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Gliomas are intrinsic brain tumors that originate from glial cells. Glioblastoma (GBM) is the
most aggressive glioma type and resistant to immunotherapy, mainly due to its unique
immune environment. Dimensional data analysis reveals that the intra-tumoral
heterogeneity of immune cell populations in the glioma microenvironment is largely
made up of cells of myeloid lineage. Conventional therapies of combined surgery,
chemotherapy and radiotherapy have achieved limited improvements in the prognosis
of glioma patients, as myeloid cells are prominent mediators of immune and therapeutic
responses—like immunotherapy resistance—in glioma. Myeloid cells are frequently seen
in the tumor microenvironment (TME), and they are polarized to promote tumorigenesis
and immunosuppression. Reprogramming myeloid cells has emerged as revolutionary,
new types of immunotherapies for glioma treatment. Here we detail the current advances
in classifying epigenetic, metabolic, and phenotypic characteristics and functions of
different populations of myeloid cells in glioma TME, including myeloid-derived
suppressor cells (MDSCs), glioma-associated microglia/macrophages (GAMs), glioma-
associated neutrophils (GANs), and glioma-associated dendritic cells (GADCs), as well as
the mechanisms underlying promotion of tumorigenesis. The final goal of this review will be
to provide new insights into novel therapeutic approaches for specific targeting of myeloid
cells to improve the efficacy of current treatments in glioma patients.
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INTRODUCTION

Due to advanced diagnostic imaging tools including of computed tomography (CT) and magnetic
resonance imaging (MRI), the incidence of brain tumors has increased recently (1). Brain tumors
greatly affect the neurological function, psychological health, and quality of life of patients (1, 2).
Gliomas are intrinsic tumors that originate from neuroglial progenitor cells. Glioblastoma (GBM), a
grade IV glioma, is the most common primary malignant brain tumor (49.1%) with male
predominance in United States (3). Based on the 2021 WHO classification, gliomas include
adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas, pediatric-type diffuse high-
grade gliomas, circumscribed astrocytic gliomas (4). Previously, glioblastomas were diagnosed based
on the histologic findings of microvascular proliferation and/or necrosis and included both IDH-
mutated (10%) and IDH wild-type (90%) tumors with very different prognoses. In WHO CNS5,
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GBMs will comprise only IDH wild-type tumors. Otherwise,
IDH-mutant GBM is now referred to as IDH-mutant
astrocytoma, WHO grade 4. In 2021, in response to
modifications of diagnostic algorithms and mature results of
many large clinical trials, the European Association of Neuro-
Oncology (EANO) provide updated guidelines for the diagnosis
and management of adult-type diffuse gliomas including GBMs
(5). The standard of care for patients with GBM aged <70 years
and with a KPS >70 is maximal resection with neurologic
function preservation or biopsy followed by concurrent
chemo-radiation and maintenance adjuvant chemotherapy
(temozolomide, TMZ) (6). Elderly patients could be treated
with low-dose radiotherapy or TMZ alone (7, 8). Once
recurrence, no consensus for treatment is defined. Re-
operation, radiotherapy (re-boost), nitrosourea regimens, TMZ
re-challenges, and bevacizumab are all options, but benefit
remained unclear on overall survival. On the other hand,
recruitment into appropriate clinical trials should be
considered when available. The new treatment modality,
tumor-treating fields (TTF), demonstrated superior
progression-free survival and overall survival outcomes in all
patients and across all tumor subgroups when in addition to
maintenance TMZ in patients with newly diagnosed GBM (9).
However, the feasibility and cost-effectiveness of TTF are still
concerned and remain controversial as a standard of care (10). In
summary, the prognosis of GBM is still very poor, and effective
therapies are urgently needed.

The aim of cancer immunotherapy is to overcome tumor
immune resistance to promote tumor eradication. This strategy
has demonstrated great progress and excellent results in recent
years, especially since immune checkpoint inhibitors (ICIs) in
melanoma and lung cancer (11). However, recent clinical trials of
TABLE 1 | Summary of tumor promotion function in myeloid cells.

