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Biotrophic plant pathogenic fungi are widely distributed and are among the most
damaging pathogenic organisms of agriculturally important crops responsible for
significant losses in quality and yield. However, the pathogenesis of obligate parasitic
pathogenic microorganisms is still under investigation because they cannot reproduce
and complete their life cycle on an artificial medium. The successful lifestyle of biotrophic
fungal pathogens depends on their ability to secrete effector proteins to manipulate
or evade plant defense response. By integrating genomics, transcriptomics, and
effectoromics, insights into how the adaptation of biotrophic plant fungal pathogens
adapt to their host populations can be gained. Efficient tools to decipher the precise
molecular mechanisms of rust–plant interactions, and standardized routines in genomics
and functional pipelines have been established and will pave the way for comparative
studies. Deciphering fungal pathogenesis not only allows us to better understand
how fungal pathogens infect host plants but also provides valuable information for
plant diseases control, including new strategies to prevent, delay, or inhibit fungal
development. Our review provides a comprehensive overview of the efforts that have
been made to decipher the effector proteins of biotrophic fungal pathogens and
demonstrates how rapidly research in the field of obligate biotrophy has progressed.
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INTRODUCTION

Plants are threatened by a variety of microorganisms during their growth, including biotrophs,
necrotrophs, or hemi-biotrophs (Glazebrook, 2005). Different microorganisms use different
strategies to infect and damage plants. Gratifying progress has been made so far in the pathogenesis
of necrotrophic or hemi-biotrophic microbes, and the pre-infection pathways and pathogenesis
of necrotrophic microbes have been identified. However, the pathogenesis of obligate parasitic
pathogenic microorganisms is difficult because they cannot reproduce and complete their life cycle
on artificial media. Biotrophic plant fungal pathogens are among the ten pathogens considered
most important internationally to plant pathology (Dean et al., 2012). Obligate parasitic plant fungi

Abbreviations: Avr, avirulence; AC, adenylate cyclase; CSEPs, candidate secreted effector proteins; DAMPs, damaged-
associated molecular patterns; ETI, effector-triggered immunity; PAMPs, pathogen-associated molecular patterns; PCD,
programmed cell death; PRRs, pathogen recognition receptors; PTI, pathogen-associated molecular pattern triggered
immunity; ROS, reactive oxygen species.
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are a large group among which rust and powdery mildew are
the two largest groups. Rust fungi represent one of the most
important fungal orders, consisting of more than 8,000 known
species (Aime et al., 2014; Lorrain et al., 2019). These fascinating
parasites attack a wide range of plants and cause severe damage
(Lorrain et al., 2019). It is typical of many powdery mildews
where the fungi form a powdery coating of white spores on
the leaf surface and some common examples include powdery
mildew of cereals and grasses (Erysiphe graminis) and gooseberry
(Sphaerotheca mors-uvae) (Moore, 2020). The disease causes high
yield losses of up to 30% (Hückelhoven, 2005).

All pathogenic fungi, despite their different infection and
nutrient acquisition mechanisms, can be recognized by the
defense system of the plant resulting in activation of the host
defense system. A strong host response to fungal infection is
facilitated by the activation of local and systemic responses due to
innate immunity, over a prolonged period of time (Schwessinger
and Ronald, 2012). The ability of plants to effectively respond
to pathogen infection preliminarily depends on pre-formed
mechanisms of defense, which include pre-formed barriers such
as cuticle and phytoanticipins. Cuticle is an important barrier
to pathogen penetration in which cell wall and cuticle thickness
influence resistance against pathogens. In some plants, adult
plant resistance is linked to the decreased ability of fungal
pathogens to penetrate through the thicker and tougher cell
walls (Guest and Brown, 1997). Cuticular wax is composed of
cutin and wax which is deposited on the leaf surface hence
water cannot be retained on it and this will complicate the
germination of spores in the absence of water. Phytoanticipins
act as pre-formed constitutive chemical barriers against microbial
attack. Some of the phytoanticipins like glucosinolates and
cyanogenic glycosides exist as inactive precursor stores in
healthy tissues and are only activated as a result of tissue
damage (Tiku, 2020). Pattern-recognition receptors (PRRs)
localized on the host membrane recognize PAMPs (pathogen-
associated molecular patterns) within the host apoplast during
pathogen infection, which in turn activates PAMP-triggered
immunity (PTI). Biotrophic plant fungal pathogens suppress PTI
components by secreting virulence factors known as effectors
into the host cells thereby causing diseases (Martel et al., 2021).
In response, host plants evolved another layer of immunity
in which the plant intracellular nucleotide-binding/leucine
rich-repeat (NB-NLR) receptors and resistance (R) proteins
specifically detect cognate avirulence factors and trigger a
robust defense response called effector-triggered immunity (ETI).
Direct or indirect effector recognition activates NRLs and this
results in an array of induced mechanisms including reactive
oxygen species (ROS) production, hypersensitive response,
generation of phytoalexins, and accumulation of pathogenesis-
related proteins (Amil-Ruiz et al., 2011). An integrated signaling
network mediates the two-tier defense system and this system
largely shares the downstream signaling machinery (Tsuda and
Katagiri, 2010). How pathogens overcome the host’s plant
two-tiered defense system is a hot topic in plant pathology
(Harris et al., 2020). How the biotrophic plant pathogenic
fungi can successfully infect the host and establish a parasitic
relationship in which they can manipulate the host physiology

and defense system is still the main area of work of many
researchers worldwide.

The inability to culture or genetically modify obligate
biotrophic fungal pathogens in vitro complicates the study
of the molecular bases of rust fungal pathogenicity. With
technological advances and the use of new experimental methods,
transcriptome sequencing and metabolomics are increasing
our understanding of infection strategies, the functions of
biotrophic fungal effectors, and the mechanisms underlying
pathogen-host interactions. Researchers have endeavored to
discover the pathogenic mechanisms and in particular to
study the functional characteristics of effectors secreted by
biotrophic fungal pathogens through gene silencing, RNAi
and overexpression, either in their host or in a heterologous
system (Jaswal et al., 2020; Prasad et al., 2020). In this
review, we describe the definitions, examples, and characteristic
features of biotrophic fungal pathogens, and infection strategies
of biotrophic plant fungi, the effectors of biotrophic fungal
pathogens, and how they manipulate the plant immune system,
and summarize the major research advances on biotrophic
fungal pathogens.

WHAT ARE BIOTROPHIC PLANT
PATHOGENIC FUNGI?

