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Abstract
Imaging techniques are widely used for medical diagnostics. In some cases, a lack of medical practitioners who can manu-
ally analyze the images can lead to a bottleneck. Consequently, we developed a custom-made convolutional neural network 
(RiFNet = Rib Fracture Network) that can detect rib fractures in postmortem computed tomography. In a retrospective 
cohort study, we retrieved PMCT data from 195 postmortem cases with rib fractures from July 2017 to April 2018 from 
our database. The computed tomography data were prepared using a plugin in the commercial imaging software Syngo.via 
whereby the rib cage was unfolded on a single-in-plane image reformation. Out of the 195 cases, a total of 585 images were 
extracted and divided into two groups labeled “with” and “without” fractures. These two groups were subsequently divided 
into training, validation, and test datasets to assess the performance of RiFNet. In addition, we explored the possibility of 
applying transfer learning techniques on our dataset by choosing two independent noncommercial off-the-shelf convolutional 
neural network architectures (ResNet50 V2 and Inception V3) and compared the performances of those two with RiFNet. 
When using pre-trained convolutional neural networks, we achieved an  F1 score of 0.64 with Inception V3 and an  F1 score 
of 0.61 with ResNet50 V2. We obtained an average  F1 score of 0.91 ± 0.04 with RiFNet. RiFNet is efficient in detecting 
rib fractures on postmortem computed tomography. Transfer learning techniques are not necessarily well adapted to make 
classifications in postmortem computed tomography.
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Introduction

Deep learning (DL) describes a type of machine learning 
technique mostly used for image classification. Although 
the technique has existed since the 1980s [1–3], it was only 
in the last decade that deep learning has attracted more 
widespread attention. This renewed interest in deep learn-
ing originates from the evolution of graphics processing 
units (GPUs) and their ability to process heavy calculations. 

Today, most of the deep learning open-source frameworks 
take advantage of GPU acceleration for image analysis. Cou-
pled with the burgeoning quantity of data collected through 
online service providers, deep learning is now widely used 
in a variety of applications that range from improving user 
experience to improving medical diagnosis to guiding self-
driving vehicles.

DL techniques applied to image analysis consist of convo-
lutional neural networks (CNNs). Features such as edges and 
ridges are extracted from the data using mathematical filters 
with various structures. The features are stored in a series of 
abstract images called feature maps, which are no different 
from a tensor in their representation. Such a tensor constitutes 
the basis for the input layer of a fully connected neural net-
work by converting the tensor into a one-dimensional array 
or vector.

Developments with CNNs have already been made in 
computed tomography (CT)-based volume measurements 
of pericardial effusion [4], automated segmentation for CT 
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volumes of livers [5], and automated tumor volumetry in 
brain tumors [6–8]. Two recent reviews on applications of 
machine learning [9] and deep learning [10] in postmortem 
forensic radiology constitute a comprehensive reference on 
the topic.

Rib fractures resulting from blunt force trauma or chest 
compression due to resuscitation attempts are common and 
important findings in forensic case assessment. The auto-
mation of rib fracture detection on CT images can greatly 
facilitate the work of forensic radiologists [11], whose abil-
ity to detect these fractures may be compromised due to the 
extremely high volumes of images they need to process in a 
day [12, 13]. In particular, an autopsy might fail to detect, for 
example, incomplete rib fractures, making postmortem com-
puted tomography (PMCT) even more valuable [11]. Various 
groups have applied CNNs to automate fracture detection, 
including their localization in some cases, on X-ray radio-
graphs, magnetic resonance imaging (MRI) and CT imag-
ing [14–24]. Open-source projects focusing on CNNs such 
as Inception or ResNet constitute an attractive solution for 
researchers to implement custom-built models based on exist-
ing CNNs that have been previously trained on a large set of 
images found on the Internet. This is particularly the case 

in radiology and medical imaging. For instance, Mawatari 
et al. retrained GoogLeNet to detect hip fractures on pel-
vic radiographs [17]. In a recent study by Weikert et al., the 
authors trained a CNN based on the ResNet architecture to 
detect rib fractures on trauma CT scans [20]. In contrast, 
Jin et al. [21] decided to introduce a volumetric CNN by 
customizing U-Net [25], and Hu et al. combined a 2D with a 
3D CNN [24]. However, all these studies have been realized 
with clinical CT data.