Cell Origin Surface marker

MDSC Myeloblast (bone marrow) G-
MDSC

CD11b+CD14-CD33+HLA
DRlow/-CD15+ (or CD66+)

Monocyte/macrophage and
dendritic cell precursor
(bone marrow)

M-
MDSC

CD11b+CD14+CD33+HLA
DRlow/-CD15-

GAM (Glioma-
associated
macrophage)

CNS resident microglia (York
sac)

CD11b+CD45low/int or CD11b+CD2
CD163-

monocyte/macrophage and
dendritic cell precursor
(bone marrow)

CD11b+CD45hi or
CD11b+CD206hiCD163+

GAN (Glioma-
associated
neutrophil)

Myeloblasts (bone marrow) N1 CD66b+, CD11b+, CD101
CD170low, CD54+, HLA-D
CD86+, CD15high

N2 CD66b+, CD11b+, CD170
PDL1

GADC (Glioma
associated
dendritic cell)

monocyte/macrophage and
dendritic cell precursor
(bone marrow)

cDC CD45hi, CD11b+, CD11c+

CD103+, CD205+, MHC I
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ICIs and vaccine therapies have shown negative results in GBM
patients (12). Several obstacles, which include natures of
heterogeneity and low mutation burden, and local/systemic
immunosuppressive microenvironment, impede the success to
GBM immunotherapies (13) . Therefore, the tumor
microenvironment (TME) is emerging as a critical regulator of
cancer progression in glioma. Besides cancer cells, there are
many different noncancerous cell types residing in TME,
including endothelial cells, pericytes, fibroblasts, and immune
cells (14). There is mounting evidence, however, that the TME
alters myeloid cel ls— the most abundant nucleated
hematopoietic cells in the human body—by converting them
into potent immunosuppressive cells, including myeloid-derived
suppressor cells (MDSCs), tumor-associated macrophages and
microglia (TAMs), tumor-associated neutrophils (TANs), and
tumor-associated dendritic cells (TADCs) (15). Here, we review
the current understanding of the roles of myeloid-derived
suppressor cells (MDSCs), glioma-associated macrophages
(GAMs), glioma-associated neutrophils (GANs), and glioma-
associated dendritic cells (GADCs) (Table 1). By developing a
comprehensive understanding of the complex interactions of
myeloid cells in glioma TME (Figure 1), we will greatly expand
the range of therapeutic strategies available to target GBM, a
devastating disease.
MYELOID-DERIVED SUPPRESSOR
CELLS (MDSC)

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous
group of bone marrow-derived immature myeloid cells
comprising of either monocytic or granulocytic at different
Tumor promoting features

- • Loss of MHC class II from MDSCs interferes with T-cell mediated
immune responses, leading to immunosuppressive TME.

-

06low/- • Mediate immunosuppression by upregulation of Arg-1, IL-10, TGF-b,
CD206, CD163, CCL17, and CCL22, inhibitory immune checkpoints
(PD-1, CTLA-4 and TIM-3).

+,
R+,

• N2 GANs suppress T cell immunity and induce genetic instability,
tumor cell proliferation, angiogenesis, and metastasis
• NETs induce the IL-8 expression, which is correlated with tumor
burden and prognosis through a HMGB1- and RAGE/ERK/NF-kB axis-
dependent manner.

