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Abstract: Long non-coding RNAs (lncRNAs) belong to a class of non-protein-coding RNAs with
their lengths longer than 200 nucleotides. Most of the mammalian genome is transcribed as RNA, yet
only a small percent of the transcribed RNA corresponds to exons of protein-coding genes. Thus,
the number of lncRNAs is predicted to be several times higher than that of protein-coding genes.
Because of sheer number of lncRNAs, it is often difficult to elucidate the functions of all lncRNAs,
especially those arising from their relationship to their binding partners, such as DNA, RNA, and
proteins. Due to their binding to other macromolecules, it has become evident that the structures
of lncRNAs influence their functions. In this regard, the recent development of epitranscriptomics
(the field of study to investigate RNA modifications) has become important to further elucidate the
structures and functions of lncRNAs. In this review, the current status of lncRNA structures and
functions influenced by epitranscriptomic marks is discussed.
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1. Introduction

By definition, long non-coding RNAs (lncRNAs) are any ncRNAs that are longer than
200 nucleotides (nt). With the advancement of high-throughput techniques [microarrays,
next generation sequencing (NGS), especially RNA sequencing (RNA-seq)], many lncR-
NAs have been discovered [1]. To date, a number of functions of lncRNAs have been
proposed and experimentally validated; ranging from decoy, epigenetic, transcriptional,
post-transcriptional, and translational controls [2–5]. The general understanding in the field
is that lncRNAs exert their actions by binding to other macromolecules, which are DNA,
RNA, and proteins [6,7]. Thus, it is essential to identify the potential binding partners to
elucidate the mechanism of action of lncRNAs. To this end, the most popular method is
using an affinity tag on an in vitro purified RNA and using this RNA as a bait to pull-down
proteins/nucleic acids from cellular extracts. There are other more elaborated methods
currently available, including ChIRP (Chromatin isolation by RNA purification), CHART
(Capture Hybridization Analysis of RNA Targets), CLIP (cross-linking and immunopre-
cipitation), and RAP (RNA antisense purification), which are comprehensively reviewed
elsewhere [8–10].

Just as DNA and proteins, RNA can be modified by a variety of enzymes. The classic
example is the RNA modifications of ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs),
which affect the efficiency of translation [11–13]. To date, there are more than 170 RNA
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modifications known across species [14], which has opened up a new field of study called,
epitranscriptomics [15,16], whose name is based on the well-studied field of DNA mod-
ification, epigenetics. Much of the concepts of epigenetics are applied to dissect the
ever-growing field of epitranscriptomics, including the epitranscriptomic enzymes be-
ing categorized as writers, readers, and erasers. Among epitranscriptomic marks, the most
well studied one in recent years is N6-methyladenosine (m6A), which is a methylation of
nitrogen-6 position of adenosine (A) found in messenger RNAs (mRNAs) and non-protein-
coding RNAs (ncRNAs). Other epitranscriptomics marks in mammals include the A-to-I
RNA editing, 2′-O-methylation (2′-O-Me), N1-methyladenosine (m1A), 3-methylcytidine
(m3C), 5-methylcytosine (m5C), N7-methylguanosine (m7G), pseudouridylation (Ψ) to
name a few [17,18]. These epitranscriptomic marks affect all realms of RNA lifecycle,
including splicing, subcellular localization, microRNA (miRNA) biogenesis and bindings,
RNA stability, and translation efficiency [19,20]. More importantly, dysregulation of epi-
transcriptomic marks affect many diseases, including cardiovascular [21], liver [22], and
neurodegenerative diseases [18] as well as cancers [23]. These epitranscriptomic marks are
also found in lncRNAs [24]. Given that epitranscriptomic marks affect the binding between
lncRNA and other macromolecules is still a matter of ongoing investigation, which this
review aims to summarize.

