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ABSTRACT
Group living animals can use the behavior of others as cues for the presence of threat in the
environment and adjust their behavior accordingly. Therefore, different social phenomena that
modulate the response to threat, such as social buffering, social transmission (contagion), and
facilitation of alarm responses can be seen as different manifestations of social information use in
threat detection. Thus, social phenomena that are functionally antagonistic, such as social buffering
and social transmission of fear, may rely on shared neurobehavioral mechanisms related to the use
of social information in decision-making about the presence of threat in the environment. Here, we
propose a unifying conceptual framework for the study of social information use in threat
perception based on signal detection theory.
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Social support is a major factor in stress coping and resil-
ience in humans. The mere availability of conspecifics has
been shown to reduce the behavioral and physiological
responses to aversive events (e.g. ref. 1). This phenome-
non, known as social buffering, has also been documented
in several animal species. In a seminal study, Davitz and
Mason2 showed that rats (Rattus norvegicus) exhibited
lower fear behavior responses when exposed to an aversive
stimulus if in the presence of conspecifics. Social buffering
of the physiological stress response has also been demon-
strated. In a mother-infant separation paradigm in squirrel
monkeys (Saimiri sciureus), the cortisol increase in infants
separated from their mothers was lower when they were
placed in a familiar social environment containing colony
members.3 Similarly, mothers separated from their infants
did not increase their cortisol levels if placed in their social
groups after infant separation.4 Many experiments have
corroborated these findings and added knowledge regard-
ing the behavioral and physiological effects of social buff-
ering across different species, including non-human
primates,5 rodents,6 birds,7 fish8 and invertebrates,9 sug-
gesting that social buffering is an evolutionary conserved
process among social animals (for a review see ref. 10).

Despite the growing evidence on the ubiquity of social
buffering, relatively little is known about the mechanisms
through which social cues modulate the behavioral and
physiological responses to aversive events. To date, dif-
ferent sensory modalities conveying relevant information
for social buffering have been identified in different spe-
cies [e.g., vocal cues in marmosets (Callithrix jacchus);11

olfactory cues in rats;12 visual cues in sheep (Ovis
aries)13], and even within the same species different cues
may be used to communicate social information to con-
specifics (e.g., tactile and olfactory cues in rats14). In
rodents, where most studies on the neurobiological
mechanisms of social buffering have been conducted, it
has been shown that information from multiple social
cues is integrated and converges to the amygdala where
it increases the release of oxytocin, which in turn
increases dopamine transmission in the nucleus accum-
bens, hence promoting social bonding.15,16 In parallel, an
increase in oxytocin in the hypothalamus is responsible
for the dampening of the neuroendocrine responses.15,17

Understanding the contribution of different sensory
modalities to a given buffering event and how they are
integrated in the brain to affect behavioral and physio-
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logical responses is of particular importance to assess if
the ubiquity of social buffering across taxa reflects
homology of its underlying neural mechanisms, or if it
rather reflects convergent evolution. Thus, detailed neu-
roethological studies in non-mammalian species are
urgently needed.

In our study we investigated the mechanisms of social
buffering of fear in zebrafish (Danio rerio).8 First, we
assessed the influence of different sensory modalities to
the same buffering episode and respective effectiveness
in a long-lasting exposure to threat. After showing that
zebrafish decreased their fear response to alarm sub-
stance (AS, a known fear-inducing stimulus in this spe-
cies) when in the joint presence of olfactory (shoal
water) and visual (sight of shoal) cues of conspecifics, we
exposed zebrafish to AS in the presence of olfactory or
visual social cues separately. Our results showed that
although both sensory modalities were equally effective
in the short term, the visual cue was more effective in
decreasing fear responses toward AS in a long-lasting
exposure.8 These differences may reflect the fact that
olfactory and visual cues are refreshed at different rates
in the environment, with olfactory information remain-
ing invariable in the water for longer periods of time,
hence limiting the rate at which it can be updated.8 Sec-
ondly, we characterized the changes in brain activity
associated with social buffering in zebrafish, using the
transient expression of an immediate early gene (c-fos)
as a marker of neuronal activity. We have shown that a
set of brain nuclei that are putative homologues to those
involved in social buffering in mammals were also active
during social buffering in zebrafish, namely the medial
part of the dorsal telencephalon (Dm, homolog of the
mammalian pallial amygdala), the ventral nucleus of the
ventral telencephalon (Vv, homolog of the mammalian
nucleus accumbens and septum), and the preoptic area
(POA, homolog of the mammalian preoptic area/para-
ventricular nucleus).8 In sum, our work indicates that
multimodal social cues mediate social buffering in zebra-
fish and that these are integrated and processed in
homologous brains areas to those previously identified
in mammals to ameliorate the response to threat.