high,

,
I+

• FGL2 and CCL2 induce Treg to inhibit antigen presentation
• MIF decreased GADC migration and maturation
• Inhibit GADC maturation by STAT3 signaling pathway
• Inhibit costimulatory factors CD80 and CD86 by VEGF, expressed
VEGF is expressed by tumor cells and influenced by mutant IDH1 and
IDH2
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FIGURE 1 | Myeloid cells within glioma microenvironment. Gliomas are composed of different types of myeloid immune cells which promote tumor progression,
including MDSCs, GAMs, GANs, and GADCs. Each of these cell types contributes to glioma progression in unique ways. (A) Both G-MDSC and M-MDSC
recruitments contribute to T cell inactivation and inhibition cytotoxicity of glioma cells. BATF-2 on G-MDSC and sulforaphane on M-MDSC could cause inhibitory
effect and further prevent from T cell inactivation and glioma progression. (B) GAMs engage in significant bidirectional crosstalk with glioma cells. Glioma cells release
cytokines and chemoattractants to recruit GAMs to the glioma microenvironment, and M2 GAMs in turn supply pro-tumorigenic and pro-survival factors. In addition,
GM-CSF promote GAMs’ mitochondrial reprograming that sway between M1 and M2 inflammatory response leading to glioma resistance. (C) GANs can be
reprogrammed to express pro-tumor phenotype (N2) with TGFb signaling in the TME to facilitate tumor growth through NE and MMP9 secretion. The release of the
pro-angiogenic factors BV8 and the S100 proteins (S100A8 and S100A9) by N2 GANs activate VEGFA to promote tumor growth. Glioma cells can induce NETs
formation via IL-8 production. NETs are correlated with glioma progression and prognosis through a HMGB1/RAGE/IL-8 axis. (D) A variety of signaling molecules
alter GADC migration, infiltration of the TME, maturation, and function. FGL2 and CCL2 secreted by GAMs and GADCs induce Treg activity, which suppresses
antigen presentation function of GADCs. MIF, also secreted by GAMs, inhibits GADC maturation as well as migration and infiltration to the TME. The STAT3 signaling
pathway inhibits GADC maturation, as does VEGF through inhibition of costimulatory factors CD80 and CD86. VEGF is expressed by tumor cells and influenced by
mutant IDH1 and IDH2, as well as altered metabolism in the TME.
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stages of differentiation (16). There are three major types of
MDSCs: granulocytic or polymorphic nuclear MDSCs (G/PMN-
MDSCs), mononuclear MDSCs (M-MDSCs), and early-stage
MDSCs (eMDSCs). Human G-MDSCs are characterized as
CD11b+CD14-CD33+HLA-DRlow/-CD15+ (or CD66+), M-
MDSCs as CD11b+CD14+CD33+HLA-DRlow/-CD15-, and
eMDSCs as Lin- (CD3-, CD14-, CD15-, CD19-, CD56-, HLA-
DR-, and CD33+) (17). In healthy conditions, immature myeloid
cells (IMCs) quickly differentiate into mature macrophages,
granulocytes, or dendritic cells (DCs). Under pathological
conditions such as glioma, inflammatory conditions prevent
immature myeloid cells differentiation into mature myeloid
cells resulting in MDSC accumulation (18). For example, IMCs
from tumor-bearing mice had a significantly higher level of
reactive oxygen species (ROS) than from tumor-free mice.
Hydrogen peroxide (H2O2) but not superoxide radical anions
were found to be the major component of ROS that prevents
MDSCs differentiation of antigen-presenting cells (18). In
human cancer patients, MDSCs are identified as HLA-DR-

CD11b+CD14-CD33+ cells that co-express the myeloid
differentiation markers, CD11b and CD33, while lacking
mature lymphoid and myeloid cell markers, such as HLA-DR,
an MHC class II molecule (19). This MHC class II molecule is
normally found on antigen-presenting cells (APCs) and
regulated by CIITA, a transactivator (20). Loss of MHC class II
from MDSCs interferes with T-cell mediated immune responses,
leading to immunosuppressive TME, and is correlated with poor
clinical outcomes in glioma (20–22). Accumulating evidence has
shown that glioma-released factors promote the recruitment of
MDSCs, inhibiting T cell proliferation and leading to glioma
growth (23). Sulforaphane treatment has been shown to prevent
transformation of normal monocytes to M-MDSCs (23), and
BATF2 inhibitor was shown to prevent glioma progression by
inhibiting G-MDSCs recruitment (Figure 1A) (24). Immune
checkpoints such as TIGIT, CTLA-4, PD-1 on T cells are thought
to cause T cell exhaustion and associate with glioma recurrence
(25, 26). Dual treatment of anti-PD-1 and anti-TIGIT was shown
to increase effector T cell function and downregulate suppressive
regulatory T cells (Tregs). However, a recent phase I clinical trial
has revealed although neoadjuvant PD-1 blockade increases T
cell function, these cells eventually transit into an exhausted
stated and are inhibited by the myeloid suppressor population
(25). A preclinical study also revealed sexual dimorphism: M-
MDSCs were enriched in the male tumors whereas G-MDSCs
were elevated in the females’ peripheral blood, both of which can
be leveraged for therapeutic management (27).
GLIOMA-ASSOCIATED MICROGLIA/
MACROPHAGES (GAMS)