Among incomplete rib fractures, it is particularly impor-
tant to correctly identify so-called “buckle rib fractures”, 
which are typically symmetrically distributed fractures along 
the midclavicular lines, commonly observed after cardiopul-
monary resuscitation (see Fig. 1a, b, and c for more details) 
[26]. Thus, the correct detection and classification of rib 
fractures by a machine learning algorithm can be of both 
clinical and forensic relevance [27, 28].

CT bone reading is a tool available in the commercial 
imaging software Syngo.via [29]. The tool can unfold volu-
metric rib CT data by representing a single-in-plane image 
reformation of the rib cage. A spider-like image is produced 
with the vertebral column in the middle, with the 12 ribs 
distributed on each side. The ribs can be rotated around their 

Fig. 1  Rib unfolding. (a) 
Multi-planar view of a so-called 
buckle rib fracture (subgroup of 
incomplete rib fractures). Inset 
lower left: Rib unfolding view 
of a buckle rib fracture with 
no interrupted cortical line but 
obvious kinking. (b) Multi-
planar view of an incomplete 
rib fracture; outer cortical line 
interrupted. Inset lower left: Rib 
unfolding view of an incomplete 
rib fracture with interrupted 
cortical line. (c) Multi-planar 
view of two complete rib frac-
tures in the middle and the back 
of the rib. Inset lower left: Rib 
unfolding view of three com-
plete rib fractures. In contrast 
to the two other fractures (a and 
b), both cortical lines are inter-
rupted in complete fractures. (d) 
Rib unfolding with no rib frac-
tures and 12 ribs on either side 
of the vertebral column. The 
cross-sectional images (a, b, 
and c) were extracted with bone 
window settings (center 450 
HU, width 1,500 HU), while 
the window settings used for the 
unfolded rib images (d) and the 
insets (a, b, and c) were 1,000 
HU for the center and 2,500 HU 
for the width

d

a b c
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transversal axis for interpretation. Fractures on one or multi-
ple ribs can therefore be easily visualized on a single image 
(see Fig. 1d for more details).

The transfer learning technique consists of taking a vali-
dated architecture and deploying it to solve another classifi-
cation problem. With this technique only the last layer (out-
put layer) is modified to match the actual number and type 
of categories present in the new study. While using transfer 
learning on our single unfolded reformatted images to detect 
rib fractures we encountered several limitations. We address 
them in the Materials and Methods (see the transfer learning 
section). Due to those limitations, we decided to develop a 
new architecture.

In this paper, we introduce a specifically designed 
CNN architecture, called RiFNet (Rib Fracture Net-
work), to improve rib fracture detection in single unfolded 

reformatted images (see Fig. 2 for a general workflow). To 
train, validate, and test RiFNet, we performed a retrospec-
tive cohort study. We selected a total of 195 cases from 
July 2017 up to April 2018 from our database. These cases 
served as a proxy to generate 585 postmortem computed 
tomography (PMCT) images with and without rib frac-
tures. In comparison, Weikert et al. trained their model 
on 511 CT images collected between January and Decem-
ber 2018 [20], while Jin et al. collected 7,473 annotated 
rib fractures from 900 patients during the same period 
[21]. The performance of our classifier is presented in the 
Results section. We also compared the performance of 
our in-house architecture to two standard open-source off-
the-shelf CNN architectures. For this purpose, we chose 
a residual learning network (ResNet50 V2) [30] and an 
improved version of Inception (Inception V3) [31].

