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Abstract
Biology is the study of dynamical systems. Yet most of us working in biology
have limited pedagogical training in the theory of dynamical systems, an
unfortunate historical fact that can be remedied for future generations of life
scientists. In my particular field of systems neuroscience, neural circuits are rife
with nonlinearities at all levels of description, rendering simple methodologies
and our own intuition unreliable. Therefore, our ideas are likely to be wrong
unless informed by good models. These models should be based on the
mathematical theories of dynamical systems since functioning neurons are
dynamic—they change their membrane potential and firing rates with time.
Thus, selecting the appropriate type of dynamical system upon which to base a
model is an important first step in the modeling process. This step all too easily
goes awry, in part because there are many frameworks to choose from, in part
because the sparsely sampled data can be consistent with a variety of
dynamical processes, and in part because each modeler has a preferred
modeling approach that is difficult to move away from. This brief review
summarizes some of the main dynamical paradigms that can arise in neural
circuits, with comments on what they can achieve computationally and what
signatures might reveal their presence within empirical data. I provide
examples of different dynamical systems using simple circuits of two or three
cells, emphasizing that any one connectivity pattern is compatible with multiple,
diverse functions.
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Introduction
When we try to understand any biological process, our models 
of the system matter. Our ideas of how a parameter impacts the 
system or how a variable responds to manipulations of the system  
determine what questions we attempt to answer and which  
experiments we perform. These ideas are based on our own mental 
models, which can be misleading if not founded on the appropriate 
dynamical principles1,2.

In this article, I hope to provide a short introduction to the types of 
dynamical system that arise in neural circuits. In doing so, I explore 
why there is a perhaps surprising lack of consensus on the nature of 
the dynamics within mammalian neural circuits—modelers aiming 
to explain various cognitive processes commence from seemingly 
incompatible starting points, such as chaotic systems, oscillators, 
or sets of point attractor states. I briefly consider hallmarks and 
support for each paradigm and summarize how—in spite of the tre-
mendous quantity of electrophysiological data—room for debate 
remains as to which type of dynamical system is best used to model 
and understand brain function.

Hidden variables within neural data
Neural circuits are nonlinear dynamical systems that, in principle, 
can be described by coupled differential equations3. However, the 
relevant continuous variables necessary for a full description of the 
behavior of a functioning neural circuit are typically hidden from 
us. Minimally these include the membrane potential of every cell, 
but recordings of neural activity in behaving vertebrates such as 
mammals are limited to a small subset of cells. Even if all recorded 
cells reside in one circuit that we wish to describe, the circuit, 
which could be distributed or compact, receives inputs from tens of 
thousands of other neurons, whose activity is unknown. Moreover, 
even a continuous variable such as membrane potential is most 
commonly observed only at the discrete times of voltage spikes. 
Therefore, our descriptions of neural circuits require us to infer the 
behavior of underlying hidden variables when we observe only a 
sparse number of them.

Numerous other properties impact the ongoing behavior of a cell and 
the circuit as a whole. These may include the number of vesicles of 
neurotransmitter and their voltage-dependent release probabilities 
at each synaptic connection or the cell-average states of activation 
and inactivation of the various ion channels. Calcium concentration 
and spatial distributions of all these values can also affect neural 
activity. Such an overwhelming abundance of known unknowns 
makes a full or complete description impossible and helps explain 
why we not only fail to have a concrete, detailed explanation of 
the behavior of most neural circuits but even do not know which 
dynamical system provides the best model of the behavior.

Classes of dynamical system
A dynamical system is any system that changes in time and can be 
described by a set of coupled differential equations. A pendulum is 
a simple example, the Hodgkin-Huxley model of a neuron a more 
complicated one, and the coordinated activity of all neurons in a 
brain an intractable one. To characterize a dynamical system rigor-
ously, one should know how the rate of change of all relevant varia-
bles depends on the combination of their instantaneous values. One 

then can simulate how they change in time from any initial condi-
tion and plot these co-varying variables together as a trajectory. If 
a small change in initial conditions leads to identical behavior after 
some transient period, then the system possesses a point attractor 
state—trajectories converge if their initial difference is not too large. 
If the system is an oscillator, trajectories converge to a particular 
loop—a limit cycle—in which differences in initial conditions are 
maintained over time as a fixed phase offset. If trajectories diverge 
from each other across a broad range of initial conditions while all 
variables remain bounded, then the system is chaotic.

Here we consider circuits with only two or three neurons to provide 
examples of many different types of dynamics. In general, a system 
with hundreds or thousands of neurons—so that we would need a 
space of hundreds or thousands of dimensions to plot the dynam-
ics as the coordinated set of membrane potentials or firing rates 
of all neurons—could contain point attractors, limit cycles, and 
regions of chaos depending on which subsets of cells were more 
strongly active for one period of time. The richness of such high- 
dimensional systems and their relevance to cognitive function make 
them an important area of current study4–10.