2. Epitranscriptomic Marks Affect RNA Structures as in the Case of Immune Responses

RNA exists in a single-stranded (ssRNA) or double-stranded RNA (dsRNA) state.
The balance between these states may be influenced by cellular conditions, such as stress
and viral infection [25–28]. Furthermore, more than half of the human genome consists of
repetitive sequences, such as those derived from transposons and ALU elements [29]. These
repetitive sequences form palindromic repeats, resulting in the formation of dsRNAs [30].
To detect dsRNAs, there are several high-throughput methods available, including PARS
(Parallel Analysis of RNA Structure) by sequencing RNA digested with RNases S1 and V1
that specifically recognize single-stranded RNA (ssRNAs) and dsRNAs, respectively [31].
Other methods to analyze RNA structures are DMS-Seq to label RNA structures by dimethyl
sulfate (DMS) [32], LIGR-seq (LIGation of interacting RNA followed by high-throughput
sequencing) to globally map RNA–RNA duplexes crosslinked in vivo [33], PARIS to detect
dsRNA [34], RIC-seq (RNA in situ conformation sequencing) to globally profile intra- and
intermolecular RNA–RNA interactions [35,36], SHAPE-Seq (selective 2′-hydroxyl acylation
analyzed by primer extension sequencing) [37], and SHAPE-MaP (selective 2′-hydroxyl
acylation analyzed by primer extension and mutational profiling) to chemically probe
RNA by adding RNA-specific small molecules in cell culture [38,39]. Recently, a compre-
hensive RNA structure probing database, RASP, was released, which contains 18 species
(e.g., animals, plants, bacteria, fungi, and viruses) and 18 different experimental methods
measuring RNA secondary structures in a transcriptome-wide manner [40]. Furthermore,
there are databases for epitranscriptomic marks (comprehensively reviewed in [41]), in-
cluding RMBase v2.0 [42] and RMVar [43] that contain several epitranscriptomic marks for
different organisms. It will be of great interest to further analyze the collected data sets by
merging them with high-throughput data that map known epitranscriptomic marks. This
will enable the analysis of the preferential distribution of each epitranscriptomic mark to
ssRNAs and dsRNAs in different species (thus, evolutional-conservation, if any).

Upon viral infection, the innate immune system is triggered, which recognizes pathogen-
associated molecular patterns (PAMPs, which are unique molecular ligands on or within
microbes, including viral DNA and RNA) leading to activation of intracellular signal-
ing pathways to initiate antiviral response [44,45]. These PAMPs are detected by the
host through pattern recognition receptors, such as Nod-like receptors (NLRs), RIG-I-like
receptors (RLRs), and Toll-like receptors (TLRs) [46]. In the case of RLRs, RIG-I senses
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short dsRNAs, while the RLR, MDA5 (melanoma differentiation-associated protein 5),
detects long dsRNAs. These recognitions of PAMPs by RLRs are followed by MAVS
(mitochondrial antiviral-signaling protein)-mediated activation of signaling cascades, in-
cluding type I interferon responses [47–49]. The epitranscriptomic mark, m6A, plays active
roles in innate immunity by reducing type I interferon production [50,51]. Winkler et al.
reported that m6A marks deposited by the m6A METTL3 and read by the m6A reader
YTHDF2 negatively regulate interferon response by facilitating the fast turnover of in-
terferon mRNAs leading to viral propagation [50] (Figure 1A). Interestingly, increasing
evidence suggests that lncRNAs are shown to be involved in virus infections and antiviral
immune responses [52]. Furthermore, many lncRNAs have m6A marks [53–55], influencing
secondary structures of lncRNAs. For example, MALAT1 (metastasis associated lung adeno-
carcinoma transcript 1) is involved in inflammatory responses and innate immunity [56–58]
along with its enzymatic processing product, MALAT1-associated small cytoplasmic RNA
(mascRNA) [59–63]. These findings highlight that further investigation of epitranscrip-
tomic marks on lncRNAs and their secondary structural changes may reveal the active
involvement of lncRNAs in innate immunity. In this regard, it will be of high interest
to understand the relationship between lncRNAs and another epitranscriptomic mark,
pseudouridylation (Ψ) [64], as it is demonstrated recently in COVID-19 mRNA vaccines
using N1-methylpseudouridine (m1Ψ) to increase their effectiveness [65].