Fig. 2  Workflow of rib frac-
ture detections. Volumetric 
PMCT data of rib fractures are 
unfolded to form a single-in-
plane image. These images are 
used to train a CNN (training 
pipeline). The pretrained CNN 
can be applied to detect rib frac-
tures on single-in-plane PMCT 
image (application pipeline)
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Materials and methods

Ethics

The data used in this retrospective cohort study (retrospec-
tive evaluation of medicolegal scan data with new methods, 
publication in anonymized form) are in accordance with 
Swiss laws and ethical standards. Ethics approval for this 
study was waived by the Ethics Committee of the Canton of 
Zurich (KEK ZH-No. 15–0686).

Case selection

A total of 340 consecutive postmortem cases were retro-
spectively retrieved from July 2017 up to April 2018 from 
our database. We excluded (A) cases with signs of advanced 
decomposition (based on the radiological alteration index 
(RA-Index) defined by Egger et al. [32]), (B) cases with 
organ explantation, (C) cases of severe trauma with exten-
sive damage to the corpse such as amputation or exenteration, 
(D) cases with deviating scanning protocol, (E) cases without 
PMCT data, (F) cases in which the rib fracture was present 
in the volumetric CT data and the autopsy, but not visible in 
the rib unfolding tool or in which the rib defect was in the 
cartilaginous part of the rib, and (G) cases that are still under 
investigation. One case was excluded due to a gunshot defect 
in one of the accessory ribs, which could not be displayed 
in the rib unfolding tool. Applying the exclusion criteria, a 
total of 195 remaining cases were included (55 females with 
a median age of 64 and 140 males with a median age of 54). 
All these cases underwent whole-body native PMCT and 
were subjected to standard forensic autopsy. In our final study 
group, 85 cases showed only acute rib fractures, 84 had no 
rib fractures, and 26 had old fractures, with or without acute 
fractures. Both complete and incomplete rib fractures were 
included, independent of their location. This information was 
directly derived from the autopsy reports.

Image treatment prior to classification

The value of a single voxel on PMCT images corresponds 
to the X-ray attenuation relative to water, given in Houns-
field units (HU). Each pixel has a value depth of 12 bits 
with values ranging from -1,000 (X-ray density of air) to 
3,096 HU, with 0 being the X-ray density of water. Extracted 
images were encoded at a value depth of 8 bits. The techni-
cal parameters of the CT scans can be found in Flach et al. 
[33]. The rib fracture images were extracted from volumetric 
CT data (see Fig. 1a-d for more details) using the Syngo.via 
rib unfolding tool CT Bone Reading (Siemens Healthineers 
GmbH, Erlangen, Germany) with bone window settings 

(center 450 HU, width 1,500 HU) for the cross-sectional 
images. The window settings for the unfolding tool were 
1,000 HU for the center and 2,500 HU for the width.

Data mining

Imaging findings were used to label each case as either with 
or without rib fractures. The readout of the CT data and 
the labeling were performed by a medical student under the 
supervision of a board-certified forensic pathologist with 
nine years of forensic imaging experience. The data were 
retrieved from the multimodality image reading software 
Syngo.via. Each dataset represented the whole rib cage that 
was unfolded using the rib unfolding tool CT Bone Reading. 
In some cases, the reconstruction was insufficient, e.g. fol-
lowing mis-segmentation. Nevertheless, we included these 
cases as artifacts that have a distinct appearance compared 
to rib fractures. These images were labeled accordingly 
depending on whether mis-segmentation occurred on a rib 
cage with fractures or without fractures. Ringl et al. [29] also 
observed similar cases of faulty recognition and attempted 
to correct the segmentation with more than four affected 
ribs per image. We exported three images for each of the 
195 cases, with random axial rib rotations (rotation about 
the vertical axis) to generate more diversity (data augmenta-
tion), and all graphics and lines hidden. The pictures were 
stored as portable graphic (PNG) documents with a resolu-
tion of 500 × 1,000 pixels. Finally, a total of 255 images with 
new rib fractures, 252 images without rib fractures, and 78 
images with old rib fractures with or without new fractures 
were collected and used for performance testing.