Apart from the use of the term biotroph in several fields of
research, there is still no clear definition of this terminology.
A biotroph is characterized by an exceptional lifestyle that
supports nutrient acquisition from living host cells and is
completely dependent on the host for successful completion of
the life cycle (Stotz et al., 2014; Gebrie, 2016). Biotrophs are
pathogenic organisms that are completely dependent on the
host cells for their nutrient acquisition and can secrete effectors
to suppress or regulate plant basal defense. They form some
sophisticated structures such as appressoria, infection peg, and
haustoria to facilitate infection of epidermal cells and hyphae
for nutrient uptake without damaging the host cells and with
different forms in different Eumycota (Mendgen and Hahn,
2002; Delaye et al., 2013). Their lifestyle has complicated the
detailed analysis of the molecular mechanisms underlying their
pathogenicity, i.e., host evasion or suppression of plant immunity
(Duplessis et al., 2011). Biotrophs generally include fungus rusts
(Basidiomycetes), powdery mildew pathogens (Ascomycetes),
and Oomycetes (downy mildew and white rusts) as obligate
biotrophs. The biotrophic plant fungal pathogens consist of the
two major groups of rust and powdery mildew. Rust fungi are
among the most serious pathogens of major crops worldwide
such as wheat, barley, soybean, maize, millet, flax, as well as
coffee, etc. (Fisher et al., 2012). These include Puccinia striiformis
f. sp. tritici (Pst), Puccinia graminis f. sp. tritici (Pgt), and Puccini
triticina (Pt) which cause stripe rust, stem rust and leaf rust
on wheat respectively, Melamspora lini (M. lini) (which cause
flax rust), Phakospora pachyrhizi (which cause Asian soybean
rust), Hemileia vastatrix (which cause coffee leaf rust), and
Melampsora larici-populina, which cause defoliating poplar leaf
rust disease. All these pathogens cause high yield losses of more
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than 15–∼80% if not controlled (Lawrence et al., 2007; Kelly
et al., 2015). Powdery mildew fungi are widespread and vital
fungal pathogens that infect over 10,000 plant species worldwide
and cause yield losses of up to 40% in various frugal crops such
as wheat and barley, as well as vegetable crops and fruit trees
(Takamatsu, 2014).

One of the key features of obligate biotrophic fungal plant
pathogens is their full dependence on the living host plant tissues,
that is, they can only feed, grow, and reproduce on their living
host (Latijnhouwers et al., 2003; Voegele and Mendgen, 2011;
Kemen et al., 2015; Dracatos et al., 2018; Tang et al., 2018).
They are highly and irreversibly adapted to their host plant. This
implies that, generally, obligate biotrophic fungal pathogens has
been defined by their inability to grow on artificial media. They
have narrow, specialized host ranges and they enter their host
through natural openings or by direct penetration (Moore, 2020).
Biotrophic fungal pathogens are characterized by specialized
structures called the haustoria that serve for nutrient absorption,
and secretion of effector proteins to the host cytoplasm via the
extrahaustorial matrix (Figure 1). The extrahaustorial matrix, a
gel-matrix enriched in proteins and carbohydrates from both the
pathogen and the host, is essential in maintaining the biotrophic
lifestyle including plant pathogen recognition evasion (Perfect
and Green, 2001; Green et al., 2002; Caillaud et al., 2014;
Oliveira-Garcia and Valent, 2015). Although hemi-biotrophic
fungal pathogens form haustoria during their biotrophic phase,
the haustoria of the biotrophic fungal pathogens have a neck
ring that seals the interface between the host and pathogen
plasm membrane, disconnecting the extrahaustorial matrix from
the plant and fungal apoplast and establishing a biotroph-
specific compartment (Kemen et al., 2015; Figure 1). It is a
characteristic of biotrophic plant pathogens that they are able

to alter and reprogram the host metabolism (Kleemann et al.,
2012). The ability of these pathogens to secrete effector proteins
in planta is crucial in this context. They possess interfacial layers
comprised of carbohydrates and proteins that separate fungal
and plasma membranes. The characterization of the biotrophic
plant fungal pathogens is based the genetic analysis of disease
resistance with plants, how defense against fungal pathogens
is regulated, and is also based on genome derived analysis of
carbohydrate-active enzyme gene content. They secrete a limited
amount of lytic enzymes to promote successful penetration of
the host cell without any toxin production (Kemen et al., 2015).
Host viability is essential for biotrophic plant fungal pathogens.
Although biotrophic plant fungal pathogens are ubiquitous and
have different lifestyles, they share some important common
characteristics (Table 1).

BIOTROPHIC PLANT FUNGAL
PATHOGENS INFECTION STRATEGIES

Biotrophic fungi employ various strategies to avoid triggering
host defense responses. These include forming specialized
infection structures to avoid host recognition, facilitating
attachment, penetration, and propagation to successfully
establish pathogenesis (Oliveira-Garcia and Valent, 2015).

Formation of the Advanced Infection
Structures and Limited Secreted
Amounts of Lytic Enzymes
Organisms that cause rusts and powdery mildews employ
either direct penetration or penetration through the stomatal

FIGURE 1 | Illustration of the general infection process of a dikaryotic stage rust fungus. A urediospore (U) attached to an adhesion pad (A) germinate forming germ
tubes (GT) which sense the topography of host cuticle and develop appressoria (AP) above stomata (Guard cells—G). Penetration occurs through stomata by the
penetration hyphae (PE) into the substomatal spaces where the fungus differentiates into substomatal vesicles (SV) and elongates into an intercellular hypha (IH)
which comes into contact with the host mesophyll cells (M) and develops haustorial mother cells (HMC). Following this, haustorial formation is initiated, neckbands
(NB) are formed around the site of penetration of the mesophyll cell and an interfacial matrix (IFM) develop between the haustoria cell wall and the cell plasma
membrane.
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TABLE 1 | Characteristics of the obligate biotrophic plant pathogenic fungi.