A-to-I RNA editing is a type of epitranscriptomic mark that involves the RNA editing
enzymes, ADARs [adenosine deaminases acting on RNA, consisting of three genes: ADAR1,
ADARB1 (ADAR2), and catalytically inactive ADARB2 (ADAR3)], recognize dsRNAs to
catalyze adenosine to inosine (A-to-I) conversion, mostly at ALU repeats and introns [21].
ALU repeats are ~300 bp that belong to the family of repetitive elements in primates.
There are more than one million ALU repeats in primate genomes [66]. Two transcribed
ALU repeats form a quasi-palindrome, which becomes double-stranded RNA to recruit
ADARs to catalyze A-to-I RNA editing [67]. I is recognized as guanosine (G) by splicing
and translational machineries as well as in reverse transcription reactions; allowing detec-
tion of A-to-G changes in RNA-seq reads when these reads are mapped to the reference
genome [68]. Mutations in the human ADAR1 gene result in the autoimmune disease,
Aicardi-Goutières syndrome, while the whole-body knockout mice of Adar1 results in
embryonic death due to massive apoptosis and aberrant interferon induction, which can
be rescued to live birth by ablating the RLRs, Mavs or Mda5 (melanoma differentiation-
associated protein 5) [69–71]. Both ADAR1 and ADAR2 are important in differentiating self-
from non-self dsRNAs [70,72,73] (Figure 1B). Furthermore, silencing of ADAR1 in the hu-
man hepatocellular carcinoma cell line, HepG2, resulted in shifting of dsRNAs to ssRNAs at
the transcriptome-wide level [74]. As many lncRNAs have A-to-I RNA editing sites [75,76],
further characterization of RNA editing sites will uncover the secondary structures of
lncRNAs, especially the conversion of A to I at the nitrogen-6 position of adenosine, which
can be methylated as m6A, if not edited [77]. Thus, both epitranscriptomic marks, A-to-I
RNA editing and m6A, could competitively affect the secondary structures of lncRNAs,
thereby, influencing the binding of other macromolecules.
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Figure 1. Epitranscriptomic marks and RNA structures in immune responses. (A) Viral RNA meth-
ylation deposited by the m6A writer METTL3 and read by the m6A reader YTHDF2 negatively reg-
ulate cellular defense response by facilitating the fast turnover of interferon mRNA leading to viral 
replication. (B) The role of ADARs in differentiating self-from non-self dsRNA by modulating ca-
nonical antiviral pathways induced by dsRNA. During an infection, the viral dsRNA enters into the 
cytoplasm. Non-edited dsRNA binds to MDA5 (melanoma differentiation-associated protein 5) and 
RIG-I (retinoic acid-inducible gene I like receptor). This complex activates MAVS (mitochondrial 
antiviral-signaling protein), leading to the phosphorylation of IRF3 (interferon regulatory transcrip-
tion factor 3) and its translocation into the nucleus, thus inducing a type 1 interferon response. En-
dogenous cellular dsRNA that is generated during transcription is A-to-I edited by ADARs. The 
ADAR1 isoform p150 is cytoplasmic and is induced by interferon. It edits dsRNA either of viral or 
cellular origin. This dsRNA contains inosine and inhibits the activation of MDA5 and RIG-1, thus 

Figure 1. Epitranscriptomic marks and RNA structures in immune responses. (A) Viral RNA methy-
lation deposited by the m6A writer METTL3 and read by the m6A reader YTHDF2 negatively
regulate cellular defense response by facilitating the fast turnover of interferon mRNA leading to
viral replication. (B) The role of ADARs in differentiating self-from non-self dsRNA by modulating
canonical antiviral pathways induced by dsRNA. During an infection, the viral dsRNA enters into
the cytoplasm. Non-edited dsRNA binds to MDA5 (melanoma differentiation-associated protein 5)
and RIG-I (retinoic acid-inducible gene I like receptor). This complex activates MAVS (mitochondrial
antiviral-signaling protein), leading to the phosphorylation of IRF3 (interferon regulatory transcrip-
tion factor 3) and its translocation into the nucleus, thus inducing a type 1 interferon response.
Endogenous cellular dsRNA that is generated during transcription is A-to-I edited by ADARs. The
ADAR1 isoform p150 is cytoplasmic and is induced by interferon. It edits dsRNA either of viral
or cellular origin. This dsRNA contains inosine and inhibits the activation of MDA5 and RIG-1,
thus turning off the interferon response and apoptosis to prevent autoimmune reaction. However,
this mechanism could favor virus replication, if it is not tightly regulated. Figure is created with
BioRender.com, accessed on 15 March 2022.
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3. Understanding the Actions of RNA-Binding Proteins Is Important for Functions
of lncRNAs