Model architecture

Our model was developed in Python using the high-level 
machine learning API Keras (https:// keras. io) based on the 
GPU version of TensorFlow version 2.0 [34]. The model was 
developed in close collaboration with the team responsible 
for the data mining (see section data mining above). The 
first building block of the RiFNet architecture is comprised 
of five convolution layers, each with a max-pooling layer. 
The number of output filters doubles for each convolution 
layer from eight to a final number of 128 output filters. For 
the convolution operation, we used a kernel size of 3 × 3, fol-
lowed by a max-pooling operation with a kernel size of 2 × 2. 
A flattened layer serves as the transition from the first to the 
second building block. The second building block consists 
of a fully connected neural network composed of two dense 
layers with 500 nodes each, a dropout layer with a dropout 
rate of 0.5, and an output layer. Figure 3 shows the RiFNet 
architecture. To introduce nonlinearity, we used a rectified 
linear unit (ReLU) activation function for all layers, except 
the final layer, where we used a sigmoid activation function 
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to generate binary output indicating the presence or absence 
of a fracture. Hence, the current version of our model does 
not count the number of fractures, nor identify their location. 
We used the adaptive moment estimation (Adam) algorithm 
for optimization and the binary cross-entropy loss function. 
The learning rate was set to 0.00015, and the batch size was 
set to 15. Our model was trained over 30 epochs. The archi-
tectures were trained and tested on an NVIDIA RTX 2080 
Titan with 11 GB GDDR6 memory.

Transfer learning

As already mentioned in the introduction, transfer learn-
ing describes the process of training a custom dataset on 
a pretrained network. Several approaches exist. The most  
common process is to retrain the output layer while keep-
ing all the hidden layers frozen. Another option is to spe-
cifically train some of the hidden layers. If the computing 
resources are sufficient, there is the option to completely 
retrain a pretrained network by unfreezing the whole net-
work and readjusting the weights of the nodes to match 
the custom dataset more specifically. Here, we applied this 
technique to compare RiFNet with two standard architec-
tures: Inception V3 [31] and ResNet50 V2 [30]. These 
two architectures were pretrained on a massive dataset 
called ImageNet [35] inside TensorFlow and Keras. First, 
we trained the networks on the original size of our images 
(500 × 1,000) and then on the downscaled version using 
OpenCV with a cubic interpolation function (224 × 224 
for ResNet50 V2 and 299 × 299 for Inception V3) with 
all the above-mentioned approaches. These two networks 

were trained multiple times with a learning rate ranging 
from 0.001 to 0.000001 and a batch size ranging from 
10 to 20 for up to 300 epochs in each training attempt. 
However, due to the early stopping function implemented 
in Keras, most of our training sessions stopped before 
reaching 300 epochs. Inception V3 was compiled with the 
RMSprop optimizer, while ResNet50 V2 was compiled 
with the Adam optimizer. Additionally, we added two to 
four dense layers with 500 nodes each, and a dropout layer 
with a rate of 0.2 to 0.6.

Training, validation, and prediction

For training, validation, and prediction, we selected 252 
CT images with no fractures and 255 with fractures. We 
assessed the robustness of our architecture using a cross-
validation approach (Fig. 4). First, we split our data into 
test data (15%, 77 images) and training/validation data 
(85%, 430 images). Then, we split the training/valida-
tion dataset into five equal parts (folds) with the stratified 
K-fold function from Keras, where four folds (344 images) 
represent the training dataset and one-fold (86 images) 
represents the validation dataset. Both steps were repeated 
five times, resulting in a total of 25 training, validation, 
and prediction processes. For MobileNet, we computed 
the recall, precision and  F1 score using the confusion 
matrix. For RiFNet, we calculated the mean values of the 
recall, the precision and the  F1 score over the whole itera-
tion process, which can be summarized by the following 
equations:

Fig. 3  The RiFNet architecture. The architecture comprises five con-
volution (conv) layers, each with a max pooling layer, and a fully con-
nected (fc) neural network consisting of two dense layers each with 

500 nodes. The output layer is combined with a sigmoid function 
(sigmoid) for the classification (K)
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where m denotes the number of training sessions and n 
denotes the number of cross-validations.

