H).

Synthesis of 1-benzyl-N-(4-methoxyphenyl) piperidine-4-carboxa-
mide (DDO-02001)
To a solution of 3 (1 g, 0.0028mol) and K2CO3 (5 g, 0.036mol) in
acetonitrile, (bromomethyl)benzene (0.7ml, 0.0055mol) was
added. After refluxing for 2 h, the mixture was poured into water
and extracted by ethyl acetate (20ml�3). The organic layer was
then separated and dried with anhydrous sodium sulphate, fil-
tered and concentrated. Then purified by column chromatography
over silica gel (EA/PE l:1) to provide crude product. The crude
product was crystallised in ethyl acetate to give white solid (0.6 g,
66%, m.p. 157–159 �C); 1H-NMR (300MHz, CDCl3) d 7.49� 7.41 (m,
2H), 7.37 (d, J¼ 4.4 Hz, 4H), 7.16 (s, 1H), 6.89 (d, J¼ 8.9 Hz, 2H),
3.83 (s, 3H), 3.57 (s, 2H), 3.03 (d, J¼ 10.9 Hz, 2H), 2.26 (d,
J¼ 10.9 Hz, 1H), 2.08 (d, J¼ 11.1 Hz, 2H), 2.02� 1.83 (m, 4H). 13C-
NMR (75MHz, DMSO-d6) d 168.86, 151.62, 133.61, 126.42, 124.40,
123.54, 122.35, 117.24, 109.36, 72.84, 72.41, 71.99, 58.50, 50.77,
48.33, 39.46, 24.28. HRMS (ESI): calcd for m/z C20H24N2O2 [MþH]þ

325.19105, found 325.19184. HPLC (methanol: water ¼ 80: 20):
tR¼3.1min, 99.43%.

Figure 3. Structure of DDO-02001 and strategy for optimisation.

464 L. ZHAO ET AL.



Synthesis of 1-(benzo[d]oxazol-2-ylmethyl)-N-(4-methoxyphenyl)
piperidine-4-carboxamide (DDO-02002)
To a solution of 3 (1 g, 0.0028mol) and K2CO3 (5 g, 0.036mol) in
acetonitrile, 2-(chloromethyl)benzo[d]oxazole (0.918 g, 0.0055mol)
was added, the mixture was refluxed for 2 h, poured into water,
extracted by ethyl acetate, dried over Na2SO4, and filtered, and
the solvent was evaporated until dryness. The residue was purified
by column chromatography over silica gel (EA/PE l:1). The solvent
was evaporated and the fraction was crystallised in ethyl acetate.
The precipitate was filtered off and dried to give white solid
(0.7 g, 68%, m.p. 190–194 �C); 1H-NMR (300MHz, DMSO-d6) d 9.72
(s, 1H), 7.77 (dt, J¼ 7.8, 1.6 Hz, 2H), 7.59� 7.46 (m, 2H), 7.45� 7.35
(m, 2H), 6.88 (d, J¼ 9.0 Hz, 2H), 3.90 (s, 2H), 3.73 (s, 3H), 3.00 (d,
J¼ 10.9Hz, 2H), 2.41� 2.09 (m, 3H), 1.86� 1.61 (m, 4H). HRMS
(ESI): calcd. for m/z C20H24N2O2, [MþH]þ 366.18122, found
366.18188. HPLC (methanol: water ¼ 80: 20): tR¼5.9min, 95.09%.

General procedure for the synthesis of DDO-02003-DDO-02009
To a solution of 5 (0.1 g, 0.434mmol), 6–17 (0.651mmol) in CH2Cl2
were added. NaB(OAc)3H (0.183 g, 0.868mol) was added to the
solution and stirred at room temperature. After the reaction, the
solvent was evaporated until dryness and quenched by adding
saturated NH4Cl. Then product was extracted with CH2Cl2
(20ml�3) and dry in vacuum. HCl-EA solution was added to form
the hydrochloride salt, then the solid was recrystallised with EA.

The yield, melting point, analytical data, and spectral data of
each compound are given below.