Point attractors
A point attractor state is equivalent to a stable fixed point of the 
dynamics, such as the bottom of a bowl with a ball in it. No neural 
circuit in vivo can strictly be in a point attractor state, as that would 
require all variables (such as membrane potentials) to be static. 
However, it may be reasonable to consider a broad average across 
variables, such as the mean firing rate of a large group of neurons, 
to be stationary following any initial transient response to a fixed 
input. Simple systems without feedback operate in such point 
attractor states if cells have one value of firing rate in the absence 
of stimulus and, typically following a period of adaptation, shift to 
a different stable firing rate in the presence of a stimulus (Figure 1). 
Neurons in the sensory periphery appear to behave in this manner.

Variability in the spiking of a neuron—both within a trial and 
between trials—appears to be at odds with a point attractor descrip-
tion, which suggests a stable, stationary set of firing rates. However, 
such variability can be attributed to various noise terms that lead to 
each neuron’s spikes being produced randomly (say, as a Poisson 
process) with probability that depends on the rate—a hidden varia-
ble, which could be static and deterministic—and/or to noise-driven 
fluctuations in the rate about its stable fixed point. Thus, a point 
attractor framework is not incompatible with ever-varying neural 
activity, especially, as we shall discuss below, for systems with 
many attractor states.

Multistability and memory
When a system possesses multiple point attractor states in the 
absence of stimuli, then the history of prior stimuli can determine 
the neural circuit’s current activity state—the particular attractor in 
which it resides—so the system can retain memories (Figure 2). 
In some of the most important pioneering work in computational 
and theoretical neuroscience11–14, Grossberg and Hopfield dem-
onstrated how such discrete memory states can form via activity-
dependent changes in the strength of connections between coactive 
neurons during stimulus presentation. While the initial analyses of 

Page 3 of 18

F1000Research 2016, 5(F1000 Faculty Rev):992 Last updated: 26 MAY 2016



Figure 1. A single point attractor is present without input and a different one with input in a threshold-linear two-unit circuit. 
(A) Diagram of the model circuit. Arrows indicate excitatory connections, and balls indicate inhibitory connections between units. (B) Applied 
current as a function of time. Two different sized pulses of current are applied to unit 1. (C) Firing rate as a function of time in the coupled 
network. During each current step, a new attractor is produced, but following current offset the original activity state is reached. (D) Any 
particular combination of the firing rates of the two units (x-axis is rate of unit 1, y-axis is rate of unit 2) determines the way those firing rates 
change in time (arrows). Starting from any pair of firing rates, any trajectory following arrows terminates at the point of intersection of the two 
lines. Red line: nullcline for unit 2—the value of r(2) at which dr(2)/dt = 0 (its fixed point) given a value of r(1). Since unit 1 excites unit 2, the 
fixed point for r(2) increases with r(1). Black line: nullcline for unit 1—the value of r(1) at which dr(1)/dt = 0 (its fixed point) given a value of 
r(2). Since unit 2 inhibits neuron 1, the fixed point for r(1) decreases with r(2). The crossing point of the nullclines is a fixed point of the whole 
system. The fixed point is stable (so is an attractor state) because arrows converge on the fixed point. (E) As in (D) but the solution during the 
second pulse of applied current. The applied current shifts the nullcline for r(1) so that the fixed point of the system is at much higher values 
of r(1) and r(2). For parameters, see supporting Matlab code, “dynamics_two_units.m”.

the capacity (number of memories held) of such networks relied 
on binary neurons that were either on or off and updated in dis-
crete time steps12, the principle of memory formation and memory 
retrieval via an imperfect stimulus has been demonstrated in con-
tinuous firing rate models in continuous time14,15 and in circuits of 
model spiking neurons16. These pattern-learning systems, known 
generically as autoassociative networks, provide great insight into 
how memories can be distributed across overlapping sets of cells 
and retrieved from imperfect stimuli via pattern completion to a 
point attractor state.

Inhibition-stabilized network
The value of a dynamical systems approach to understanding  
neural-circuit behavior that is otherwise highly counter-intuitive—
even paradoxical—is exemplified by the inhibition-stabilized (IS) 
network. The behavior of the IS network is particularly worth taking  

the time to understand because there is evidence that regions of both 
the hippocampus and the cortex could operate in the IS regime.

The IS network is a feedback-dominated network in which self-
excitation is strong enough to destabilize excitatory firing rates in 
the absence of feedback inhibition. However, feedback inhibition is 
also very strong, in fact dominant enough to clamp the excitatory 
firing at what is an otherwise unstable fixed point of the dynamics17. 
In IS circuits, the strong feedback inhibition is to similarly tuned 
neurons—to the same cells they receive excitation from—unlike 
most point attractor models in which the dominant inhibitory 
effect is cross-inhibition between differently tuned cells to enhance  
selectivity.