Results

In a first attempt, we relied on the idea that transfer learn-
ing using large pretrained CNNs such as Inception V3 or 
ResNet50 V2 would be a good strategy. However, this opera-
tion requires rescaling the images to the size used to train 
these CNNs. Training Inception V3 and ResNet50 V2 on 
our original image size (500 × 1,000) did not work due to 
a lack of computational power. When we downscaled the 
images (224 × 224 for ResNet50 V2 and 299 × 299 for Incep-
tion V3) and retrained the output layer by keeping the hid-
den layers unchanged, the validation accuracy remained at 
approximately 0.5 for all possible combinations of param-
eters described in the transfer learning section. After allow-
ing the weights of the architecture to be adjusted, we noticed 

R =

1

m ⋅ n

∑m

i=1

∑n

j=1
Rij

P =

1

m ⋅ n

∑m

i=1

∑n

j=1
Pij

F1 =
1

m ⋅ n

∑m

i=1

∑n

j=1
F
ij

1

that the networks quickly overfitted our data even before 
the validation accuracy started to increase. Therefore, by 
adjusting the weights only on the batch normalization layers, 
we achieved a recall on unseen test data of 0.63 and 0.61, 
a precision of 0.65 and 0.62 and an  F1 score of 0.64 and 
0.61 for Inception V3 and ResNet50 V2, respectively. With 
RiFNet, we achieved an overall mean recall of 0.93 ± 0.05 
and a mean precision of 0.89 ± 0.03, leading to a mean  F1 
score of 0.91 ± 0.04. Figure 5 shows the training progress, 
and Fig. 6 the prediction evaluation of RiFNet using violin 
plots. Table 1 gives an overview of the overall performance 
analysis. We also tested whether downscaling the images 
can potentially cause a loss of features (e.g. rib fractures). 
For this part, we repeated the cross-validation process and 
trained RiFNet with a lower image size (224 × 224). We 
found that the mean  F1 score dropped by 14% (0.77 ± 0.06).

Discussion

Detection of rib fractures in PMCT is important not only 
in clinical but also in forensic imaging. We developed a 
tool based on a CNN architecture that can detect rib frac-
tures on PMCT images. These images were obtained using 

Fig. 4  The cross-validation process. A total of 25 independent train-
ing sessions were computed using the same dataset to assess the 
robustness of the RiFNet architecture. This operation was performed 
by first splitting the whole data into training/validation datasets on 

one side and testing dataset on the other side (training and testing set 
labelled 1 to 5). Subsequently, for each training process, the images 
have been reshuffled in a fivefold cross-validation process. The per-
formance of the architecture was computed by averaging all 25 runs

25Forensic Science, Medicine and Pathology  (2022) 18:20–29

1 3



the rib unfolding tool CT Bone Reading in Syngo.via. The 
authors who developed the tool reported a higher reader 
performance and overall sensitivity when using the tool 
(81.1%) compared to the standard (80.3%) [29]. Based on 
these results, we estimated that the information on the rib 
fractures contained in a single-in-plane image reformation 
of the rib cage is comparable to the standard transverse, 
coronal, and sagittal orientations. By using RiFNet, we 

correctly classified 89 out of 100 rib fractures on average, 
and only five to 13 out of 100 images were incorrectly 
classified (see Supplementary Fig. S1 for false positive 
and false negative examples). These results were better 
than those obtained with two standard open-source off-
the-shelf CNN architectures. The discrepancy between 
Inception V3 and ResNet50 V2 on one side and RiFNet 
on the other side can be partially explained by the fact that 

Fig. 5  Left: Model accuracy over 30 epochs. For each of the 25 train-
ing sessions the training and validation accuracy is plotted, as well 
as the mean training (max. 1.0) and validation accuracy (max. 0.87). 