Feature Host-pathogen interaction References

Obligate, full dependency on the host and
these pathogens cannot be cultured on artificial
media

Only grow and reproduce in nature in
association with living host plants and cannot
be axenically cultured, for example rusts and
powdery mildews

Scott, 1972; Kemen et al., 2015; Ni et al.,
2016; Dracatos et al., 2018; Tang et al., 2018

Have a narrow host range with long-term
suppression of host defense

Narrow, specialized host ranges for examples
rusts, powdery mildews

Ni et al., 2016; Glazebrook, 2005; Lorrain et al.,
2019

Secrete limited amounts of lytic enzymes Secreted enzymes like cutinases, cellulases,
and pectinases are key during germination and
penetration to breach the plant surface

Mendgen and Hahn, 2002; Kemen et al., 2015

Possess highly sophisticated infection
structures, such as appressoria, haustoria,
carbohydrate-rich, and protein-containing
interfacial layers that separate fungal and
plasma membranes

Both rusts and powdery mildews develop
sophisticated infection structures to facilitate
penetration with minimal host plant damage

Mendgen and Hahn, 2002; Oliveira-Garcia and
Valent, 2015; Pawlowski and Hartman, 2016

Specialized entry, e.g., direct (mechanical) entry
or through natural openings

Direct penetration occurs in powdery mildews
caused by Blumeria species and penetration
through stomatal openings occurs in the rust
fungi, like the Uromyces fabae

Hahn and Mendgen, 1997; Moore, 2020

Regulated by specific resistance genes which
induce hypersensitive cell death in incompatible
interactions and also trigger the SA-dependent
defense pathways

Biotrophic fungal pathogen infection triggers R
gene-mediated resistance, SA and HR signaling
in response to infection confers resistance

Mendgen and Hahn, 2002; Hammond-Kosack
and Parker, 2003; Belkhadir et al., 2004;
Marone et al., 2013

Frequently survive on the host as dormant
propagules and growth on the surface
epidermic cells or intercellular of the host plant

Essential for attachment, adhesion and
pathogenicity for fungal growth and
development

Moore, 2020

openings from the appressorium. In plant-pathogen interactions,
the ability of the fungal spore to adhere to the host plant is
considered a fundamental requirement for spore germination,
germ tube elongation, and appressorium formation (Tucker and
Talbot, 2001). Most powdery mildew fungal species use their
infection structures called appressoria to penetrate directly into
cuticle and cell wall of the host plant to colonize exclusively
the epidermal cells of the plant, whereas most rust fungi
form their appressorium over the stomata to penetrate the
intercellular spaces of the mesophyll, potentially bypassing
epidermal defense responses. Chemical or physical signals from
the host plant including ethylene signals (Sharma and Gautam,
2019), topographic signals (Jones et al., 2001), cutin monomers
(Sharma and Gautam, 2019), and substratum hydrophobicity
(Kamakura et al., 2002) trigger the formation of appressoria.

In wheat rust, for example, the dikaryotic urediospores
germinate within a short time once they land on the
wheat epidermis when the humidity meets the germination
requirements and the germ tube extends perpendicular to the
vein and is directed toward stomatal cells of the leaf surface
(Figure 1). An appressorium then forms above the stomata,
followed by the development of a penetration peg to invade the
host (Voegele et al., 2009). The formation of the penetration
peg is initiated by haustorial mother cells, from which some
lytic enzymes are secreted to promote successful penetration
of the host cell wall, followed by the differentiation of the
haustorium in the host cells (Kim, 2015). The continued growth
of the peg within the substomatal chamber penetrates the host
tissues (Chethana et al., 2021), and the cavity forms a vesicle
(substomatal vesicle), which in turn forms one or more infection

hyphae. Uromyces fabae secretes cell wall-degrading enzymes
(pectate lyases, pectin esterases, and cellulases) under strict
progressive regulation, only after the formation of the haustorial
mother cells or infection hyphae and appressoria formation
(Deising et al., 1995). The sequential production of these
enzymes is directly related to the extreme local requirements
for host cell entry during haustorium formation inside the leaf
(Mendgen and Hahn, 2002).

Rust fungi possess monokaryotic and dikaryotic forms, all
of which produce haustoria during their infection process.
Dikaryotic haustoria arise from haustorial mother cells and have
a haustorial neck with a haustorial body associated with the
intercellular hyphae (Harder and Chong, 1984). The dikaryotic
nature of fungal rust implies that they harbor significant
genetic variation that is shared between the two haplotypes
(Figueroa et al., 2020). Monokaryotic haustoria are terminal
intercellular hyphae that have a septum near the penetration
site (Gold and Mendgen, 1984; Harder and Chong, 1984; Heath,
1995). A distinct dense-neckband separates the extrahaustorial
matrix of the rust fungus from the apoplasm (Figure 1). The
formation of haustoria induces significant re-organization of
host cytoskeleton, nuclear DNA and endomembrane system
(Kobayashi et al., 1994; Heath, 1997; Voegele and Mendgen,
2003). The haustoria are not only a sophisticated structure for
nutrient acquisition, but also an intense site where all secreted
proteins, including effectors, are expressed (Garnica et al., 2014),
and it has also been speculated that they are essential for signal
transduction, communication, and evasion of host recognition
(Hahn and Mendgen, 2001; Voegele and Mendgen, 2003, 2011).
This implies that any interaction in obligate biotrophs involves
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exclusive and specific differentiation of infection structures, and
that the exact specialization that occurs is highly dependent on
the host and pathogen in question (Van Sumere et al., 1957). The
urediospores of the soybean rust fungus Phakopsora pachyrhizi
unwaveringly penetrate the host epidermis and form a highly
turgid appressorium (Goellner et al., 2010; Loehrer et al., 2014).
The physical force exerted by P. pachyrhizi appressoria based
on turgor pressure is 3.9 or 5.5 µN, the osmotic potential is
5.13 MPa, and sugar alcohols are the predominant osmolytes
within these cells (Loehrer et al., 2014). The turgor pressure
of glycerol creates the mechanical strength of the appressorium
through the breakdown of lipid and glycogen stores within as
well as melanin in the cell walls of the appressoria (Latijnhouwers
et al., 2003; Loehrer et al., 2014).

Powdery mildew fungal pathogens infect the aerial parts of
higher plants and rarely kill their hosts, but their pathogenesis
causes major yield losses mainly due to withdrawal of nutrients
from the host plant, reduction of photosynthesis, stunted growth,
and increased respiration and transpiration (Wu et al., 2021).
Landing of conidial spores on the host surface is followed
by attachment and penetration into the host cuticle and
cell wall. They also form some sophisticated structures such
as the appressorium, which is a key structure for invasion
(Hückelhoven, 2005), and the hook-shaped appressorium grows
over the cell surface of the epidermis. Meanwhile, powdery
mildew germ tubes penetrate directly the host plant cell wall
using both enzymatic and mechanical power forces (appressoria)
(Green et al., 2002). Cell wall-degrading enzymes of plant
pathogenic fungi play a fundamental role during infection by
disrupting the host cell defense system and thereby acting
as virulence or pathogenicity factors in some plant-pathogen
interactions (Wood, 1960; Köller et al., 1982). During Bgh-barely
interactions, Bgh accumulates 3-hydroxykynurenine, a redox-
active substance that facilitates cross-linking of the pathogen
to its host surface (Wilson et al., 2003). Bgh also expresses a
secreted catalase that is essential in the removal of hydrogen
peroxide produced by the host to cross-link its cell wall for
penetration resistance, promoting invasive growth and spread
during host infection (Zhang et al., 2004). Successful penetration
results in the development of a penetration peg that penetrates
directly into the epidermal cuticle of the host plant leading to
the formation of haustoria which invaginates the host plasma
membrane and are important for nutrient acquisition without
damaging the host. The haustoria of powdery mildew formed in
the epidermal cells of the host are ultimate unicellular structures
consisting of a globular central body with projecting filamentous
lobes (Gil and Gay, 1977).