RNA-binding proteins (RBPs) bind ssRNAs or dsRNAs to modulate their stability
and translation [78]. RBPs also bind lncRNAs as in the case of the lncRNA NORAD
sequestering the RBP, PUMILIO, to regulate genomic stability [79–81]. Classically, RBPs are
defined to have specific motifs called, RNA-binding domains (RBDs). Through proteome-
wide screenings (e.g., RNA interactome capture), over 2000 RBPs have been identified,
of which many lack known RBDs [82–84]. In regards to lncRNAs, the catalytic subunit
of polycomb repressor complex 2, EZH2, is a good example of a protein binding to RNA,
including lncRNAs, without known RBDs, although promiscuously [85,86]. Indeed, there
are databases available to examine the binding of RBPs to lncRNAs, including CLIPdb [87],
POSTAR2 [88], and starBase [89]. Thus, increasing studies now investigate the possible
binding of lncRNAs to RBPs thereby regulating RNA metabolism and functions (possibly as
RBP sponges to sequester the available RBPs in the cell), instead of RBPs merely functioning
in the biogenesis of lncRNAs [90].

RBPs can either stabilize or degrade the bound RNA [91] (Figure 2). Given that mRNAs
have different epitranscriptomic marks, whether such marks signal the recruitment of RBPs
to the mRNAs that ultimately affect the mRNA stability needs further investigation. A
recent systematic analysis of RBP-bound regions and A-to-I RNA editing sites suggest
that such RNA-edited sites are preferentially bound by the RNA-stabilizing RBP, HuR
(encoded by ELAVL1 gene) [92]. This study further confirms the possible functional role
of RNA-edited sites of individual genes in regards to mRNA stability via the action of
HuR [93,94]. Furthermore, several lncRNAs are found to bind HuR, including the lncRNA,
LINC02381, that stabilizes the 3′-untranslated region (UTR) of the HOXC10 mRNA via
HuR [95]. Interestingly, although there is no A-to-I RNA editing (based on the DARNED
database [96,97], https://darned.ucc.ie, accessed on 2 February 2022), nor m6A site (based
on the m6A-Atlas database [98], http://180.208.58.19/m6A-Atlas/, accessed on 2 February
2022) in the 3′-UTR of HOXC10 gene, an 5-methylcytosine (m5C) site (based on the m5C-
Atlas database [99], http://180.208.58.19/m5c-atlas/, accessed on 2 February 2022) is
present in the 3′-UTR of HOXC10 gene, which calls for further investigation of this region
to understand the causal relationship between lncRNA, RBP, and epitranscriptomic marks.
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Figure 2. The roles of RBPs in the epitranscriptomic context. The most common epitranscriptomic
marks include 5-methylcytosine (m5C), N1-methyladenosine (m1A), N6-methyladenosine (m6A),
pseudouridine (Ψ), as well as A-I RNA editing. These marks affect the structures of RNA and, thus,
influence the binding of RBPs. RNA-edited sites are preferentially bound by HuR—a RNA-stabilizing
RBP. Furthermore, several lncRNAs, including LINC02381, are found to be bound by HuR, which
stabilizes the 3′-UTR of the mRNA. Other RBPs could promote RNA degradation. Figure is created
with BioRender.com, accessed on 16 March 2022.
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Given that many epitranscriptomic readers are RBPs (e.g., m6A readers: YTHDF1-3,
YTHDC1, YTHDC2, HNRNPC, RBMX (HNRNPG), IGF2BP1-3 [100,101]), it is not sur-
prising that the RBP binding sites overlap that of epitranscriptomic marks on mRNAs to
regulate mRNA stability. In the case of RBP binding to the m6A sites, a convenient tool
called, m6Adecom, was introduced recently [102]. However, it is of utmost importance
to experimentally validate the relationships among epitranscriptomic marks, RBPs, and
lncRNAs by performing gain/loss-of-function experiments for each of the components to
understand the causal relation between them, rather than simply performing and analyzing
high-throughput data.