Right: Model loss over 30 epochs. Development of training and vali-
dation loss with mean values (min. 0, min. 0.4 respectively) for 25 
training sessions

Fig. 6  Evaluation of 25 predic-
tions on unseen data viewed as 
violin plots. RiFNet achieved an 
overall classification accuracy 
mean value of 91 ± 4%, a mean 
 F1 score value of 91 ± 4%, 
a mean precision value of 
89 ± 3%, and a mean recall 
value of 93 ± 5%
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accessible pretrained CNNs are mainly trained on smaller 
image sizes. By downscaling our images, we most likely 
lost information about the features we were interested in. 
Furthermore, our classification task was entirely different 
from the task pretrained networks were trained on (see 
Transfer learning section). In contrast, our network is 
specifically adjusted to these circumstances. The current 
version of TensorFlow 2.0 arguably gives the option to 
retrain all the weights in any of the supplied architectures 
with pretrained weights. However, this operation required 
more computing power and was out of reach in our case, 
as stated above in the Results section. Having such a gap in 
computing power between deploying a complex pretrained 
CNN and developing a custom solution that is simpler in 
its architecture but adapted to the problem is potentially 
more attractive for forensic pathologists working with 
PMCT images.

As mentioned previously, “buckle rib fractures”, as 
a subgroup of incomplete fractures, are of forensic rel-
evance. RiFNet can detect rib fractures on PMCT images 
with a mean  F1 score of 0.91 ± 0.04%. However, we did 
not train RiFNet to discriminate between complete and 
incomplete fractures. For this part, we would need to 
train RiFNet on a larger dataset containing more exam-
ples of complete and incomplete rib fractures. With such 
a dataset, a classifier could be built to sort PMCT images 
into three different classes: those containing no fractures, 
those with incomplete fractures, and those with complete 
fractures. The current version of RiFNet cannot count the 
number of distinct fractures present in an image. This 
feature would require embedding an image segmentation 
algorithm such as those based on encoder-decoder net-
works to identify the position of the features that have 
been extracted. However, this information is less instru-
mental than missing a fracture. We also did not test the 
effect of aging and whether RiFNet would perform dif-
ferently in specific age groups.

Understanding and interpreting medical images requires 
special training. Even with an expert eye, interpreting med-
ical images can be difficult. It is not surprising for learning 
algorithms to encounter difficulties in classifying medi-
cal images. Achieving a mean  F1 score of 0.91 ± 0.04% 
indicates that only 10% of the images are misclassified. 

Methods to reduce the number of false positives warrant 
further investigation.

Conclusion

The use of deep learning techniques in medical imaging 
has gained much momentum in recent years. The constant 
development of existing frameworks such as TensorFlow, 
PyTorch, or Keras provides the scientific community with 
a series of pretrained CNNs. With our current study, we 
concluded that these pretrained CNNs are not necessarily 
adaptable for all types of problems encountered in medical 
imaging, especially with the whole-body PMCT imaging, 
where it is common to work with large datasets with high 
resolution to ensure that every anomaly can be detected. 
Retraining existing CNNs is only possible with substan-
tially more powerful computing resources than those 
required to deploy the pretrained versions. We addressed 
this gap by developing a custom-made solution for PMCT 
imaging.

Key points

1. RiFNet addresses a gap to facilitate the work of forensic 
radiologists.

2. RiFNet can achieve a classification accuracy of 91%.
3. RiFNet is an easily adaptable solution for postmortem 

computed tomography images.
4. RiFNet outperforms pretrained ResNet50 V2 and Incep-

tion V3.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12024- 021- 00431-8.
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Model Image size 
(pixels)

Recall Precision F
1
 Score

Inception V3 299 × 299 0.63 0.65 0.64
ResNet50 V2 224 × 224 0.61 0.62 0.61
RiFNet 

(mean)
500 × 1000 0.93 ± 0.05 0.89 ± 0.03 0.91 ± 0.04
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