An intriguing property of the IS network is that a decrease in  
external excitatory input to inhibitory cells causes their steady-state  
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Figure 2. A multistable attractor network can be switched between states to encode distinct memories through persistent activity in 
a threshold-linear two-unit circuit. (A) Diagram of the model circuit. Arrows indicate excitatory connections, and balls indicate inhibitory 
connections. The strong self-excitatory feedback renders each unit unstable once active. (B) Applied current as a function of time. The first 
pulse is applied to unit 1, the second to unit 2. (C) Firing rate as a function of time in the coupled network reveals three different activity 
states: both units inactive or either one active. The activity persists after offset of the applied current—a signature of multistability—so retains 
memory of past inputs. (D) Any particular combination of the firing rates of the two neurons (x-axis is rate of neuron 1, y-axis is rate of neuron 2)  
determines the way those firing rates change in time (arrows). Depending on the initial pair of firing rates, a trajectory following arrows 
terminates at one of the points of intersection of the two lines, either (0,0) or (100,0) or (0,100). The intersections at the midpoints of the lines 
are unstable—if activity of unit 1 is under 50 Hz, it decays to 0; if it is over 50 Hz, it will increase to 100 Hz (if unit 2 is inactive). Red line: 
nullcline for neuron 2—the value of r(2) at which dr(2)/dt = 0 (its fixed point) given a value of r(1). Since neuron 1 excites neuron 2, the fixed 
point for r(2) increases with r(1). Black line: nullcline for neuron 1—the value of r(1) at which dr(1)/dt = 0 (its fixed point) given a value of r(2). 
Since neuron 2 inhibits neuron 1, the fixed point for r(1) decreases with r(2). The crossing point of the nullclines is a fixed point of the whole 
system. The fixed point is stable (so is an attractor state) because arrows converge on the fixed point. (E) As in (D) but the solution during 
the second pulse of applied current. The applied current shifts the nullcline for r(1) so that the only fixed point of the system is at (100,0). For 
parameters, see supporting Matlab code, “dynamics_two_units.m”.

firing rate to increase17. The initial transient decrease in firing of the 
inhibitory cells causes a strong increase in firing rate of the excita-
tory cells. The feedback loop is strong enough that the net effect on 
inhibitory cells, following the ensuing increase in their excitatory 
input, is an increase in firing rate (Figure 3). In the final state, with 
decreased external excitatory input to inhibitory cells, both inhibi-
tory and excitatory cells have higher firing rate. The effect can be 
called paradoxical because in the final state the excitatory cells fire 
at a higher rate while receiving more inhibitory input than before.

Evidence for neural circuit operation in the IS regime was first 
provided by a combination of modeling and data analysis for the 
hippocampus during theta oscillations, based on the relative phase 
relationship of oscillatory activity from excitatory and inhibitory 
cells17. More recently, strong evidence for operation in this regime 
has been provided for the primary visual cortex as an explanation  
of how two stimuli can switch from producing supralinear to  
sublinear summation as their contrast increases and the IS  
regime is reached18,19.
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Figure 3. The “paradoxical” shift of a single point attractor in the inhibition-stabilized regime in a threshold-linear two-unit circuit. (A) 
Diagram of the model circuit. Arrows indicate excitatory connections, and balls indicate inhibitory connections between units. Architecture 
is identical to that in Figure 1. (B) Applied current as a function of time. Two different sized inhibitory pulses of current are applied to unit 2.  
(C) Firing rate as a function of time in the coupled network. During each current step, a new attractor is produced, but following current offset the 
original activity state is reached. When inhibition is applied to unit 2, the rates of both unit 1 and unit 2 increase as a result of the ensuing net 
within-circuit increase in excitation to both units. The “paradox” lies in that external inhibition to unit 2 results in an increase in its rate (due to 
internal raised excitation) and, even more counter-intuitively, unit 1 stabilizes at a higher firing rate in the presence of greater inhibitory input 
from unit 2. (D) Any particular combination of the firing rates of the two units (x-axis is rate of unit 1, y-axis is rate of unit 2) determines the 
way those firing rates change in time (arrows). Starting from any pair of firing rates, any trajectory following arrows terminates at the point of 
intersection of the two lines. Red line: nullcline for unit 2—the value of r(2) at which dr(2)/dt = 0 (its fixed point) given a value of r(1). Since unit 1  
excites unit 2, the fixed point for r(2) increases with r(1). Black line: nullcline for unit 1—the value of r(1) at which dr(1)/dt = 0 (its fixed point) 
given a value of r(2). Since unit 2 inhibits unit 1, at high enough r(2) only r(1) = 0 is possible and at low r(2) only r(1) = 100 is possible. The line 
joining the minimum and maximum values of r(1) would normally be of unstable fixed points, but in this system it is stabilized. The crossing 
point of the nullclines is the fixed point of the whole system. The fixed point is stable (so is an attractor state) because arrows converge on the 
fixed point. (E) As in (D) but the solution during the second pulse of applied current. The inhibitory applied current shifts the nullcline for r(2) 
down, and the result is that the fixed point of the system moves to higher values of both r(1) and r(2). For parameters, see supporting Matlab 
code, “dynamics_two_units.m”.