Biotrophic plant pathogenic fungi can also attack their host
by modulating pH which creates a favorable environment for
infection, thus promoting pathogenicity (Strange, 2007). In
addition, biotrophic pathogenic fungi produce some secondary
metabolites such as siderophores, and pigments that promote
their virulence and can also produce or modify hormones of
the host plant such as; auxins (IAA), gibberellic acids (GA),
jasmonic acid (JA), cytokinins, and abscisic acid (ABA), thus
disrupting the corresponding plant hormone signaling pathways
(Patkar et al., 2015; Shen et al., 2018). Wheat stem rust fungus

specifically produces tryptophan 2-monooxygenase in the sucker,
which causes the wheat cells to produce a large amount of indole
acetic acid, which in turn regulates host disease resistance and
promotes pathogen infection (Yin et al., 2014; Prasad et al., 2019).
In research on the pathogenicity of Pt, adenylate cyclase (AC), a
signaling molecule, was found to influence the pathogenicity of
the leaf rust pathogen (Panwar et al., 2013).

Secreted Effector Proteins
Invading pathogens also require some sophisticated strategies to
overcome the host defense system. For successful infection and
establishment of compatible interactions leading to proliferation,
biotrophic fungi must counteract PTI (Dangl and Jones, 2001) to
evade the host defense system, and to facilitate this, the pathogen
secretes several effector proteins. The pathogen’s effector proteins
are distinctive recognition targets for the host defense system,
whereas components of the host defense signals or their receptors
are the main target of effectors during infection. Currently,
effectors are considered as a group of proteins without mutual
conservation, that are uniquely responsible for some crucial
functions such as tethering the host defense machinery by
producing cytotoxicity to facilitate pathogen progression (Jaswal
et al., 2020). After invasion of the host, effectors suppress the
host’s basal defense and manipulate its physiology to promote
their invasive growth and multiplication. Several biotrophic
fungal effectors exploit this mode of action by sequestrating chitin
and also make use of other various mechanisms to subvert PTI
(Table 2). Effector genes are subject to high selection pressures,
and therefore evolve rapidly, giving them a particular mode of
action that allows them to manipulate the host’s defense system
and physiology. For a strong defense system against invading
pathogens, the host harbors R-genes that recognize pathogen
effectors and transforms a virulent pathogen into an avirulent one
(Jones and Dangl, 2006). Avirulence (Avr) genes encoded effector
proteins are recognized by host R genes (Flor, 1971). However, in
various pathosystems there is an indirect interaction between R
and Avr gene products and this follows a guard or decoy model
(Jones and Dangl, 2006).

Effectors are mostly expressed in the haustoria and some
expressed in infection hyphae of obligate biotrophs and can
be categorized according to their specific site of action in
the host, i.e., apoplastic and cytoplasmic effectors (Kamoun,
2006; Tanaka et al., 2020). Effectors of biotrophic fungal
pathogens are either delivered in the cytoplasm of the host
plant where they unswervingly manipulate processes in cells
of the host (cytoplasmic effectors), or they may remain in
the apoplast space to protect fungal cells from host plant
defense components (apoplastic effectors) (Tanaka et al., 2020).
Apoplastic effectors, which are important for full virulence, can
inhibit host plant enzymes such as the peroxidases, chitinases,
and proteases that can be harmful to the pathogen. Cytoplasmic
effectors are delivered directly into the host plant cytoplasm,
either by infection vesicles or haustoria, which are specialized
structures (Kamoun, 2006), and accumulate in a biotrophic
interfacial complex, some of them subsequently targeting specific
compartments of the plant cell. They are recognized by
intracellular R proteins of the cytoplasmic nucleotide-binding
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TABLE 2 | Biotrophic plant fungal pathogens effectors involved in the manipulation of host reaction.

Pathogen Effector protein Host Localization Function in virulence References

Pgt PgtSR1 Wheat Unknown Suppresses RNA silencing in plants and impedes basal plant defense
by altering the abundance of small RNAs that serve as defense
regulators

Yin et al., 2019

AvrSr35 Wheat Colocalize in the ER Suppresses cell death signaling activities Salcedo et al., 2017

AvrSr50 Wheat Cytosol and nucleus Suppresses cell death signaling activities Chen et al., 2017

AvrSr27 Wheat Unknown Suppresses cell death signaling activities Upadhyaya et al.,
2021

Pst Pst_4 Wheat Cytoplasm Disrupts sorting of chloroplast protein TaISP thereby suppressing host
ROS accumulation

Wang et al., 2021

Pst_5 Wheat Cytoplasm Disrupts sorting of chloroplast protein TaISP, thereby suppressing
host ROS accumulation

Wang et al., 2021

PSEC2 Wheat Cytoplasm and
nucleus

Suppresses PTI-related callose deposition Su et al., 2021

PSEC17 Wheat Cytoplasm and
nucleus

Suppresses PTI-related callose deposition Su et al., 2021

PSEC45 Wheat Cytoplasm and
nucleus

Suppresses PTI-related callose deposition Su et al., 2021

PSTG_10917 Wheat Chloroplast Capable of halting programmed cell death Ozketen et al., 2020

PNPi Wheat Apoplast Interaction with host TaPR1a and reduces host defense responses Bi et al., 2020

PstCEP1 Wheat Cytoplasm Suppresses programmed cell death Tao et al., 2020

Pst18363 Wheat Cytoplasm Suppresses ROS accumulation by interacting with wheat Nudix
hydrolase 23 TaNUDX23

Yang et al., 2020

PstGSRE1 Wheat Cytoplasm Suppresses host PTI-associated callose deposition and hydrogen
peroxide accumulation

Qi et al., 2019

PST_12806 Wheat Chloroplast Essential for full virulence. Interacts with Rieske domain in the
C-terminal of host TaISP protein

Xu et al., 2019

PST_8713 Wheat Cytoplasm and
nucleus

Suppresses host PTI-associated PCD and callose deposition Zhao et al., 2018

PSTha5a23 Wheat Cytoplasm Suppresses host PTI-associated PCD and callose deposition Cheng et al., 2017

PEC6 Wheat
Barley

Cytoplasm and
nucleus

Interacts with adenosine kinases (ADKs) with generic functions to
suppress PTI

Liu et al., 2016

PST02549 Wheat Processing bodies Participates in the uncapping, degradation, and storage of
messenger RNA by forming protein complexes