1-(benzo[d]oxazol-2-ylmethyl)-N-(4-methoxyphenyl) piperidin-4-
amine dihydrochloride (DDO-02003). 0.067 g, 46%, white powder,
m.p. >250�C; 1H-NMR (300MHz, D2O) d 7.72 (dd, J¼ 7.4, 1.8 Hz,
1H), 7.50� 7.37 (m, 1H), 7.50� 7.37 (m, 2H), 7.29 (dd, J¼ 7.9,
5.4 Hz, 2H), 7.07� 7.01 (m, 2H), 4.70 (s, 2H), 3.80 (d, J¼ 3.9 Hz, 1H),
3.76 (s, 3H), 3.75 (s, 2H), 3.26 (td, J¼ 13.2, 2.9 Hz, 2H), 2.27 (d,
J¼ 13.9Hz, 2H), 2.11� 1.92 (m, 2H). HRMS (ESI) calcd. for m/z
C20H23N3O2, [MþH]þ 338.18639, found 338.1863. HPLC (methanol:
water ¼ 80: 20): tR¼6.9min, 95.18%.

1-(benzo[d]oxazol-2-ylmethyl)-N-benzylpiperidin-4-amine dihydro-
chloride (DDO-02004). 0.058 g, 42%; white powder, m.p. > 250 �C;
1H-NMR (300MHz, Deuterium Oxide) d 7.75� 7.68 (m, 1H),
7.65� 7.59 (m, 1H), 7.43 (dd, J¼ 7.5, 1.5 Hz, 2H), 7.38 (s, 5H), 4.70
(s, 2H), 4.21 (s, 2H), 3.80 (d, J¼ 12.8Hz, 2H), 3.67� 3.42 (m, 1H),
3.28 (t, J¼ 12.9 Hz, 2H), 2.44 (d, J¼ 14.0Hz, 2H), 2.17� 1.80 (m,
2H). HRMS (ESI) calcd. for m/z C20H23N3O, [MþH]þ 322.19166,
found 322.19139. HPLC (methanol: water ¼ 80: 20): tR ¼
4.5min, 98.09%.

1-(benzo[d]oxazol-2-ylmethyl)-N-(4-methoxybenzyl)piperidin-4-
amine dihydrochloride (DDO-02005). 0.06 g, 40%; white powder,
m.p. 207–211�C; 1H-NMR (300MHz, Deuterium Oxide) d 7.55 (dd,
J¼ 18.2, 7.4 Hz, 2H), 7.41� 7.18 (m, 4H), 6.90 (d, J¼ 8.2 Hz, 2H),
4.07 (s, 2H), 3.81 (s, 2H), 3.70 (s, 3H), 3.21� 2.86 (m, 2H), 2.24 (t,
J¼ 12.0Hz, 2H), 2.14� 1.97 (m, 2H), 1.72� 1.43 (m, 2H). HRMS
(ESI) calcd. for m/z C21H25N3O2, [MþH]þ 352.20108, found
352.20195. HPLC (methanol: water ¼ 80: 20): tR ¼ 4.3min, 95.27%.

1-(benzo[d]oxazol-2-ylmethyl)-N-(4-fluorobenzyl) piperidin-4-amine
dihydrochloride (DDO-02006). 0.065 g, 44%; white powder, m.p.
>250 �C; 1H-NMR (300MHz, Methanol-d4) d 7.83� 7.77 (m, 1H),
7.75� 7.68 (m, 1H), 7.64 (dd, J¼ 8.5, 5.3 Hz, 2H), 7.50 (dd, J¼ 8.3,

7.1, 3.9 Hz, 2H), 7.25 (t, J¼ 8.6 Hz, 2H), 4.54 (s, 2H), 4.32 (s, 2H),
3.70 (d, J¼ 12.1Hz, 2H), 3.50 (d, J¼ 12.3 Hz, 1H), 3.08 (t,
J¼ 12.0 Hz, 2H), 2.44 (d, J¼ 13.2 Hz, 2H), 2.19� 2.04 (m, 2H). HRMS
(ESI) calcd. for m/z C20H22FN3O, [MþH]þ 340.18197, found
340.18205. HPLC (methanol: water ¼ 80: 20): tR ¼ 11min, 96.98%.