Attractor-state itinerancy
The term itinerancy is used if a system switches rapidly between 
distinguishable patterns of activity that last significantly longer 
than the switching time. Switches can occur by noise-driven 
fluctuations in a circuit with many stable point attractors20 or via 
biological processes such as synaptic depression or firing rate 
adaptation—which operate more slowly than changes in firing rates 
of cells—between quasi stable attractor states21. A system with just 

two quasi stable states can give rise to a relaxation oscillator by the 
latter process1,22,23, whereas a system with many quasi stable states 
can give rise to “chaotic itinerancy”24,25.

Itinerancy through quasistable states can subserve sequence mem-
ory, with distinct states reached in response to both the number of 
stimuli and the types of stimuli in a sequence21. Noise-induced itin-
erancy through point attractor states can also serve as the neural 
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basis of a sampling framework for Bayesian computation26 and can 
lead to optimal decision making if certain biological constraints 
must be met by the system27.

Perhaps the most compelling evidence for attractor state itinerancy 
is during bistable percepts28–32, when the switching from one percept 
to the other and back arises in the presence of a constant, ambigu-
ous stimulus such as the Necker cube33. Models of the phenomenon 
suggest a neural circuit possessing two attractor states with transi-
tions between them produced by a combination of synaptic depres-
sion and noise-driven fluctuations34–36.

It is worth noting that experimental identification of such attrac-
tor state itinerancy may require non-standard analyses of neural 
spike trains. The standard practice of averaging across trials after 
their alignment to stimulus onset would fail to reveal such inher-
ent dynamics because the timing of transitions varies across trials 
and indeed the initial state may differ from trial to trial. Thus, 
across-trial averaging would reveal simply a blurred, approximately 
constant rate dependent on the average response during the two dis-
tinct percepts. Therefore, it is essential to use single-trial methods 
of analysis where possible if one hopes to uncover such underlying 
dynamics. The use of averaging across trials has been a necessity 
when analyzing spike trains in vivo because of the apparent ran-
domness and limited amount of information contained within the 
spike times of any one neuron in any one trial. However, methods 
such as hidden Markov modeling (HMM)37–39 allow one to treat 
each trial independently, especially if one has access to spike trains 
from many simultaneously recorded cells with correlated activity. 
HMM produces an analysis that assumes discrete states of activ-
ity with transitions between these activity states that vary in timing 
from trial to trial. Analysis of neural spike trains in vivo in multi-
ple cortical areas by HMM and other methods has produced strong 
evidence for state transitions during cognitive processes, including 
motor preparation37,40, taste processing39, and perceptual decision 
making41,42.

Addressing the unrealistic firing rates in multistable models
The multistability necessary for memory is typically achieved in 
models via a subset of neurons switching from a low firing rate 
where the feedback activity is insufficient to generate a sustained 
response to a high firing rate state reinforced by recurrent excitatory 
feedback that is limited in rate only by saturation of an intrinsic or 
synaptic process. Unless the saturating process has a slow time con-
stant, such active states maintained by recurrent feedback typically 
have much higher firing rates than those observed in vivo—indeed, 
in simple models, once excitatory feedback is increased enough 
to engender stable persistent activity in the absence of input, that 
activity can be at the neuron’s maximal firing rate, on the order 
of 100 Hz (as in Figure 2). Such rates are incompatible with the 
smaller changes of activity—often no more than 10 Hz between 
pre-stimulus and post-stimulus levels—during memory tasks 
in vivo43,44, calling into question the validity of these recurrent exci-
tatory models.

This issue can be resolved by several different modeling  
assumptions45. If recurrent feedback current is mediated primarily 
through N-methyl-D-aspartate (NMDA) receptors and they are 

allowed a 100 ms time constant (though 50 ms may be more reason-
able at in vivo temperatures for mammals), then the high firing rate 
state can be limited to 20 to 30 Hz46,47. Furthermore, if a slow time 
constant for synaptic facilitation of 7 seconds is used, then firing 
rates in the active state can be reduced to levels below 10 Hz48. A 
final possibility is that the network contains subgroups of excitatory  
and inhibitory cells operating in the IS regime (Figure 4) in which 
active subgroups can, in principle, maintain stable activity at arbi-
trary low rates while suppressing the activity of other subgroups via 
cross-inhibition49–51. In this regime, a system of point attractor states 
is compatible with the low firing rates of persistently active neurons 
observed in vivo.

A problem related to the one above is that most models of bistabil-
ity produce spike patterns in the high-activity state that are much 
more regular than those observed in vivo. Systems that transition 
between various stable states will cause spike trains to be less regu-
lar because of the contribution of rate variation. Lower firing rates 
will likely also help with this problem because most model neurons 
produce irregular spike trains when operating below threshold in a 
fluctuation-driven regime at low firing rates. However, spike statis-
tics such as the coefficient of variation (CV) of interspike intervals 
have not been analyzed to date in models of the IS regime.