Petre et al., 2016

Pt Pt3 and Pt27 Wheat Unknown Function in avirulence against wheat leaf rust in resistant genotypes Segovia et al., 2016

Pt18906 Wheat Nucleus and
cytoplasm

Acts in the cytoplasm and may cause accumulation of reactive
oxygen species and callose in TcLr10 + 27 + 31

Qi et al., 2020

M. larici-
populina

124202 Poplar Endomembrane Participates in vesicle-mediated trafficking but is less likely to
significantly suppress the plant defense system

Gaouar et al., 2016;
De Guillen et al.,

2019

MLP37347 Poplar Plasmodesmata Interacts with glutamate decarboxylase 1 (GAD1). Promotes
enhanced plasmodesmatal flux and reduces callose deposition

Rahman et al., 2021

P. pachyrhizi PpEC23 Asian Soybean Nucleus and Cytosol Suppresses host immune responses by physically interacting with
soybean transcription factor GmSPL121

Qi et al., 2016

Bgh CSEP0027 Barely Cytosol and nucleus Interacts with HvCAT1 to regulate host immunity regulation and
probably ROS homeostasis to promote virulence during infection

Yuan et al., 2021

CSEP0139 Barley Cytosol and nucleus Suppresses cell death and promotes virulence Li et al., 2021

CSEP0182 Barley Cytosol and nucleus Suppresses cell death and promotes virulence Li et al., 2021

BEC1019 Barley and
wheat

Cytosol and nucleus Essential for virulence
Essential for haustorial formation

Zhang et al., 2019

CSEP0081 Barley Cytoplasm and
nucleus

Essential for penetration and formation of haustoria Ahmed et al., 2016

CSEP0254 Barley Cytoplasm and
nucleus

Essential for penetration and formation of haustoria Ahmed et al., 2016

BEC1054 Barley Cytoplasm Interaction with barley PR5, eEFG1G, MDH, and zGST to promote
Bgh virulence at different levels.

Pennington et al.,
2016

CSEP0105 Barley Cytosol and nucleus Essential for virulence
Interferes with Hsp16.9 and Hsp17.5 chaperon activity

Ahmed et al., 2015

CSEP0162 Barley Cytosol and nucleus Promotes virulence
Interferes with Hsp16.9 and Hsp17.5 chaperones activity.

Ahmed et al., 2015

BEC3 Barley Cytosol and nucleus Interferes with defense-associated host vesicle trafficking Schmidt et al., 2014

BEC4 Barley Cytosol and nucleus Interferes with defense-associated host vesicle trafficking Schmidt et al., 2014

BEC1011 Barley Cytoplasm Interferes with pathogen-induced host cell death Pliego et al., 2013

CSEP0055 Barley Apoplast Essential for virulence
Interaction with PR17 and PR1 proteins

Zhang et al., 2012

Bgt AvrPm2 Wheat Cytoplasm and
nucleus

Suppresses the recognition of Avr Bourras et al., 2016

SvrPm3a1/f 1 Wheat Cytoplasm and
nucleus

Facilitates evasion of pathogen recognition by R genes Bourras et al., 2016
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site leucine-rich repeat (NBS-LRR) and activate HR, which
curbs invasive growth of the pathogen (Jones and Dangl, 2006;
Dodds and Rathjen, 2010). Biotrophic plant fungal pathogens
have also evolved some sophisticated mechanisms to direct their
effectors to the host chloroplast by mimicking host sorting signals
(Kretschmer et al., 2019). Effectors target the chloroplast where
they suppress host plant basal immunity by suppressing cell
death, decreasing the expression of defense-related genes and
callose deposition, and causing accumulation of ROS (Petre et al.,
2015; Xu et al., 2019).

Some biotrophic fungal effector proteins function as RNAi
suppressors and it has been speculated that conserved proteins
are the main target of these suppressors so that they can
deactivate the host RNAi machinery. For example, the Pgt
effector PgtSR1 suppresses host RNA silencing and impedes
basal plant defense by swaying the spread of small RNAs that
function as regulators of host defense (Yin et al., 2019). Host
RNAi suppression machinery leads to inadequate regulation of
various host defense pathways facilitating successful infection.
Degradation of host RNA by biotrophic fungal effectors also
helps in manipulating the host defense machinery (Jaswal et al.,
2020). Pst02549 accumulates in processing bodies (P-bodies)
and is involved in the uncapping, degradation, and storage of
messenger RNA through the formation of protein complexes,
thus facilitating infection (Petre et al., 2016). Effectors of
biotrophic fungi also bind directly to the host DNA promoter,
thereby regulating or altering its transcriptional processes,
resulting in defective defense genes (Ahmed et al., 2018).
Moreover, the effectors of biotrophic fungi camouflage the host
as modulators, leading to the diversion of the metabolic flux
of many compounds, resulting in a deficiency of precursors
or compounds responsible for host defense (Tanaka et al.,
2014; van der Linde and Göhre, 2021). Some well-known other
examples are: CSEP0055 (Zhang et al., 2012), BEC3, BEC4
(Schmidt et al., 2014), CSEP0105, CSEP0162 (Ahmed et al.,
2015), BEC1054 (Pennington et al., 2016), BEC1019 (Zhang
et al., 2019), CSEP0027 (Yuan et al., 2021), CSEP0139 and
CSEP0182 (Li et al., 2021) from Bgh and AvrPm3a1/f 1 from
Bgt (Bourras et al., 2015; Parlange et al., 2015). The effector
protein PNPi of Pt acts directly on wheat TaNPR1 to inhibit
resistance of wheat to leaf rust (Bi et al., 2020). AvrPm3a2/f 2

and AvrPm2 of Bgt (Bourras et al., 2015, 2018), Avra1, Avra13
of Bgh (Lu et al., 2016), and SvrPma1/f 1 suppress recognition
of Avr genes (Parlange et al., 2015; Bourras et al., 2016).
A substantial number of candidate effectors from biotrophic
fungal pathogens that are well-known to infect crop plants have
been predicted, cloned, and characterized (Table 2). From the
current studies on biotrophic plant fungal pathogen effectors,
it can be concluded that, effectors play important roles in
pathogenicity by subverting PTI, suppressing cell death signaling
activities, promoting virulence during infection, and some of
these effectors are also required for penetration and formation
of infection structures such as haustoria. This clearly asserts
that biotrophic plant fungal pathogen effectors employ various
mechanisms to either interfere with host PTI or ETI to enhance
their pathogenicity.