The central nervous system (CNS) is considered to be immune-
privileged environment. The blood-brain barrier (BBB) prevents
activated T cells from entering CNS under steady-state and
healthy conditions. Diseased states, such as glioma, cause BBB
Frontiers in Immunology | www.frontiersin.org 4
leaks, leading to immune cell infiltration from the periphery (28).
However, such a belief has been amended as mouse and human
studies revealed that tissue CD4+ and CD8+ cells patrol in the
cerebrospinal fluid or brain parenchyma and can interact with
ACPs (29, 30). Brain CD8+ T cells that were CD103+ associated
with increased expression of tissue-homing chemokine receptors
compared to those that were CD103- (29), and CXCL12 was
shown to promote T cell transmigration across BBB (31).
Microglia, the major APC subset within the CNS, are
functionally compromised in the glioma microenvironment,
which decreases the effectiveness of tumor eradication at the
initial stage, as well as later T-cell-dependent immune responses
(20). Last but not least, microglia exhibit suppression of MHC
class II (MHC-II) molecules, which limits T cell-dependent
antitumor immunity (20, 22). The MHC-II molecules were
thought to mediate antigen presentation whereas the
mechanism of antigen presentation is complicated. Although
MHC-II was muted in GAMs, this may be just a compiled factor
contributing to GAM poorly activate T cells (32). In addition,
Toll-like receptor 2 (TLR2) activation is prevailing found in
GAMs that can downregulate MHC class II molecules in GAMs
and prevents T cell proliferation and activation (20). The study
has shown that glioma induces chronic inflammation in
microglia and activates Toll-like receptor 2 (TLR2), triggering
downstream MAPK/ERK signaling, and responses associated to
loss of histone H3 acetylation at CIITA promoters (20). In the
glioma microenvironment, various endogenous TLRs ligands,
such as heat shock proteins, high-mobility-group box 1
(HMBG1), and damage-associated molecular patterns
(DAMPs), are upregulated by necrotic cells. This upregulation
is correlated with CIITA inhibition, contributing to glioma
immune evasion (33, 34).

GAMs belong to myeloid lineages that are defined as CNS
resident microglia and bone marrow-derived macrophages; they
populate the TME and promote tumor progression (35). GAMs
are the most prominent cell sub-type of the tumor mass (~30-
50%). Tumor size is positively correlated to the number of GAMs
shown to inversely correlate with overall survival in patients with
recurrent GBM (35–37). Glioma-derived Granulocyte-
macrophage colony-stimulating factor (GM-CSF) promotes
activation of GAMs and production of CCL5 (Figure 1B),
which further induce a series of calcium-dependent pathways
such as p-PYK2 and p-CAMKII that lead to glioma progression
(35). Generally, microglia are recognized as CD11b+CD45low/int

or CD11b+CD206low/-CD163-, whereas macrophages are
recognized as CD11b+CD45hi or CD11b+CD206hiCD163+ (38,
39). Common activation markers observed in microglia and
macrophages include CD68, CD86, CD45, CX3CR1, and HLA-
DR, though TMEM119, P2RY12 and CD49D (encoded by
ITGA4) expression levels are higher in microglia and
macrophages in the human brain (39–41). GAMs express
molecules associated with M2 anti-inflammatory phenotype in
mouse GBM models that include upregulation of Arginase-1
(Arg-1), IL-10, transforming growth factor-b (TGFb), CD206,
CD163, CCL17, and CCL22, and NF-kB activation associated
with M2 differentiation (39, 42, 43). M2 GAMs have been shown
May 2022 | Volume 13 | Article 887781
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to mediate immunosuppression within the TME and promote
tumor progression (44, 45). Activation of MerTK, a receptor
tyrosine kinase, polarizes GAMs to an immunosuppressive
phenotype, but inhibition of MerTK from GAMs decreases
immunosuppressive CD206+ GAM phenotype, leading to
prolonged survival in GBM mouse models (Figure 1B) (46).

Several studies have advocated that pro-inflammatory M1
phenotype—associated with upregulation of CD115 and Siglec
and consecutive production of IL-1b, IL-6, or IFN-g—is critical
for tumor eradication (39), especially since M1 phenotype has
been reported to correlate with favorable survival outcomes in
many human cancers (47). However, this trend appears
inconsistent in glioma as inhibitory immune checkpoints such
as PD-1, CTLA-4 and TIM-3 are consistently upregulated in M1/
M2 GAMs which have been shown to significantly decrease
patient prognosis (48, 49). Mice study has revealed that
disruption of GBM-derived IL-6, known to induce myeloid
PD-L1, reduces local and systemic myeloid-driven
immunosuppression (50). In addition, GAMs in the TME are
highly heterogeneous, with dynamic phenotypes and functions
that are continuously shaped in response to the tumor.
The binary M1/M2 classification appears too simplistic to
explain the phenotype and functions of GAMs in tumors;
dimensional data analysis from scRNA-seq reveals that GAMs
possess multi-genomic phenotypes that encompass various M1
and M2 genes (41). Blood-derived macrophages, more so than
resident microglia, have been reported to upregulate
immunosuppressive cytokines and display an oxidative
metabolism of M2 phenotype in the glioma microenvironment
(41). A recent study further demonstrated regional differences of
inflammatory responses in GAMs. GAMs in tumor core evolve
toward pro-inflammation and are negatively correlated with PD-
1 signaling, whereas GAMs in tumor periphery evolve toward
anti-inflammation (37).