1-(benzo[d]oxazol-2-ylmethyl)-N-(2-methoxybenzyl)piperidin-4-
amine dihydrochloride (DDO-02007). 0.068 g, 45%; white powder,
m.p. >250 �C; 1H-NMR (300MHz, Deuterium Oxide) d 7.77� 7.70
(m, 1H), 7.68� 7.62 (m, 1H), 7.52� 7.35 (m, 3H), 7.31 (dd, J¼ 7.5,
1.7 Hz, 1H), 7.09� 6.92 (m, 2H), 4.71 (s, 2H), 4.24 (s, 2H), 3.82 (s,
5H), 3.62� 3.47 (m, 1H), 3.30 (dd, J¼ 13.8, 11.0 Hz, 2H), 2.45 (d,
J¼ 14.0 Hz, 2H), 2.11� 1.90 (m, 2H). HRMS (ESI) calcd, for m/z
C21H25N3O2, [MþH]þ 352.20329, found 352.20195. HPLC (metha-
nol: water ¼ 80: 20): tR ¼ 6.13min, 96.50%.

1-(benzo[d]oxazol-2-ylmethyl)-N-(4-methylbenzyl)piperidin-4-amine
dihydrochloride (DDO-02008). 0.070 g, 48%; white powder, m.p.
205–207�C; 1H-NMR (300MHz, Methanol-d4) d 7.77� 7.71 (m, 1H),
7.69� 7.61 (m, 1H), 7.50� 7.42 (m, 2H), 7.39 (d, J¼ 7.9 Hz, 2H),
7.29 (d, J¼ 7.7 Hz, 2H), 4.14 (s, 2H), 3.97 (s, 2H), 3.16 (d, J¼ 12.3 Hz,
2H), 3.10� 3.01 (m, 1H), 2.36 (d, J¼ 11.2 Hz, 2H), 2.17 (d,
J¼ 12.3 Hz, 2H), 1.95 (s, 3H), 1.86� 1.69 (m, 2H). HRMS (ESI) calcd.
for m/z C21H25N3O, [MþH]þ 336.20704, found 336.20686. HPLC
(methanol: water ¼ 80: 20): tR¼5.74min, 95.79%.

1-(benzo[d]oxazol-2-ylmethyl)-N-phenethylpiperidin-4-amine
hydrochloride (DDO-02009). 0.067 g, 46%; white powder, m.p.
>250 �C; 1H-NMR (300MHz, Deuterium Oxide) d 7.74 (d, J¼ 7.6 Hz,
1H), 7.65 (d, J¼ 7.9 Hz, 1H), 7.52� 7.38 (m, 2H), 7.30 (dt, J¼ 20.8,
7.6 Hz, 5H), 4.70 (s, 2H), 3.79 (d, J¼ 13.0 Hz, 2H), 3.51 (td, J¼ 11.9,
6.0 Hz, 1H), 3.38� 3.17 (m, 4H), 2.96 (t, J¼ 7.6 Hz, 2H), 2.38 (d,
J¼ 14.0 Hz, 2H), 2.01� 1.89 (m, 2H). HRMS (ESI) calcd. for m/z
C21H25N3O, [MþH]þ 336.20704, found 336.20692. HPLC (metha-
nol: water ¼ 80: 20): tR¼6.58min, 95.24%.

Biological evaluation

Whole-patch clamp assay

The HEK 293 cell line that stably expressed hKv1.5 potassium
channel was a kind gift from Dr. Gui-Rong Li (Department of
Medicine and Department of Physiology, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Pokfulam, Hong Kong,
SAR, China). Transfected HEK 293 cells were maintained at 37 �C in
Minimal Eagle Medium (MEM) or Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% foetal bovine serum,
1% penicillin-streptomycin, 2mmol/L L-glutamine, 0.1mmol/L non-
essential amino acids, 1mmol/L sodium pyruvate, and 0.2mg/mL
geneticin (Invitrogen Corporation, Carlsbad, CA, USA). Cells were
passaged weekly and used at �80% confluence. For electrophysio-
logical recordings, the cells were harvested from the culture dish
by trypsinisation, and then washed twice with standard MEM or
DMEM and maintained in culture medium at room temperature
for later use on the same day.