METHODS OF RESEARCHING
EFFECTORS OF BIOTROPHIC PLANT
FUNGAL PATHOGENS

Genome analysis has the potential to open up new paths
for the discovery of new virulence factors in biotrophic plant
fungal pathogens. More information about the genome and
genes related with pathogenicity can be obtained by genome
sequencing. Plant-pathogen interactions studies have been
transformed by genomic technologies. With the advent of next
generation sequencing technology (NGS), which has reduced
the cost of sequencing, a reasonable number of genomes of
biotrophic fungal pathogens have recently become available. In
the case of wheat rust fungi, the first pathogen genome to be
sequenced was Pgt, which had a size of 88.6 Mb (Duplessis et al.,
2011). This was followed by whole genome sequencing of Pst. The
genome of the US Pst race PST-130 was the first to be sequenced
and the assembled genome was 64.8 Mb in size (Table 3).
A Chinese Pst race CYR32 provided the subsequent genome with
a size of 100 Mb and a large sequencing depth (Zheng et al.,
2013). Another US pathotype PST-78 provided the third genome
sequence of high quality, which was 117.31 Mb in size (Cuomo
et al., 2017). Three draft genome sequences have been reported
for Pt to date including one from an isolate of extensively virulent
race 77 with a size of 95.22 Mb (Kiran et al., 2016), another from
an isolate of narrowly avirulent race 106 with a size of 105.07 Mb
(Kiran et al., 2016) and the last from race 1 (BBBD), the most
primitive race recognized in North America, with a size of
135.34 Mb (Cuomo et al., 2017; Table 3). Subsequent sequencing
of five Australian Pgt isolates (Upadhyaya et al., 2014) and 10
Pst isolates from different countries was performed (Cantu et al.,
2013; Zheng et al., 2013) and sequence analysis revealed large
genome heterozygosity of dikaryotic rust fungi. Sequencing of the
genome of the wheat powdery mildew fungus Bgt revealed that it
is 180 Mb in size and that 7,588 protein-coding genes are reported
to be encoded in this genome (Table 3). Sequencing of three
other isolates, 94,202, JIW2, and 70 from Switzerland, England,
and Israel respectively, was also performed and found that the
Bgt genome exhibits a high degree of adaptability and flexibility,
indicating that this biotrophic pathogen has evolved uniquely
(Wicker et al., 2013). When whole genome sequencing of wheat
and barley powdery mildews was analyzed, a radical decrease
in gene content was observed compared to other ascomycetes,
and an expansion of the putative gene complement was observed
(Spanu et al., 2010; Wicker et al., 2013).

During plant-pathogen interactions, the expression profiles
of secreted proteins are characteristically complicated. Fungal
structural differentiation, competing microbes, and cell-to-cell
communication secrete various non-effectors that are essential
for the colonization and fortification of biotrophic plant fungal
pathogens. Consequently, the search for suitable effectors for
subsequent experimental validation is economical for ensuing
experimental corroboration. Discovery of biotrophic plant
fungal effectors is classically performed using an integration
of experimental techniques like genome-wide association study
(Sánchez-Vallet et al., 2018; Richards et al., 2019), comparative
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TABLE 3 | Genomic sequencing and features of biotrophic plant fungal pathogens.

Organism Race/isolate Host Disease Genome size
(Mb)

Predicted
genes

Number of predicted
secreted proteins

References

Bgh DH14 Barley Barley powdery
mildew

87.91 7,088 248 Spanu et al., 2010

M. larici-
populina

Isolate 98AG31 Poplar Poplar rust 101 16,399 1,184 Duplessis et al., 2011

Pgt Race SCCL Wheat Wheat stem
rust

88.6 17,773 1,459 Duplessis et al., 2011

Pst Race 130 Wheat Wheat stripe
rust

68 22,815 1,088 Cantu et al., 2011

Pst CYR32 Wheat Wheat stripe
rust

130.48 25,288 2,092 Zheng et al., 2013

Pst Race 31 Wheat Wheat stripe
rust

65.18 18,362 687 Kiran et al., 2017

Pst PST-78 Wheat Wheat stripe
rust

117.31 19,542 Unknown Cuomo et al., 2017

Pst 93-20 Wheat Wheat stripe
rust

∼89 69,513 1,517 Xia et al., 2018

Pst Pst-104E Wheat Wheat stripe
rust

∼83 15,928 1,069 Schwessinger et al., 2018

M. lini Isolate CH5 Flax Flax rust 189 16,271 725 Nemri et al., 2014

Pt Race 77 Wheat Wheat leaf rust 95.22 27,678 660 Kiran et al., 2016

Pt Race 106 Wheat Wheat leaf rust 105.07 26,384 620 Kiran et al., 2016

Pt Race 1 (BBBD) Wheat Wheat leaf rust 135.34 15,539 1,358 Cuomo et al., 2017

P. pachyrhizi Soybean Soybean rust Unknown Unknown 851 de Carvalho et al., 2017

P. psidii PBI Myrtaceae Myrtle rust 103–145 Unknown Unknown Tan et al., 2014

P. coronata 12SD80 Oat and barley Oat and barley
crown rust

99.16 17,248 1,532 Miller et al., 2018

P. sorghi Ps RO10H11247 Maize Maize common
rust

99.53 21,087 1,599 Rochi et al., 2018

P. hordei Ph560 Barley Barley leaf rust 207 25,543 1,450 Chen et al., 2019

P. arachidis MRf11 Groundnut Groundnut/Peanut
rust

87.68 Unknown Unknown PRJNA280565

P. horiana SC2014G01 Chrysanthemum Chrysanthemum
white rust

66.4 Unknown Unknown PRJNA306202

Hemileia
vastatrix

XXXIII (Hv33) Coffee Coffee leaf rust 547 143,364 615 Porto et al., 2019

genomics and phenotype association (Williams et al., 2016;
Plissonneau et al., 2017; Wu et al., 2017, 2020; Beckerson
et al., 2019; Chen et al., 2019; Mousavi-Derazmahalleh et al.,
2019), proteomics (Gawehns et al., 2015; Mesarich et al., 2018),
and transcriptomics (Gervais et al., 2017; Jones et al., 2019;
Elmore et al., 2020; Human et al., 2020). Recently developed
machine learning algorithms for detecting proteins with effector-
like features have opened up new avenues for refining effector
prediction pipelines. FunEffector-Pred (Wang et al., 2020) and
EffectorP (Sperschneider et al., 2016, 2018b) utilize amino
acid molecular weight, charge, frequencies, and other protein
features to directly predict effector-like proteins. Tools like
EffectorP and FunEffector-Pred, when combined with secretion
prediction, may provide a more robust alternative to basic
hard filters. Signal peptides of effectors can be predicted using
some online searches. These tools involve integration of various
taught algorithms and are usually very sensitive and accurate
(Sonah et al., 2016). Since both transmembrane proteins and
effector proteins contain hydrophobic segments, it is of great
importance to distinguish the two and effectors have been