It has been previously recognized that GAMs undergo
constant epigenetic and metabolic reprogramming regarding
oxidative phosphorylation and anaerobic glycolysis, swinging
between pro- and anti-inflammatory responses for growth-
promoting or tumor-kil l ing activity (51–54). Anti-
inflammatory GAMs use the tricarboxylic acid (TCA) cycle in
mitochondria to produce electrons that are essential for oxidative
phosphorylation of glucose to generate high amounts of
adenosine triphosphate (ATP) (55). This process fuels the
mitochondrial electron transport chain and generates ROS,
NADPH, and NO (56). Pro-inflammatory GAMs tend utilize
anaerobic glycolysis, converting pyruvate into lactate (54, 57).
Increased levels of lactate and TCA intermediates further
upregulate histone hyperacetylation for IL-1b, TNF-a and IL-6
gene transcription (58, 59). In addition, gliomas are discovered to
facilitate metabolic reprograming driven by mutations in the
genes for the isocitrate dehydrogenase (IDH) and receptor
tyrosine kinase (RTK) pathways (60). At present, even though
signature mutations in known metabolic enzymes are recognized
as being important, the metabolic landscape of gliomas is not
incorporated with GAM pro- and anti-inflammatory
environmental cues and patient prognosis.
Frontiers in Immunology | www.frontiersin.org 5
GLIOMA/TUMOR-INFILTRATING
NEUTROPHILS

Neutrophils with short life span are the most populous
circulating leukocytes (61). In contrast to macrophages,
neutrophils were traditionally considered bystanders in the
TME. However, recent studies have uncovered distinct
capabilit ies of neutrophils throughout each step of
carcinogenesis from tumor initiation to primary tumor growth
to metastasis. The degree of neutrophil infiltration in gliomas is
significantly correlated with pathologic grade (62). Recently, new
tools for genetic analysis further discovered the importance of
tumor-associated neutrophils in the TME (63, 64). Thus, the
efficacy of either traditional or novel strategies for treating
cancers is likely determined by the phenotype of neutrophils in
TME (61, 65).

In general, neutrophils play complex roles in tumor
progression and metastases. Neutrophils are polarized to anti-
tumor (N1) phenotype with IFNb signaling or pro-tumor (N2)
phenotype with TGFb signaling in the TME (66, 67). This
diversity of neutrophil behavior includes polar opposite
functions in mediating tumor immunity (68). Additionally,
TAMs and tumor-infiltrating lymphocytes (TIL), which are
critical components in the TME, can be modulated by
neutrophils to influence tumor development and T cell-
dependent antitumor immunity. Neutrophils can be
reprogrammed to express pro-tumor phenotype from intrinsic
anti-tumor activity when recruited to the tumor (from N1 to N2)
(66, 68). The N2 TANs can then facilitate tumor growth by
suppressing T cell immunity and inducting genetic instability,
tumor cell proliferation, angiogenesis, and metastasis
(Figure 1C). Production of ROS and the release of
microparticles (microRNAs miR-23A and miR-155) by
neutrophils can downregulate molecules that maintain nuclear
integrity and further lead to genetic instability (69–71). In
addition, the epidermal growth factor (EGF), hepatocyte
growth factor (HGF) and platelet- derived growth factor
(PDGF) produced by neutrophils can facilitate tumor
progression (72, 73). Neutrophil elastase (NE) and matrix
metalloproteinase 9 (MMP9) (secreted by neutrophils) that
cleaves laminin 111 (74, 75) lead to trigger cancer cell
proliferation via activation of integrin signaling (74). In
addition, pro-angiogenic factors including BV8, S100 proteins
(S100A8, S100A9), and MMP9 released by neutrophils lead to
activation of vascular endothelial growth factor A (VEGF A).
Thus far, most studies demonstrated protumor roles of
neutrophils (76, 77). Therefore, targeting TANs in
immunotherapy for cancers, especially reprogramming of
neutrophils from pro-tumor to anti-tumor phenotypes, holds
promise to improve the efficacy of cancer treatments and
possibly become the next-generation immunotherapy (78).
Preclinical studies have shown positive results combining
neutrophil depletion (anti-Ly6G antibody) and anti-PD-1
antibody treatment on glioma bearing mice (79). Additionally,
there are currently several clinical trials targeting neutrophils.
For example, clinical trials of Galunisertib (TGFb receptor 1
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kinase inhibitor) alone or combined with lomustine or
temozolomide are ongoing in patients with recurrent
glioblastoma (NCT01582269, NCT01682187, NCT01220271).