Marginal states (line attractors or continuous 
attractors)
If a dynamical system possesses a continuous range of points (a 
line) that variables of the system approach, then the attractor state 
has “marginal stability”; if the activity is perturbed away from the 
line, then it recovers toward the line, but deviations along the line 
can accumulate over time52. In neural circuit models, marginal states 
either depend on an underlying symmetry (for example, transla-
tion in space when considering memory for position via a ring  
attractor)53–56 or require other fine-tuning of parameters57–60. When 
neural activity enters a marginal state, the whole system can be 
described by a reduced number of variables, such as the position 
along the line of a line attractor61. Systems with marginal states are 
able to encode and store the values of continuous quantities53,54,60, 
integrate information over time perfectly55,57,62 (Figure 5), combine 
prior information with sensory input in a Bayesian manner63, and 
in general achieve optimal computational performance64. In prac-
tice, a system with many point attractor states that are close to each 
other—that is, total circuit activity differs little between states—can 
appear like a line attractor, performing integration8 yet with the 
benefit of greater robustness and stability65.

Predicted experimental signatures of marginal states include drift 
of neural activity as noise accumulates in the manner of a random 
walk—leading to variance increasing linearly with time54—in the 
presence of a constant stimulus; perfect temporal integration of 
inputs55,57; and correlations within single neural spike trains that 
decay linearly over time52,66. These have acquired some degree of 
experimental support67–69.

Oscillating systems (cyclic attractors or limit cycles)
Observations of oscillations are widespread throughout the 
brain70,71—indeed, the earliest human extracranial recordings 
revealed oscillations in electrical potential72. In some cases, the 
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Figure 4. Bistability with low stable firing rates in the inhibition-stabilized threshold-linear three-unit circuit. (A) Diagram of the model 
circuit. Arrows indicate excitatory connections, and balls indicate inhibitory connections between units. A third unit is added to the architecture 
of Figure 3. (B) Applied current as a function of time. The first current pulse is applied to unit 1, and the second is applied to unit 3. A small 
amount of noise is added to the current to prevent the system resting at an unstable symmetric state, toward which it is otherwise drawn.  
(C) Firing rate as a function of time in the coupled network. The current steps switch activity between stable states in which no neuron’s activity 
is greater than 10 Hz—note the difference in rates from the “traditional” bistability of Figure 2. (D) Any particular combination of the firing rates 
of the three units (x-axis is rate of unit 1, y-axis is rate of unit 3) determines the way those firing rates change in time (arrows). Only a plane 
out of the full three-dimensional space of arrows is shown—the plane corresponding to dr(3)/dt = 0. Starting from any pair of firing rates, 
any trajectory following arrows terminates at the point of intersection of the two lines. Red line: nullcline for unit 2—the value of r(2) at which 
dr(2)/dt = 0 (its fixed point) given a value of r(1). Black line: nullcline for unit 1—the value of r(1) at which dr(1)/dt = 0 (its fixed point) given a 
value of r(2). Since unit 2 inhibits neuron 1, the fixed point for r(1) decreases with r(2). The crossing points of the nullclines are fixed points of 
the whole system. The asymmetric fixed points are stable (so are attractor states) because arrows converge on them, whereas the intervening 
symmetric fixed point is unstable. For parameters, see supporting Matlab code, “dynamics_three_units.m”.

presence of oscillations is inferred from a peak in the power spec-
trum at a particular frequency73,74—such a peak could arise from 
attractor state itinerancy, chaos, or heteroclinic orbits (see below) 
in the absence of a true oscillator. Yet, given the overwhelming 
abundance of evidence, there is no doubt as to the existence of 
oscillations in neural circuits—something still in question for other 
dynamical frameworks discussed here. Therefore, current research 
focuses on elucidating the role, if any, of oscillations in diverse 
mental processes75,76.

Spiking neurons themselves can be oscillators, so it should not 
seem surprising that neural circuits can also oscillate. Circuit 
oscillations can arise from the intrinsic oscillations of constituent 
neurons, or from the circuit connectivity (Figure 6), or from a 
combination of the two. In general, any system with fast posi-
tive feedback and slower negative feedback is liable to oscillate  
(Figure 7). Moreover, in any nonlinear dynamical system, a change 
in the inputs leads to a change in amplitude and frequency of ongoing 

oscillations, so correlations between oscillatory power or frequency 
and task condition are inevitable. Therefore, observed correlations 
between oscillatory power or synchrony and behavior or cognitive  
process—whether related to attention77, arousal78, memory load79, 
or sleep state80–82—may indicate a causal dependence in one direction  
(oscillations cause the process) or the other (particular processes 
cause oscillations as an epiphenomenon). The difficulty of distin-
guishing the two arises because experiments aimed at altering an 
oscillation inevitably alter other properties of the dynamical system 
necessary for the cognitive process.