The whole-cell membrane currents were recorded by the
patch-clamp technique, using an EPC-10 double patch-clamp amp-
lifier (HEKA, Pfalz, Germany). Recording pipettes, made from boro-
silicate glass (1.2mm, o.d.), pulled with a pipette puller (PIP5,
HEKA, Germany), had resistances of between 4 and 6 X when
filled with the pipette solution. After a giga-seal (>10GX) was
obtained, the cell membrane was ruptured by gentle suction to
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establish the whole-cell configuration. The series resistance was
electrically compensated to minimise the capacitive surge on the
current recording. Peak current amplitude was determined after
baseline correction. Pulse software (HEKA, Pfalz, Germany) was
used to generate voltage pulse protocols and to record and ana-
lyse data. Compounds were applied at least 5min after current
stabilisation. The data are presented as the mean and standard
deviation (mean± SD). The differences between control levels and
the changes caused by the compound application were tested
using Student’s t-test. A value of p< 0.05 was considered statistic-
ally significant. All experiments were performed at 25 �C.

CaCl2-Ach induced AF model

SD rats (250 ± 20 g) were raised in an environment with a tem-
perature of 20–24 �C and a humidity of 50%, and lighting for 12 h,
drink and eat freely, and then anaesthetised with 10% chloral
hydrate (Sinopharm Chemical Reagent Co., Ltd, Shanghai, China)
(3ml/kg, i.p.), followed by i.v. administration of CaCl2 (10mg/mL)
and acetylcholine (ACh; 66mg/mL) through the caudal vein (1ml/
kg) once a day for 7 days. A typical AF electrocardiogram (ECG)
appeared immediately and recovered to sinus rhythm in the fol-
lowing 10 s. The ECG was recorded for the complete experiment
procedure from rat anaesthetisation to the ECG being restored to
normal, approximately 50min for each rat each day (i.e. from Day
1 to Day 7).

On Day 4, rats were randomly divided into five groups (n¼ 10/
group): (1) AF model group: repeated prior procedure until day 7,
CaCl2 (10mg/mL, i.v.) and ACh (66mg/mL, i.v.); (2) (3) and (4)
DDO-02005 treatment groups: DDO-02005 (0.625mg/kg and
1.25mg/kg, 2.5mg/kg, i.p.) combined with CaCl2 (10mg/mL) and
ACh (66mg/mL) (i.v.) from Day 4 to Day 7; (5) dronedarone treat-
ment group: dronedarone (1.25mg/kg, i.p.) combined with CaCl2
(10mg/mL) and ACh (66mg/mL) (i.v.) from Day 4 to Day 7.
Controls were anaesthetised with 10% chloral hydrate (3ml/kg,
i.p.), followed by physiological saline i.v. for 7 days.

The disappearance of the P wave and appearance of the f
wave was determined as the beginning of AF while the end was
designated by disappearance of the f wave and the appearance of
the regular P wave, e.g., sinus rhythm recovery. Other ECG param-
eters including heart rate (HR), PR, QRS, and rate-corrected QTc
interval (QTcd ¼ QT/(R-R)1/2) were also recorded as this study was
focussed on HR and rate-corrected QTc interval analysis.

Aconitine induced arrhythmia model

SD rats (250± 20 g) were anaesthetised and the jugular vein was
surgically separated. After intubation, rats in each group were
given intravenous normal saline (model group), each dose of the
compound (0.1mg/kg, 1mg/kg, 3mg/kg, 9mg/kg). 5min after
administration, the jugular vein was given aconitine at a constant
rate (0.20–0.22ml/min, 1 lg/ml).

The experiment uses the BL-420F biological function test sys-
tem (Chengdu Taimeng Technology Co., Ltd.) to continuously
record the changes of the electrocardiogram of the rats before
and after the administration (lead II), and calculate the amount of
aconitine injected (lg/100g) when the rats have premature ven-
tricular beats (VP).