Neutrophil extracellular traps, NETs, are formed in response
to extracellular pathogens and are specialized formation of
fibrous decondensed chromatin with associated histones, MPO,
and various cytoplasmic proteins, such as neutrophil elastase,
cathepsin G, and lactoferrin. NETs have been shown to have
diverse roles. Aggregated NETs can isolate immunostimulatory
materials, which leads to limited immune activity and
inflammation (80–82), but high density of NETs can cause
organ or tissue damage (80, 83, 84). However, the role of
NETs in the TME is an interesting unknown for cancer
researchers. In theory, NETs can trap cancer cells and facilitate
cytotoxic effects using ROS (84, 85). However, NETs can
promote cancer metastasis by isolating circulating tumor cells
(86). In glioma cells, NETs are thought to induce the IL-8
expression, which is correlated with tumor burden and
prognosis through a HMGB1- and RAGE/ERK/NF-kB axis-
dependent manner (Figure 1C) (87). Furthermore, glioma cells
can induce NETs formation via IL-8 production by glioma (87).
T-cell immunoglobulin and mucin domain-3 (TIM-3) interact
with HMBG1 in TADCs and have an inhibitory, antitumor effect
(88–90). A recent study has reported that TIM-3 can suppress
the uptake of extracellular DNA in TADCs, which may influence
the NETs production (91). Toll-like receptor 2, one of the
HMGB receptors, is believed as correlation with NETs
production, and HMGB1-mediated TLR2 signaling plays a
critical role in eliciting glioblastoma regression, However,
further studies are still needed to clarify the protumor and
antitumor functions of NETs in glioma.
GLIOMA/TUMOR-INFILTRATING
DENDRITIC CELLS

Dendritic cells (DCs) are professional antigen-presenting cells in
the myeloid lineage that signal with and activate CD4+ and CD8+

T lymphocytes and natural killer (NK) cells to target the specific
antigens presented (22, 92, 93). Since DCs usually confer
protection against pathogens and disease, they are critical
mediators of anti-tumor immunity and can be pulsed with
peptide epitopes of tumor antigens to prime CD8+ T cells for
an anti-tumor response (94). With induced activation and IL-12
signaling, mature GADs can then activate T lymphocytes against
tumor antigens, even in the presence of the immunosuppressive
TME induced by TGF-b2 signaling (95). However, DCs are
manipulated by tumors to promote tumor growth and cancer
disease progression.

There are many signaling pathways and secretory factors in
the glioma TME that promote tumorigenesis (Figure 1D).
STAT3 signaling in mouse glioma tumor-associated myeloid
progenitor cells induces S100A8 and S100A9, which are
inflammatory factors that arrest myeloid cell maturation,
including DCs (19). This leads to a decrease in tumor-
infiltrating and GADCs in the TME as well as the peripheral
blood circulation, leading to a cyclic effect culminating in
Frontiers in Immunology | www.frontiersin.org 6
widespread immune suppression, a condition that favors
tumor growth (19, 22, 96). CXC chemokines are also used by
glioma cells to manipulate DC-mediated T cell immunity (96).
CXCL1 and CXCL8 are enhanced in GBM patients, biomarkers
for poorer prognosis, and positively correlated with DC and
negatively correlated with CD8+ T cell infiltration in the TME
(97). GADCs, along with FGL2 and CCL2 expressed by tumor
cells and GAMs, also induce Tregs to suppress anti-tumor
responses by inhibiting DC antigen presentation (22, 96).
Furthermore, macrophage migration inhibitory factor (MIF)
correlates with decreased GAD migration as well as decreased
maturation, likely contributing to the tumor-tolerant immune
state observed in GBM (98).