found to contain a shorter hydrophobic portion compared
to transmembrane proteins. Various online tools and WEB
servers have been used for transmembrane domain prediction.
These include TMHMM server v.2.0, and others (Sonah et al.,
2016). YLoc, WoLF PSORT, Phobius, and SignalP are very
helpful in predicting signal peptides as well as extracellular
localization of candidate effectors. Prediction of the localization
of candidate effectors from the plant cytoplasm, nucleus,
mitochondria, and chloroplasts has been greatly improved
by the development of the tools ApoplastP (Sperschneider
et al., 2017; Sperschneider et al., 2018a) and LOCALIZER
(Sperschneider et al., 2018b), and these tools are also beneficial
for evaluating candidates but do not always predict effector
candidature (Jones et al., 2021). However, computer-based
prediction tools do not provide concrete results because they
focus on a few features such as sequence similarities or small
size. Therefore, it is necessary to include additional materials
such as in-planta expression data and any other relevant
information to improve the predictability of effectors of a
pathogen of concern.
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The increased integration of next-generation sequencing and
high-throughput genotype technologies has highly accelerated
the identification of candidate secreted effector proteins (CSEPs)
encoding Avr proteins in powdery mildews (Bourras et al., 2018).
Bulk segregant analysis (BSA) (Bourras et al., 2015), map-based
cloning, genome-wide association studies (GWAS) (Praz et al.,
2017), and RNAseq based GWAS (Lu et al., 2016) were used in
the identification of powdery mildew Avrs (Bourras et al., 2018).
These methods were used in the cloning and characterization
of four avirulence effectors: AvrPm3a2/f 2, and AvrPm2 from
Bgt which are recognized by Pm3a/f, and Pm2 wheat R genes,
respectively (Bourras et al., 2015; Parlange et al., 2015; Lu et al.,
2016; Praz et al., 2017), and Bgh Avra1 and Avra13 which are
recognized by Mla1 and Mla13 barley R genes respectively
(Lu et al., 2016), and also SvrPm3a1/f 1 which suppresses Avr
recognition (Bourras et al., 2015; Parlange et al., 2015). Due to
the complexity of rust structure and large genome, RNA-seq is
considered an effective method for identifying CSEPs. 16,399 and
17,773 secreted proteins were found from the sequencing of Mlp
98AG31 and Pgt SCCL transcriptome, respectively (Duplessis
et al., 2011). Sequencing of differential virulence stripe rust races
PST-87/7 and PST-08/21 from United Kingdom, identified only
five candidate effector proteins with polymorphism among 2,999
secreted proteins (Cantu et al., 2013). Six different Pt races that
interacted with wheat, 6 days post-inoculation were sequenced
using Illumina platform and 532 secreted protein candidates
were predicted, of which 456 were present in the assays for
all races, and 12 Avr candidate genes were predicted (Bruce
et al., 2014). The efficiency in predicting CSEPs is improved by
integrated software that includes EffectorP v2.0, SignalP v4.1,
TMHMM v2.0, and TargetP v1.1 for the analysis of RNAseq
data. Recently, Zhang and colleagues used these softwares to
screen CSEPs in wheat Pt KHTT, THSN, and JHKT isolates
and obtained a total of 635 candidate effector proteins with
small size (50-422 amino acids) and different sequences. Pt
CSEPs were found to possess various family domains including
thaumatin family, glycosyl hydrolase family, Barwin family, and
others, and different motifs were also detected, such as RxLR,
YxSL[R/K], [L/I]xAR, [Y/F/W]xC, G[I/F/Y] [A/L/S/T]R, and
three de novo motifs (Zhang et al., 2020). For the identification
of genes involved in Pt pathogenicity and virulence, Wei et al.
(2020) performed RNA-seq at 144hpi to analyze the differentially
expressed genes between THTT and THTS Pt pathotypes, to gain
more insight into the molecular basis of Pt-wheat interaction.
mRNA was sequenced and a total of 2,784 DGEs were detected,
of which 45 genes were specifically expressed in THTS and 44
differentially expressed effector candidates were observed in both
isolates. Analysis of the obtained results indicated that, although
the two pathotypes of THTT and THTS contribute similar
virulence to wheat, many genes are involved in the interaction
with susceptible wheat cultivar Thatcher. This also demonstrates
that the pathogenicity of rust is very complicated (Wei et al.,
2020). In another recent study, genome-wide association was
used in profiling of effector candidate associated with the
infection process of the Pt pathotype PHTTP (P). Zhao et al.
(2020) established that, 363 secreted proteins were encoded
by upregulated genes, with only 79 of them also predicted as

possible effectors by EffectorP. Using Regex and hmmsearch,
719 RXLR-like, 138Y/F/WxC, 19PNPi-like, 19CRN-like, and 9
CFEM effector candidate were identified from the deduced
database, including transcriptome data from this study and
data based on the Pt 1-1 BBBD Race 1 genome. Of the 19
PNPi-like candidate effectors, four of them possessing DPBB_
1 conserved domain demonstrated physical interactions with
wheat NPR1 protein in yeast two-hybrid assay. Only seven
CFEM and nine Y/F/WxC candidate effectors were transiently
expressed in Nicotiana benthamiana. None of the predicted
effector candidates showed suppression or induction of cell death
triggered by the protein BAX, but acceleration of cell death and
enhanced ROS accumulation was only shown by the expression
of PTTG_08198, a CFEM effector candidate (Zhao et al., 2020).
AvrSr35, AvrSr50, and AvrSr27 were cloned, and mutation, RNA-
seq and genome sequencing were performed on Pgt isolates
(Chen et al., 2017; Salcedo et al., 2017; Upadhyaya et al., 2021).
AvrSr35, AvrSr50, and AvrSr27 discovery did not only provide
new tools for identifying Pgt avirulence gene and characterizing
the molecular determinants of immunity in wheat, but also
revealed the complexity of Pgt pathogenicity mechanism.

A comparative genomics approach was integrated with
association analysis to identify candidate effector genes
corresponding to Lr20 in phenotypically paired Australian
Pt isolates. This study employed whole-genome sequencing
to analyze twenty Pt isolates consisting of 10 phenotype-
matched pairs with different Lr20 pathogenicity. This was the
first study to integrate phenotype-genotype associations with
effector prediction in Pt genomes and the approach used could
circumvent the technical difficulties of working with obligate
Pt and accelerate the identification of avirulence genes (Wu
et al., 2017). Wu et al. (2020) carried long-read-based de novo
genomy assembly and comparative genomics of wheat leaf rust
pathotype Pt104 and identified candidates for avirulence genes.
They established that AvrLr2a canditae GN104ID162_007386,
AvrLrka candidate GN1041D162_024924, and the AvrLr26
candidate GN104ID162_020918 had corresponding orthologs
of PTTG_07365, PTTG_28070, and PTTG_1194 in the Pt race
1 genome, respectively (Wu et al., 2020). In support of their
findings, a proteomics study of Pt race 1 haustoria predicted
that these Pt race 1 orthologs were also candidate effectors
(Rampitsch et al., 2015).