Social information use in threat detection

Interestingly, the presence of a conspecific may act either
as a threat ameliorating stimulus or as a stressor itself,
depending on several factors, namely the familiarity with
the conspecific (e.g., ref. 18), the social context (e.g.,
dyadic encounter in rats in a novel environment or in a
territory),19,20 and the state/ behavior of the conspecific
(e.g., stress status in rats).21 Moreover, social transmis-
sion of fear/anxiety between a fearful/anxious individual

and previously fearless/non-anxious conspecifics has
also been documented both in humans and other ani-
mals.22-24 Therefore, social buffering and social transmis-
sion of fear/anxiety can be viewed as complementary
social phenomena. Indeed, if viewed from an informa-
tion processing perspective, these 2 phenomena can be
viewed as different aspects of social information use in
the context of threat perception. In group living species
individuals can use social information to assess potential
threats in the environment, promoting better adaptation
to dynamic contexts. In this perspective, social buffering
of fear can be seen as animals using social information
indicating the absence of a threat to diminish their fear
response to a threat that they have detected them-
selves.7,17,25 On the other hand, in the case of social
transmission of fear, animals can use social signals (e.g.,
alarm calls in mammals and birds; see ref. 26) or fear
cues (e.g., cessation of movement in rats; see ref. 24) to
infer the presence of a threat in the environment, even
when they have not detected it directly. Hence, the use of
social information predicts the evolution of both social
buffering and social transmission of fear in social
animals.

Here we propose a unifying conceptual framework for
social phenomena that modulate threat perception based on
the use of social information by animals when making a
decision to activate (or to end, in the case of recovery stud-
ies) a behavioral/physiological response to the presence of
threat in the environment. This framework is based on the
application of signal detection theory to animal communi-
cation,27,28 and has the following premises:
(1) Although the detection of threat in the environ-

ment can elicit different types of alarm responses,
such as fear, anxiety and stress, there is a decision-
making process in which the individual decides
whether a threat is present, and therefore to trigger
the response.

(2) Individuals have to sample information available in
the environment that signals the presence of threat.
Given that sensory data always have some degree
of ambiguity (e.g., due to ambient noise), threat
cues are not 100% unambiguous (e.g., an individual
may have to decide if a rustle in the grass indicates
the presence of a predator or if it is just the wind),
and typically there is some overlap between the dis-
tribution of ambient noise and the distribution of
the threat cue (i.e. on average predators make
more rustling than the wind, but there are occa-
sions where they make less; Fig. 1A, B). Hence,
individuals need to establish a criterion (aka signal
detection threshold) for that threat presence. If
individuals set a high threshold for triggering a
threat response, they will fail to detect a real threat
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frequently (misses), but they will activate few false
alarms; conversely, if they set a low threshold, they
will miss fewer real threats, but at the cost of more
frequent false alarms (Fig. 1C, D). Therefore, there
is a trade-off between misses and false alarms.

(3) According to error management theory29 individu-
als should adjust the signal detection threshold
according to: (1) the relative costs of misses (Cm)
vs. false alarms (Cfa); and (2) the probability of
threat (Pt) being present in the environment (e.g.,
how frequent is the presence of predator) or not
(Pnt), with the optimal threshold (OT) value given
by the following equation:

OT D .Cfa=Cm/ � .Pnt=Pt/

Whereas the relative fitness costs of misses vs.
false alarms over evolutionary time will have

selected for a bias toward the least costly error,
the probability of a threat being present will
depend on information collected from the
environment.

