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ABSTRACT The bacterium Vibrio cholerae exhibits two distinct lifestyles, one as an
aquatic bacterium and the other as the etiological agent of the pandemic human
disease cholera. Here, we report closed genome sequences of two seventh pan-
demic V. cholerae O1 El Tor strains, A1552 and N16961, and the environmental strain
Sa5Y.

Cholera is one of the oldest diseases known and is still a major burden for people
in developing countries (1). The disease is caused by Vibrio cholerae, which also

thrives in natural environments (2). Toxigenic strains are characterized by the
presence of major virulence factors (3), while marine habitats are often dominated
by nontoxigenic strains. Studying those strains helps us to understand pathogen
emergence (4–8).

We sequenced three V. cholerae strains (A1552, N16961, and Sa5Y) using whole-
genome PacBio sequencing. V. cholerae O1 El Tor (Inaba) strain A1552 (originally named
92A1552 [9]) was isolated by the California health authorities from a traveler returning
from South America (10, 11), which links it to the Peruvian outbreak in the 1990s
(12–14). First used for research in the Schoolnik laboratory at Stanford University, A1552
was rendered rifampicin resistant (9) and now represents the wild type in most
laboratories, including ours. V. cholerae O1 El Tor strain N16961 was the first sequenced
strain of this species (15). However, as a recent study suggested an inversion in the
initial assembly (16), we resequenced N16961. V. cholerae Sa5Y is a 2004 environmental
isolate from California (17).

Genomic DNA was isolated from bacteria cultured in lysogeny broth using a Qiagen
genomic DNA buffer set combined with Qiagen 100/G Genomic-tips. Sequencing was
performed by the Genomic Technology Facility of the University of Lausanne. DNA
samples were sheared in Covaris g-TUBEs to obtain fragments with a mean length of
20 kb. The sheared DNA was used to prepare each library with the PacBio SMRTbell
template prep kit 1 (Pacific Biosciences) according to the manufacturer’s recommen-
dations. The resulting library was size selected on a BluePippin system (Sage Science,
Inc.) for molecules larger than 15 kb, which excluded smaller plasmids. Each library was
sequenced on one single-molecule real-time (SMRT) cell with P6/C4 chemistry and
MagBeads on a PacBio RS II system at a movie length of 360 min. Genome assembly
was performed using the protocol RS_HGAP_Assembly.3 in SMRT Pipe 2.3.0, and
circularization of the genomes was achieved using the Minimus assembler of the AMOS
software package 3.1.0 using default parameters (18). The assembled genomes were
annotated using Prokka 1.12 (19) (Table 1).

The stock of the A1552 strain described here was previously passed on to Kemter et
al., who deposited it in the German Collection of Microorganisms and Cell Cultures
(DSM 106276) concomitantly with the release of its genome sequence (20). To improve
upon the automated annotation of this study, we checked the annotated gene names
of all coding sequences (CDS) and manually added 1,269 commonly used gene names
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under “gene”/“gene_synonym” for CDS without/with an automatically assigned gene
name. Allué-Guardia et al. also recently released an A1552 genome sequence. However,
the absence of the mutation in rpoB conferring rifampicin resistance (RpoB[S531F]) and
the presence of a streptomycin resistance-causing mutation in rpsL (RpsL[K88R]) (21)
suggest that this isolate represents a lineage distinct from that of the more commonly
used rifampicin-resistant strain A1552 described here.

Data availability. The genome sequences have been deposited in NCBI GenBank
under the accession numbers CP028894 and CP028895 (A1552), CP028827 and
CP028828 (N16961), and CP028892 and CP028893 (Sa5Y). The raw reads are available
under SRA numbers SRX4011578, SRX4011577, and SRX4011579.
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