Pharmacokinetics studies

12 beagle dogs (male and female) were taken, randomly divided
into two groups equally. The experimental animals were fasted
overnight (more than 10 h) 12 h before the experiment. The drug
was administered at 7:00 am the next day at a dose of 1mg/kg
by intravenous injection and 1.25mg/kg by oral administration.
The drug was dissolved in 100ml normal saline and administered
by gavage. 3ml of blood was collected from the vein before gav-
age (0min) and 10, 20, 30, 45min, 1, 1.5, 2, 3, 4, 6, 8, 10, 12 h.
After gavage, the plasma was collected and stored at �20 �C for
the detection of blood drug concentration, and the accurate time
of blood collection was recorded in detail. The test dogs were
fasted overnight (more than 10 h) before taking the medicine, and
the corresponding preparations were given on an empty stomach
at 8:30 the next morning. Blood was collected according to the
design time point, put into a test tube, stood for half an hour,
centrifuged at 3500 rpm for 15min, supernatant was taken into a
centrifuge tube, frozen at �20 �C for 1week, and the washout
period of cross-medication was 1week.

Safety studies

The healthy, male guinea pigs weighing 250–300 g were anaesthe-
tised with urethane and fixed on the operating table. Using nee-
dle electrodes to pierce the extremities and subcutaneously on
the chest, and the whole heart lead electrocardiogram was
recorded. The right jugular vein is separated and cannulated. After
5min, DDO-02005, Azimilide, (3� 10�7, 10�6, 3� 10�6, 10�5,
3� 10�5mol/kg) dissolved in saline were given cumulative injec-
tions, each concentration is given in equal volume (1.5ml/kg).
After administration, the BL-420F biological function experiment
system recorded synchronous body surface electrocardiogram
(adjust control parameter gain G: 1mv, time constant T: 0.1 s, low
channel filter 100Hz, scanning speed 250ms/div, and start 50 Hz
suppression).

ECG analysis: To observe the effects of compounds on the
heart rate and QT interval of animal standard II lead ECG. Measure
the cardiac cycle of each lead. Each lead continuously measured 6
complete cardiac cycles, and the average value was taken as the
QT interval of that lead. The QT interval is measured from the
beginning of the QRS wave to the end of the T wave. When the T
wave is flat or there is a U wave, the method for judging the end
of the T wave is: (1) the intersection of the T wave and the equi-
potential line; (2) the notch between the T wave and the U wave;
(3) the intersection point of the T wave descending notch and the
equipotential line; if the T wave is low and it is difficult to deter-
mine the end point, the lead is discarded. QTd is the difference
between the maximum and minimum QT interval in the measured
12 leads, and the calculation formula is QTd¼QTmax-QTmin.
Considering that the QT interval is affected by the heart rate, the
Bazett formula is used for heart rate correction to calculate the
QTcd after the heart rate correction. The calculation formula is
QTcd ¼ QT/(R–R)1/2, and the R–R in the formula refers to the R–R
interval period. All measurement work is manually measured by
the experimenter.

Result and discussion

Chemistry

To improve the Kv1.5 inhibitory activity, we changed the aromatic
ring, linker and substituent of DDO-02001 as shown in Figure 2. As
shown in Scheme 1, 1-(tert-butoxycarbonyl)piperidine-4-carboxylic
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acid (1) was reacted with 4-methoxy-aniline, EDCI and DMAP to get
2, which was then treated with trifluoroacetic acid (TFA) and
dichloromethane mixture at room temperature to get secondary
amine 3. 3 was treated with benzyl bromide or 2-(chloromethyl)-
benzo[d]oxazole in the presence of K2CO3 to afford DDO-02001
and DDO-02002. Intermediate 5 was synthesised from the reaction
of 4 and piperidin-4-one hydrochloride. Treatment of 5 and a series
of amine compounds with NaB(OAc)3H gave DDO-02003～DDO-
02009 as described in Scheme 2.

Structure-activity relationship studies of arylmethylpiperidines
derivatives

In order to investigate the SAR (Structure-activity Relationship),
whole-cell patch clamp technique was applied to analyse the
inhibitory activities of Kv1.5 channel of target compounds. Results
are listed in Table 1.