The use of natural pathosystems to confirm biotrophic
fungal effectors has been challenging, leading to the use
of alternative hosts for their expression. This is now the
most economical, rapid and applicable approach to validate
biotrophic fungal effectors. In addition, N. benthamiana has
been found to be an appropriate expression system for the
obligate biotrophic fungal pathogens, particularly for validating
rust effector proteins. This has also been successfully used
in the identification of rust effectors acting at many sites in
the plant cell compartments. In a recent study, the transient
expression system of mesophyll protoplasts was found to be
an important and useful tool for studying signal transduction
in pathogen-model plant interactions (Su et al., 2021). Chitin
and flg22 can be used as triggers for the PTI response in
wheat leaves and TaPr-1-14 can also be used as a marker gene
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for detecting the PTI response. Screening and identification of
Pst effector proteins can be performed rapidly and efficiently
using a transient wheat protoplast expression system (Su
et al., 2021). Out of 39 haustorial effector genes that were
successfully screened and cloned using the protoplast transient
expression system, three haustorial effector proteins PSEC2,
PSEC17, and PSEC45 were identified and had the ability to
inhibit wheat response to PTI. The three effector proteins
were highly expressed during wheat infection and parasitism
and were found to be localized in wheat protoplast somatic
cytoplasm and nucleus (Su et al., 2021). The number of
effectors identified recently has been greatly accelerated by
access to fungal transcriptomic and genomic sequences. The
triumph in identifying effectors could envisage their virulence-
promoting or host-manipulating function, but, their exact
function can only be guessed after identifying their interacting
partners. Various approaches including co-immunoprecipitation
(Co-IP) assays, yeast-two-hybrid (Y2H) approaches and pull-
down assays of the target can be used to validate effector
proteins and their interacting targets (Prasad et al., 2019; Jaswal
et al., 2020). Advances in genomics studies paved a way for
the identification of a repertoire of candidate effectors while
some computational approaches coupled with high-throughput
tools continue to help in the functional characterization of
the effectors. A comprehensive understanding of pathosystems
effector biology and the breeding of resistant crops has
been facilitated by the discovery of a repertoire of effectors
(Prasad et al., 2019).

WHAT NEEDS TO BE IMPROVED IN
STUDYING BIOTROPHIC PLANT
FUNGAL PATHOGENS

The study of biotrophic pathogens has made considerable
progress following the advent of the genomics era. However,
most disease-causing organisms that grow on plants or have
a reciprocal relationship with the host cannot be cultured.
The lack of an effective genetic transformation system has
hindered the progress in understanding the pathogenicity
mechanisms of the biotrophic fungi. Little is known about how
the biotrophic fungal pathogens absorb their nutrients from
living host cells, and the genetic factors that determine the
host exclusivity. How are the effector proteins delivered into
the host cytoplasm and what is the functional compartment of
the effectors? What is the target in the host? What affects the
signal system pathway? A detailed answer to these questions
is required to understand the pathogenicity mechanisms of
biotrophic plant fungal pathogens. The mining and identification
of candidate effectors and related genes are important first
step toward functional assays to decipher their contribution to
pathogenicity. The main research methods used in the study of
biotrophic plant fungal pathogens include genome sequencing,
transcriptome analysis, software analysis, and heterologous
expression. Although they are more efficient than ever, they need
to be improved, especially the need to develop a highly effective
genetic transformation system. The establishment of a genetic

transformation system for biotrophic fungi will greatly promote
the study of pathogenic mechanisms of obligate parasites and
the application of the corresponding genes. In order to broaden
the toolbox to study biotrophic plant fungal pathogens, new
methodologies and techniques such as for the visualization
of plant-pathogens interactions must be developed. Rust–plant
interactions still require effective techniques for unraveling
their specific molecular mechanisms. Standardized routines
in genomics needs to be developed as well as constructing
functional pipelines to improve comparative studies. New
techniques must be developed for the study of the dynamics of
biotrophic interactions, such as metabolic pathways and fluxes,
in situ.

CONCLUDING REMARKS

Biotrophic plant fungal pathogens differ from the necrotrophs
and hemi-biotrophs in their infection strategies and
pathogenicity mechanisms, and are currently the focus of
scientific research in molecular plant pathology because their
sophisticated infection strategies make them a constant threat
to many crops around the world. Normally, they require
specialized infection structures to avoid host recognition
and to facilitate their attachment and penetration. They also
require a limited amount of enzymes to promote pathogen
penetration and infection. The haustorium is the most important
structure. Haustoria are considered not only as means of
nutrition acquisition for the invasive growth of biotrophic
plant fungal pathogens but also as an arsenal of effectors
to bypass the host surveillance system and undermine the
host’s multilayered defenses. The molecular bases of obligate
biotrophy have been revealed by comparative genomic analyzes
and transcriptome analyzes and these may pave the way for
establishing biotrophic in vitro culture protocols for biotrophic
plant fungal pathogens by imitating the absorption state of
nutrients. Biotrophic plant fungal pathogens effectors are
fundamental for establishing compatible interactions with the
host plant. Moreover, they are undoubtedly virulence factors
that are secreted to suppress or regulate host defenses by
targeting host cognate proteins associated with resistance and
modulating host cellular responses, thereby promoting virulence
and pathogenicity. Due to the parasitic nature of biotrophic
plant fungal pathogens, the lack of an effective transformation
system affects the analysis of the functions of pathogenic fungi
effector proteins and pathogenic genes. However, the current
heterologous expression system and host-induced gene silencing
technology still have some targeting and genetic background
effects, which may affect the accurate analysis of the biological
function of genes. Therefore, it is necessary to develop an efficient
transformation system in the future to provide a good approach
for gene function analysis of the biotrophic pathogenic fungi.
Understanding effectors provide a fascinating illustration of the
remarkably sophisticated molecular dialog that exists between
biotrophic plant fungal pathogens and their hosts. By integrating
genomics, transcriptomics and effectoromics, insights into
the adaptation of biotrophic plant fungal pathogens to their
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host populations can be gained. Functional characterization of
effectors during host-pathogen interactions will provide the basis
for future studies on the role of effectors and haustoria, for
understanding pathogenesis mechanisms, and for developing
effective management strategies to control diseases caused by
pathogenic rust fungi and powdery mildew.
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