(4) In group living species individuals can gather
information from the behavior of others.30 Thus,
threat cues can be detected either directly or from
observing the behavior of others (i.e., Pt has a direct
and an indirect/social component). It has been
recently demonstrated that the trade-off between
misses and false alarms (i.e., increase in hits can
only be achieved with a concomitant increase in
false alarms) described above for individual deci-
sion-making, can be overcome in a group of deci-
sion makers using a quorum decision rule, when
the threshold is set above the false alarm rate and
below the true-positive rate of solitary decision-
makers.31 Therefore, the use of social information

Figure 1. Signal detection theory applied to threat detection in animals. (A) The distributions of the threat cue and of background noise
within the decision-maker overlap, and the difference in position between the 2 distributions reflects the sensitivity (d’) of the decision-
maker to the threat cue; the decision-maker uses a criterion (i.e., threat detection threshold, b), to decide when a threat is present (i.e.,
when the internal signal is stronger than b); given this decision there are 4 possible outcomes: (i) the individual reports the threat pres-
ent when it is (hit); (ii) the individual reports the threat present when it is absent (false alarm); (iii) the individual reports the threat
absent when it is present (miss); and (iv) the individual reports the signal absent when it is absent (correct rejection); the probabilities
for each of these outcomes are represented by the area under the curves. (B) Illustration of a hypothetical individual with higher threat
sensitivity (d’; i.e., the difference between the proportion of hits and false alarms is higher); note that threat sensitivity (d’) and threat
detection threshold (b) are independent measures of decision-making; in this example the sensitivity increased in comparison to (A),
whereas the threshold remained the same. (C) Illustration of a hypothetical individual with a high threat threshold (b); it will reduce the
number of false alarms at the cost of increasing the number of misses. (D) Illustration of a hypothetical individual with a low threat
threshold; it will reduce the number of misses at the cost of increasing the number of false alarms.
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in threat perception allows this basic trade-off in
individual signal detection theory to be avoided.

(5) If one considers the relative costs of misses vs. false
alarms to be fixed, then the optimal threshold will
depend exclusively on the probability of a threat
being present. In this situation, one can consider 3
scenarios:
(i) social facilitation - when both direct and social

cues are in agreement one should observe
either a minimum or a maximum value of OT
(due to a maximum value of Pt or Pnt, respec-
tively); that is, the behavior of the group facili-
tates the decision reached by the individual
based on direct information and the selected
response should be exacerbated;

(ii) social buffering - when the relaxed behavior of
conspecifics present in the environment signals
the absence of threat (i.e., higher Pnt) thus
shifting the detection threshold to an higher
value; that is, the behavior of the group contra-
dicts the threat detected by the individual, and
the alarm response is buffered;

(iii) social contagion - when the alarm behavior of
conspecifics signals the presence of threat (i.e.,
higher Pt), thus shifting the detection threshold
to a lower value; that is, the behavior of the
group contradicts the lack of threat detected by
the individual, and the alarm response is trig-
gered even in the absence of direct information
signaling a threat.

Therefore, social facilitation, social buffering and
social contagion of fear/anxiety should be seen as com-
plementary phenomena and resulting from the use of
social information in threat detection. Since these 3 phe-
nomena are potentially using the same sensory and cog-
nitive mechanisms to collect and process social
information for social-decision making, it is expected
that they share neural mechanisms related to social
information use. As a consequence, the perspective pro-
posed here predicts that functionally antagonistic social
phenomena (i.e., induce fear vs. reduce fear) may in fact
share the same neurobehavioral mechanisms. Finally, it
should also be highlighted that the application of signal

detection theory to threat perception provides measures
of sensitivity to the threat cue (d’) and of subject bias
(b), independent of each other, that can be compared
across widely different situations.
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