4. Factors Influencing lncRNA Mediated R-Loop Formation—Sequence, Structure and
Chemical Marks

R-loops (RNA loops) are three-stranded nucleic acid structures formed from the
hybridization of RNA and DNA, leading to a displaced single-stranded DNA (ssDNA).
These structures typically result from nascent transcription at regions of high GC-skew,
such as CpG islands in gene promoters [103]. When improperly regulated, R-loops can be
pathological [104–106]. A well-described consequence of pathological R-loops is collision of
the transcriptional machinery with the replisome (transcription-replication conflict) [107].
Not surprisingly, because of these deleterious consequences, most interest has focused on
investigating factors involved in R-loop processing or dissolution, such as the RNase H1
and RNase H2 enzymes that specifically degrade the RNA in R-loops [108]. However, under
basal conditions, R-loops are benign; and, in some cases, they play important physiological
roles [109,110]. Recent studies also indicate that lncRNAs are involved in the formation
of R loops, such as lncRNAs APOLO [111], HOTTIP [112], and TERRA [113–119], and
enhancer RNAs (a subclass of lncRNAs arising from the enhancer regions of protein-coding
genes) [120] (Figure 3).
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recombinase binds TERRA and thus catalyzes TERRA R-loop formation. The helicase RTEL1 and
the telomeric shelterin component TRF2 also promote TERRA association with chromosome ends
and stimulate R-loop formation. TRF1 and POT1 play a role in preventing the accumulation of such
structures. The DNA recombination factor BRCA1 modulate TERRA binding to telomeres, preventing
R-loop-associated telomeric DNA damage. TERRA R-loops are regulated by endonucleolytic cleavage
activity of RNase H, which removes the RNA-DNA hybrids. (B) The lncRNA HOTTIP is highly
expressed in acute myeloid leukemia. HOTTIP directly interacts with and regulates CTCF/cohesin
complex and form R-loops. HOTTIP-mediated R-loops facilitate formation of topologically associating
domain (TAD) to drive gene transcription of β-catenin. Eliminating HOTTIP-guided R-loops by
targeting RNase H or removing CTCF-binding sites affect TAD structure, leading to alleviating
leukemia severity. (C) The cis and trans regulatory mechanisms of the lncRNA APOLO. Under
normal physiological conditions, APOLO is not transcribed due to hypermethylation of its promoter
and chromosomal looping. However, during the lateral root development, the plant hormone Auxin
induces the transcription of APOLO. The transcribed APOLO forms R-loops and thus modulates the
chromatin looping in cis and trans, thereby enhancing transcription of auxin responsive genes and
lateral root development. The figure was created with BioRender.com, accessed on 17 March 2022.

A critical aspect of R-loop biology that may impact functionality and dynamics are
characteristics of the RNA moiety in these structures. There is emerging evidence that m6A
methylation [121–123] plays a key role in regulating R-loop dynamics. In a recent study,
Yang et al. showed that the m6A writer, METTL3, is required for R-loop formation at m6A+
gene termination sites to prevent transcript read-through [123]. These results were extended
in a subsequent study by Abakir et al., which found that m6A readers like YTHDF2 regulate
R-loop levels to prevent genome instability in dividing cells [122]. Curiously, Kang et al.
found in their recent work that a pleiotropic transcriptional regulator (either an activator
or a suppressor depending on individual genes), tonicity-responsive enhancer binding
protein (TonEBP), recognizes and binds R-loops, recruits METTL3, leading to RNase H1
recruitment to facilitate R-loop resolution [121]. In addition to m6A methylation, recent
evidence indicates that RNA secondary structure [124–126] influences R-loop dynamics. de
Almeida et al. demonstrated that the DDX1 RNA helicase resolves RNA G4 quadruplexes to
promote R-loop formation and promote IgH class-switching recombination [126]. Moreover,
Chakraborty et al. recently demonstrated that the DHX9 helicase unwinds RNA secondary
structure, leading to R-loop formation [125]. Finally, similar to mutations in ADAR1,
mutations in the R-loop-processing complex RNase H2 also results in Aicardi-Goutières
syndrome [127], indicating a convergence of mechanism that may relate to both A-to-I
editing and R-loop processing.

R-loops form readily both from protein-coding and non-coding RNA species, partic-
ularly lncRNAs [109,128]. However, unlike protein-coding RNA species, lncRNAs form
R-loops both in cis (re-annealing to their DNA template) and in trans (annealing to a distal
region). Antisense lncRNAs form cis R-loops that modulate the transcription of sense
protein-coding genes [129–133]. For example, the lncRNA VIM-AS1 (VIM antisense RNA 1)
forms an R-loop, leading to chromatin remodeling and expression of the sense vimentin
(VIM) gene [130]. In a similar example, the lncRNA TARID (TCF21 antisense RNA induc-
ing promoter demethylation, also known as EYA4-AS1) forms an R-loop which leads to
GADD45A recruitment, demethylation, and expression of TCF21 mRNA [131]. Finally, the
lncRNA GATA3-AS1 (GATA3 antisense RNA 1) forms an R-loop which promotes permissive
chromatin marks and expression of GATA3 mRNA [129]. Conversely, lncRNA-mediated
R-loops can also repress antisense transcription. The lncRNA ANRASSF1 (RASSF1 an-
tisense RNA 1) forms an R-loop that recruits PRC2 to repress the RASSF1 gene [132].
Additionally, the lncRNA COOLAIR forms a cis R-loop to repress transcription at the FLC
locus in Arabidopsis [133]. These examples illustrate how lncRNA forms cis R-loops to
influence chromatin state and modulate transcription of protein-coding genes. In a different
mechanism, Tan-Wong et al. demonstrated that sense transcription of protein-coding genes
leads to cis R-loops that can promote antisense lncRNA transcription [134]. A proposed
explanation for the action of cis R-loops in promoting antisense transcription is that the dis-
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placed ssDNA acts as a de novo promoter for general transcription factors [134]. However,
the mechanism of trans-acting lncRNA R-loops is less clear.