Vascular Endothelial Growth Factor (VEGF) is another
immune-modulating factor expressed and secreted by tumor
cells that acts as a double-edged sword. It promotes tumor
growth via angiogenesis and inhibits GADC maturation by
downregulating costimulatory factors CD80 and CD86, which
are necessary to produce robust anti-tumor immune responses
(Figure 1D) (5, 8). Glioma cells that express VEGF also have
altered metabolomes (96). Upregulated hexokinase 2,
phosphoglycerate dehydrogenase (PGHDH), 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR), cyclooxygenase 2
(COX-2), prostaglandin E synthase (PGES), and mutated
IDH1 and IDH2 increase VEGF expression, which exacerbate
suppressive effects on GADCs (96). Altered glycolysis and lactic
acid homeostasis in glioma cells further contribute to tolerant
GADC phenotypes (96, 99, 100). Upregulated glycolytic enzymes
and GLUT1/3 transporters increase lactic acid uptake by GAMs
and GADCs, which contributes to expression of inhibitory
phenotypes (96). Additionally, expression of indoleamine 2,3-
dioxygenase (IDO)-1/2 by glioma cells has been shown to be
proportional to tumor grade; IDO is expressed by DCs within the
TME and helps to recruit Tregs, which further exacerbate and
maintain the immunosuppressive state (96).

An additional subset of human DCs include plasmacytoid
DCs (pDCs), which normally produce type 1 interferons in
response to viral infections (101). However, in glioma patients,
IFN-a and TLR7/9 signaling are downregulated, leading to a
TME favoring tumorigenesis and a tolerogenic T cell response
(101). pDCs have been previously shown to be the major subtype
of DCs and antigen presenting cells at-large in glioma models
and help recruit Tregs to the TME via TGF-b, secreted by glioma
cells (101),. CXCL9, CXCL10, and CXCL12 signaling by glioma
cells also help recruit pDCs to the TME (101). This flexibility in
function—ranging from immunogenic to tolerogenic—makes
this subset of DCs particularly exploitable by tumors for
establishing an immunosuppressive TME, but it also makes
them potential targets for effective anti-tumor therapies (101).

Because DCs can be manipulated to induce anti-tumor
immunity, there have been many investigations and clinical
trials for DC vaccine treatments. A meta-analysis of several
phase II DC vaccine clinical trials revealed significant increases
in overall and progression-free survival for GBM patients
receiving DC vaccines in addition to standard of care (surgery,
chemotherapy, and radiation therapy) (102). Research on the
mechanisms of immunogenic cell death-based DC vaccines
May 2022 | Volume 13 | Article 887781
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showed that their efficacy relied upon ROS and danger signals
stimulated by the vaccine, as well as functioning DCs and CD8+

T cells (103). They also demonstrated that DC vaccines modified
T cell homeostasis in the TME from the immune tolerant or
suppressive Tregs to TH1, TH17, and cytotoxic CD8+ T cells that
mediate anti-tumor immune responses, even overcoming
immune disruptions caused by chemotherapy (103). There are
also promising preliminary results from the first phase III trial of
DC vaccines against GBM (104). Though there was crossover in
the treatment design, so that about 90% of the intent-to-treat
population eventually received DCVax-L, median overall
survival (mOS) was 23.1 months after surgery—increased to
34.7 months for MGMTmethylated patients—and there was also
a group with extended survival (mOS of 40.5 months) (104).
While the mOS for MGMT unmethylated patients was
approximately 19 months, these mOS are improvements
compared to the standard 15-16 months (105). These
developments show exciting promise for immunotherapies for
GBM patients that target and manipulate DC functions
and interactions.

CONCLUSIONS

In the past decades, emerging evidence showed the important
role of myeloid cells in TME through great progress in
Frontiers in Immunology | www.frontiersin.org 7
fundamental and translational researches. Macrophages,
neutrophils, and DCs have the dual functions of both pro-
tumor and antitumor phenotypes within the TME, and this
diverse function is probably a reflection of their plasticity in
response to environmental cues. Therefore, based on
understanding complex interaction between immune cells and
glioma cells, various immunotherapeutic approaches, especially
combination strategies, have been investigated and shown
efficacious against glioma in some preclinical studies. However,
conflicting research findings indicate the necessity of performing
additional studies to assess efficacy in specific patient groups.
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