The importance of oscillations is perhaps undisputed only in the 
case of motor systems that produce a repeating, periodic output83 or 
in the sensations of whisking and olfaction that are directly related 
to such motor rhythms. Perhaps the most accepted roles for infor-
mation processing by oscillations are within hippocampal place 
cells, whose phase of firing with respect to the ongoing 7 to 10 Hz 
theta oscillation contains substantial information84–87.
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Figure 5. A marginal state or continuous/line attractor is produced by careful tuning of the connection strengths in a threshold-linear 
two-unit circuit. (A) Diagram of the model circuit. Arrows indicate excitatory connections, and balls indicate inhibitory connections between 
units. The architecture is identical to that of Figure 2. (B) Applied current as a function of time. Two very small pulses of current are applied to 
unit 1. (C) Firing rate as a function of time in the coupled network. During each current step, the firing rate of unit 1 increases linearly because 
of the applied current. Inhibitory feedback to unit 2 causes a linear decrease in its firing rate. Upon stimulus offset, the firing rate reached is 
maintained. (D) Any particular combination of the firing rates of the two units (x-axis is rate of unit 1, y-axis is rate of unit 2) determines the way 
those firing rates change in time (arrows). Starting from any pair of firing rates, any trajectory following arrows terminates at a point where the 
two lines overlap each other. Red line: nullcline for unit 2—the value of r(2) at which dr(2)/dt = 0 (its fixed point) given a value of r(1). Black 
line: nullcline for unit 1—the value of r(1) at which dr(1)/dt = 0 (its fixed point) given a value of r(2). Since the two units inhibit each other, the 
overlapping lines have negative gradient. (E) A small applied current to unit 1 shifts its nullcline to the right slightly. Now the only fixed point is 
where the two lines intersect at r(2) = 0, but in the region between the two parallel nullclines, the rate of change is small (note the small arrows 
parallel to the lines) so firing rates change gradually. For parameters, see supporting Matlab code, “dynamics_two_units.m”.

Oscillating systems contain limit cycles and so appear as closed 
loops in a plot of one variable against another (Figure 6C). Since 
activity is attracted to the limit cycle—which is a line embedded 
within a higher-dimensional space—oscillating systems have some 
similarities to line attractors. In particular, small perturbations can 
be accumulated in the phase of the oscillation (along the line of 
the limit cycle), so, as with line attractors, noise accumulates as a 
random walk in one particular direction. Moreover, the phase of an 
oscillator retains a memory of perturbations, so oscillators can also 

be integrators, albeit only up to an offset of one cycle and with the 
need of an unperturbed oscillator for comparison.

Chaotic systems (strange attractors)
A high-dimensional neural system—as arises if the activity of each 
neuron can vary with little correlation with the activity of other 
neurons—with a balance between excitatory and inhibitory random 
connections becomes chaotic if connections are strong enough88–90. 
An early model of eye-blink conditioning in the cerebellum 
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Figure 6. An oscillator produced by directed excitatory and inhibitory connections in a bistable threshold-linear two-unit circuit. 
(A) Diagram of the model circuit. Arrows indicate excitatory connections, and balls indicate inhibitory connections between units. The 
architecture is identical to that of Figure 1 and Figure 3. (B) Applied current as a function of time. An inhibitory pulse of current is applied to 
unit 1. (C) Firing rate as a function of time in the coupled network. Oscillations are switched off by the inhibition to unit 1, so the system has two 
stable attractors: one a limit cycle, the other a point attractor. (D) Any particular combination of the firing rates of the two units (x-axis is rate 
of unit 1, y-axis is rate of unit 2) determines the way those firing rates change in time (arrows). Depending on the starting point, a trajectory 
following the arrows will fall on the limit cycle (the green closed orbit, which represents the coordinated variation of firing rate with time during 
the oscillations) or will reach the fixed point at the origin. Red line: nullcline for unit 2—the value of r(2) at which dr(2)/dt = 0 (its fixed point) 
given a value of r(1). Since unit 1 excites unit 2, the fixed point for r(2) increases with r(1). Black line: nullcline for unit 1—the value of r(1) at 
which dr(1)/dt = 0 (its fixed point) given a value of r(2). Crossing points of the nullclines are the fixed points of the whole system, but the one 
within the limit cycle is unstable, as is the one with r(2) = 0 but r(1) > 0. (E) As in (D) but the solution during the inhibitory pulse of applied 
current. The inhibitory current shifts the nullcline for r(1) down, and the result is that all trajectories terminate at the origin. For parameters, see 
supporting Matlab code, “dynamics_two_units.m”.

(the part of the mammalian brain with the highest density of cells 
and connections) used a chaotic circuit to encode and reproduce 
timing information91,92. 