By comparing the biological results of compounds DDO-02001
and DDO-02002, it can be seen that replacing the benzene ring
of molecule DDO-02001 with a benzoxazole ring improved the
biological activity (DDO-02001 IC50 ¼ 17.7lM vs. DDO-02002
IC50 ¼ 8.96 lM). Carbonyl is not so important, because the
removal of carbonyl lead to the promotion of inhibition effect
proved by DDO-02002 and DDO-02003 (IC50 ¼ 1.57lM).
Replacing the linker L from –NH– to –NH–CH2– slightly increased
the activity (DDO-02003 vs. DDO-02005); Extending the carbon

chain to –NH–CH2–CH2–, the activity decreased (DDO-02004 vs
DDO-02009), suggesting the linker –NH–CH2– was the best
choice. Different substituents on the benzene ring were changed
to discuss their influence on the effect of the compound.
Compared with DDO-02005, DDO-02006 with electron

Scheme 1. Synthesis of DDO-02001 and DDO-02002. Reagents and conditions: (i) EDCI, DMAP, THF, r.t.; (ii) CF3COOH, DMF, r.t.; (iii) K2CO3, CH3CN, 80 �C, reflux.

Scheme 2. Synthesis of DDO-02003-DDO-02009. Reagents and conditions: (i) piperidin-4-one-hydrochloride, K2CO3, r.t.; (ii) NaB(OAc)3H, anhydrous. ClCH2CH2Cl, r.t.

Table 1. Inhibition activities of DDO-02002-DDO-02009 on Kv1.5 channel

Comp. L R hKv1.5 IC50 (lM)

DDO-02002 –CONH– 4-OCH3 8.96 ± 1.15
DDO-02003 –NH– 4-OCH3 1.57 ± 0.26
DDO-02004 –NH–CH2– H 0.95 ± 0.13
DDO-02005 –NH–CH2– 4-OCH3 0.72 ± 0.08
DDO-02006 –NH–CH2– 4-F 3.24 ± 0.29
DDO-02007 –NH–CH2– 2-OCH3 >20
DDO-02008 –NH–CH2– 4-CH3 >20
DDO-02009 –NH–CH2–CH2– H >20
DDO-02001 17.71 ± 2.93
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withdrawing group on the benzene ring has a decreased inhib-
ition rate of Kv1.5 channel (IC50 ¼ 3.24 lM), implying that
methoxyl group might be a preferred option to improve the
inhibitory activity. Changing the position and type of the electron
donating group in DDO-02005 to get DDO-02007 and DDO-
02008, the activity decreased, suggesting that para-methoxy sub-
stitution is the best choice to exert inhibitory activity.

Through the above comparison, we screened out the best
compound DDO-02005, and a series of subsequent experiments
were conducted to verify its pharmacodynamic and pharmacoki-
netic properties.

Effect of DDO-02005 on AF model induced by CaCl2-ACh

A classic pathological model of atrial fibrillation induced by cal-
cium chloride-acetylcholine (CaCl2-ACh) in rats was applied to
evaluate the therapeutic effect of the active compound DDO-
02005 on atrial arrhythmia as described previously25, dronedarone
was selected as a positive control. The results were characterised
by the changes of atrial fibrillation duration, atrial ERP (AERP) and
ventricle ERP (VERP) before and after treatment with DDO-02005.

The results showed that during Day1 – Day3 (model-creation),
there was no significant difference between model group and
treatment groups. The durations of AF in rats treated with DDO-
02005 (from Day 4 to Day 7) were shortened significantly.
Starting from the fifth day, the effect of DDO-02005 on the

shortening of atrial fibrillation time showed a significant concen-
tration-response relationship. As shown in Figure 4(B,C), the AERP
and VERP of AF rats treated with DDO-02005 were increased to
normal level, respectively, at the dose of 2.5mg/kg. It’s worth not-
ing that the AF therapeutic effect of DDO-02005 is better than
that of dronedarone.

Figure 4. Effect of compound DDO-02005 and dronedarone on (A) atrial fibrillation, (B) atrial ERP and (C) ventricle ERP. Values of �p< 0.05, ��p< 0.01 and���p< 0.001 were considered statistically significant.