lncRNA forms an R-loop in trans via the invasion of duplex DNA distal to the site of
lncRNA transcription. Wahba et al. first described this phenomenon in a 2013 study, which
found that lncRNAs form trans R-loops via the action of Rad51p in yeast [135]. Subsequent
work in human cell lines showed that the lncRNA TERRA (telomeric-repeat-containing
RNA) forms R-loops in trans at telomeres, also in a RAD51 (DNA repair protein)-dependent
manner [136]. However, lncRNA R-loops may also act independently of the RAD51 trans
mechanism. In budding yeast, the lncRNA GAL forms R-loops which promote rapid
adaptation to changing nutrient availability [137]. Curiously, these lncRNA R-loops form in
both cis and trans upon depletion of the RNA helicase Dbp2 [137], suggesting an alternative
mechanism that does not depend on Rad51p. Moreover, in the Arabidopsis genome, the
APOLO lncRNA forms an R-loop which regulates the PID gene in cis and multiple auxin-
responsive target genes in trans to promote lateral root development [111].

Recent work suggests lncRNA formation of trans R-loops may also play a role in
supporting long-range chromatin interactions and enhancer formation via the cohesin com-
plex. The cohesin complex is a multiunit complex comprising the SMC1/3, RAD21, and
STAG1/2 proteins. It forms a ring structure responsible for establishing and maintaining 3D
chromatin architecture [138]. Previous work has shown that the cohesin complex subunits
STAG1/2 bind to R-loops and co-localize with them genome wide [139], suggesting the
possibility that R-loop/cohesin interactions may regulate 3D chromatin conformation at
enhancers. In 2018, Tsai et al. found that an enhancer lncRNA (eRNA) forms a trans R-loop
that recruits cohesin to regulate the activity of the Myogenin locus [140]. Moreover, genomic
analysis suggests that eRNA R-loops may act in trans to facilitate enhancer-promoter in-
teraction via Alu repeats [141]. Finally, a recent study showed that the lncRNA HOTTIP
(HOXA distal transcript antisense RNA) forms trans R-loops and promotes cohesin bind-
ing and long-range enhancer interactions [112]. Taken together, these findings suggest a
possible role for some lncRNA R-loops as trans-acting promoters of long-range chromatin
looping via their interactions with the cohesin complex. However, future work is neces-
sary to better understand this potential mechanism and reveal other potential roles for
lncRNA R-loops.

5. Conclusions

While functional characterizations of lncRNAs have intensified in the past decade,
the identification and characterization of various epitranscriptomic marks are still at their
infancy as only m6A marks are highly studied. As it is evident that lncRNAs are modi-
fied by various epitranscriptomic enzymes, it is still difficult to understand what these
epitranscriptomic marks mean for the functions of lncRNAs with largely unknown func-
tions. Furthermore, a recent study about epitranscriptomic marks on tRNAs show that
epitranscriptomic marks affect tertiary structures of tRNAs [142], suggesting that not only
secondary structures but also tertiary structures of lncRNAs must be carefully analyzed
for the presence of epitranscriptomic marks on lncRNAs. Given that sequence information
alone cannot infer the functions of lncRNAs, careful inspections of secondary and tertiary
structures of lncRNAs are necessary to uncover the functions of lncRNAs as their mech-
anisms of actions depend on their bindings to macromolecules. Further development of
experimental techniques as well as re-analysis of published data from the perspective of
epitranscriptomic marks and lncRNAs are necessary to uncover the causal relationships
of marked lncRNAs to their binding partners, especially RBPs, and R-loop formation
(Figure 4).
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