The smallest change in the initial conditions of a chaotic system 
leads to an indeterminate change in response, which can pose a 
serious problem for information processing and memory (Figure 8). 
Yet a system operating near or at the “edge of chaos” can be 

computationally efficient93 and become reliably entrained to inputs 
while responding more rapidly than ordered systems89,94. Moreover, 
certain learning rules for changing of connection strengths between 
neurons in a chaotic system can allow the encoding of almost any 
spatiotemporal input pattern4,95, the switching between multiple 
patterns4, and the encoding and processing of many rule-based 
tasks6,8. Thus, chaotic systems appear to be highly flexible and 
trainable.
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Figure 7. Switching between two distinct oscillators in a bistable threshold-linear three-unit circuit. (A) Diagram of the model circuit. 
Arrows indicate excitatory connections, and balls indicate inhibitory connections between units. Architecture is identical to that of Figure 4. 
(B) Applied current as a function of time. The first current pulse is applied to unit 3, and the second is applied to unit 1. (C) Firing rate as a 
function of time in the coupled network. The current steps switch activity between two stable states with different frequencies of oscillation. (D) 
Any particular combination of the firing rates of the three units (x-axis is rate of unit 1, y-axis is rate of unit 3) determines the way those firing 
rates change in time (arrows). Only a plane out of the full three-dimensional space of arrows is shown: the plane corresponding to dr(3)/dt = 0. 
Red line: nullcline for unit 2—the value of r(2) at which dr(2)/dt = 0 (its fixed point) given a value of r(1). Black line: nullcline for unit 1—the value 
of r(1) at which dr(1)/dt = 0 (its fixed point) given a value of r(2). The crossing points of the nullclines are fixed points of the whole system, none 
of which is stable in this example. For parameters, see supporting Matlab code, “dynamics_three_units.m”.

Observed signatures of chaos include the apparent randomness and 
variability of spike trains, especially during spontaneous activity in 
the absence of stimuli, and the initial drop of such variability upon 
stimulus presentation94,96.

Chaos can arise in systems with quasistable attractor states as an 
itinerancy between the states in an order possessing no pattern97,98 
or in an oscillating system (typically as unpredictable jumps 
between different types of oscillation). Heteroclinic sequences (see 
below) can also be chaotic99. Addition of a small amount of intrinsic 
noise to chaotic systems causes the divergence in activity observed  

without noise upon small changes in initial conditions to occur on 
separate trials with identical initial conditions.

Heteroclinics
A common type of fixed point in a system with many variables 
(meaning it is high-dimensional) is a saddle point. Saddle points 
are so-named because, like the saddle on a horse or the saddle on a 
ridge, there are directions where the natural tendency is to approach 
the fixed point (moving down from a higher point on the ridge) and 
other directions where the natural tendency is to move away from 
the fixed point (down to the valley below). If the state of a dynamical 
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Figure 8. Chaotic activity in a threshold-linear three-unit circuit. (A) Diagram of the model circuit. Arrows indicate excitatory connections, 
and balls indicate inhibitory connections between units. Architecture is identical to that of Figure 4 and Figure 7. (B, C) Firing rate as a function 
of time in the coupled network, from two imperceptibly different initial conditions. No applied current is present. The miniscule difference in 
initial conditions is amplified over time, so, for example, unit 3 produces a small burst of activity after 1.5 s in (D), but that burst is absent 
from (C). (D) Any particular combination of the firing rates of the three units (x-axis is rate of unit 1, y-axis is rate of unit 3) determines the way 
those firing rates change in time (arrows). Only a plane out of the full three-dimensional space of arrows is shown: the plane corresponding 
to dr(2)/dt = 0. Red line: nullcline for unit 2—the value of r(2) at which dr(2)/dt = 0 (its fixed point) given a value of r(1). Black line: nullcline 
for unit 1—the value of r(1) at which dr(1)/dt = 0 (its fixed point) given a value of r(2). The crossing points of the nullclines are unstable fixed 
points of the whole system. For parameters, see supporting Matlab code, “dynamics_three_units.m”.

system can move toward one such saddle point and then move 
away from it to another one, and so on, the trajectory is called a 
heteroclinic sequence.

Heteroclinic sequences have similarities to systems with attrac-
tor-state itinerancy and a type of oscillator that switches between 
states that appear stable on a short timescale, called a relaxation 
oscillator. All three systems have states toward which the system 
is drawn but at which the system does not remain. In a heteroclinic 
sequence, activity can be funneled toward each saddle point as if it 
were an attractor state but, once in the vicinity of the saddle point, 
will find the direction of instability and move away (Figure 9). In the 
absence of noise, the duration in a “state” (the vicinity of a particular 
saddle point) depends on how close to the fixed point the system gets 
and therefore may vary with initial conditions. Interestingly, a small 
amount of noise can make these state durations more regular100.