Figure 5. DDO-02005 inhibits the arrhythmia induced by aconitine in rats.
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Effect of DDO-02005 on rat arrhythmia induced by aconitines

Aconitine is a neurotoxin with strong cardiotoxicity26,27 which can
promote the opening of L-type calcium channels on rat ventricular
myocyte membranes, increase calcium influx, cause cytoplasmic
calcium overload, and lead to arrhythmia9,28.

To verify the effect of DDO-02005 on arrhythmia inhibition,
we established an aconitine-induced arrhythmia model in 30 rats
as previously described29. After intubation, rats in each group

were given intravenous physiological saline, and four different
concentrations (0.1, 1, 3, and 9mg/kg) of DDO-02005 (treatment
group). Taking the concentration of aconitine required to cause
atrial fibrillation in the model group as a control, the concentra-
tion of aconitine increased by 2, 53, 56, and 60%, respectively.
The results turned out that the compound DDO-02005 can effect-
ively combat the arrhythmogenic toxicity of aconitine (Figure 5).

Pharmacokinetic (PK) study of DDO-02005

Single-dose PK studies were then performed with beagle dogs at
1mg/kg by intravenous injection (i.v.) and 1.25mg/kg by oral
administration (p.o.), the results were summarised in Table 2.
DDO-02005 achieved the maximum plasma concentration (Cmax)
of 1.274 lg/L, the elimination half-life (t1/2) of 6.245 h. In addition,
DDO-02005 showed a plasma clearance (CL) of 5.834 L/h/kg after

Figure 6. Cardiovascular parameters of guinea pigs after treated with compound DDO-02005 (red) and Azimilide (blue), (A) QT interval. (B) QTc interval. (C) QTd inter-
val. (D) QTcd interval. (E) heart rate (HR). The values shown are the mean± SD (n¼ 6).

Table 2. Pharmacokinetic parameters regarding lead compound DDO-02005
(mean ± SD, n¼ 6)

Parameter i.v. p.o.

Dose (mg/kg) 1.00 1.25
t1/2 (h) 3.23 ± 1.07 6.25 ± 2.40
Cmax (lg/L) 90.23 ± 28.83 1.27 ± 0.40
AUC(0-t) (lg/L�h) 178.42 ± 39.33 4.41 ± 0.69
CL (L/h/kg) 5.83 ± 1.44 36.51 ± 2.54
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the intravenous injection. Overall, the pharmacokinetic properties
of DDO-02005 need to be further optimised.

Preliminary safety evaluation of DDO-02005

We used a 12-lead electrocardiogram to compare preliminary
safety between compound DDO-02005 and Azimilide. As shown
in Figure 6, though there were no statistically significant differen-
ces between DDO-02005 and Azimilide in prolonging QT interval
(Figure 6(A)), QTc interval (Figure 6(B)), and heart rate (Figure 6(E)),
DDO-02005 had less effect on QT dispersion (Figure 6(C)) and
QTcd (Figure 6(D)) on guinea pigs. The heart rate of guinea pigs
slowed down obviously when DDO-02005 was used, suggesting
that it is less likely to cause arrhythmia than Azimilide. All of these
figures determined that DDO-02005 is safer than Azimilide.

Conclusion

In this study, we designed and synthesised a series of arylmethyl-
piperidines derivatives modified by DDO-02001, most of which
showed effectively Kv1.5 inhibitory activities. Especially, DDO-
02005 showed excellent inhibition effect of Kv1.5 with IC50 of
0.72lM. It displayed good anti-AF effect in CaCl2-ACh AF model
and effective anti-arrhythmic activity caused by aconitine. The pre-
liminary safety of compound DDO-02005 was better than
Azimilide showed by 12-lead electrocardiogram.

Overall, the most potent compound DDO-02005, which prom-
inently inhibited Kv1.5 channel and alleviated symptom of arrhyth-
mia with good bioavailability, in addition to being worthy of
further pharmacological investigation, may be considered as a
lead compound for further optimisation of Kv1.5 chan-
nel inhibitors.
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