Models of heteroclinic sequences have been proposed as a basis 
for memory101,102 and decision making103,104. According to some 
calculations, a randomly connected neural circuit would con-
tain a suitable number of heteroclinic trajectories for information 
processing105. In the high-dimensional space of neural activity, 
most random fixed points would have some directions along which 
they attract neural activity and other directions along which they 
repel it, meaning that they would be the saddle points necessary for 
producing heteroclinic sequences. However, no unique predictions 
of cognitive processing via heteroclinic sequences have been linked 
to empirical data to date.

Criticality
Many scientists argue that the brain is in a critical state, in fact 
exhibiting self-organized criticality, so should be studied as such. 
Criticality is a measured state of a system rather than a dynamical 
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model. A critical system is characterized by a number of proper-
ties, including the following: power law decays of the durations 
and sizes of features such as neural avalanches106; relationships 
between the exponents of these different power laws; a scaling of 
the time dependence of these features when binned by size onto 
a universal curve107; and correlations of fluctuations that extend 
across the system. All of these features arise from a particular 
distribution of the number of possible states binned according to 
their probability of occurrence—a distribution that, in principle, 
can be enumerated108—that conspire to remove any stereotypical 
size of the systems fluctuations. Critical systems have been argued 
to be optimal at information processing93,109.

It is likely that most of the above dynamical systems under appro-
priate conditions could produce critical behavior110—although 
the term criticality is sometimes used for systems operating at 

the edge of chaos93 where critical properties can arise in random 
networks111. Criticality appears to be more strongly dependent on 
the modular or hierarchical structure of network connectivity112–114 
than the within-module dynamics.

Characteristics of criticality have been measured in cortical  
cultures106,107, intact retina108, and whole-brain imaging115. Obser-
vations to date suggest that much neural activity is close to being 
critical109,116 rather than exactly critical, leaving it open that even 
if a particular dynamical system cannot engender exact criticality, 
it is still close enough to provide an accurate description of neural 
activity (but see 108).

Summary
Many different types of dynamical system have been proposed 
as models of neural activity, each of which can be justified by  

Figure 9. Heteroclinic orbits in a threshold-linear three-unit circuit. (A) Diagram of the model circuit. Arrows indicate excitatory connections, 
and balls indicate inhibitory connections between units. (B, C) Firing rate as a function of time in the coupled network from different initial 
conditions (near the fixed points) with no applied current. Activity is initially slow to move away from the vicinity of the fixed point (along its 
unstable direction) but after a cycle returns to the vicinity of the same fixed point (along its stable direction). (D) Any particular combination of 
the firing rates of the three units (x-axis is rate of unit 1, y-axis is rate of unit 3) determines the way those firing rates change in time (arrows). 
Only a plane out of the full three-dimensional space of arrows is shown: the plane corresponding to dr(2)/dt = 0. Red line: nullcline for  
unit 2—the value of r(2) at which dr(2)/dt = 0 (its fixed point) given a value of r(1). Black line: nullcline for unit 1—the value of r(1) at which  
dr(1)/dt = 0 (its fixed point) given a value of r(2). The crossing points of the nullclines are fixed points of the whole system, in this case at  
r(1) = 100, r(2) = 0, and r(3) = 0 and at r(1) = 0, r(2) = 100, and r(3) = 100. The fixed points are saddle points in that firing rates can 
either approach the fixed point or move away from it, depending on the precise set of rates. For parameters, see supporting Matlab code, 
“dynamics_three_units.m”.
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experimental evidence in some brain regions and circumstances. 
Different neural circuits in different parts of the brain may operate  
in different dynamical regimes because of connectivity differ-
ences, in particular differences in relative dominance of feedback 
or feedforward connections and in the relative contributions of 
excitatory or inhibitory neurons. Moreover, since the dynamical 
regime of a neural circuit depends on many factors (only one of 
which is the connectivity pattern), it is likely that a single circuit 
can change between dynamical regimes following learning or when 
it receives inputs or neural modulation.

Any one of these types of dynamical system (or any other not 
mentioned) could provide the most accurate basis for understanding 
a particular neurological function, another may be compatible with 
the observed data and more useful for explaining particular features 
of the neural behavior, while others may at heart be incompatible 
with the known circuit properties. Therefore, it behooves us all to 
avoid entrenchment in our favorite paradigm and to improve our 
understanding of the variety of dynamical systems when attempting 
to understand neural circuit function.

Supplementary material

dynamics_two_units.

Click here to access the data.

dynamics_three_units.

Click here to access the data.

A final point worth making is that just knowing the connectome—
which neurons are connected to each other—does not tell us about 
the operation of a neural circuit. Many of the dynamics we see arise 
in the same simple circuit with the same neurons (for example, 
Figure 1, Figure 3, and Figure 6 have identical architecture, even 
accounting for type of synapse, as do Figure 4, Figure 7, and  
Figure 8); differences in neural excitability or differences in 
strengths of connections can produce different functionality within 
a single architecture. Conversely, distinct connectivity patterns can 
give rise to the same function. Rather, observation of the coordi-
nated activity of many neurons during mental processing is the 
route to understanding the remarkable abilities of our brains.
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