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Anthracnose susceptibility and ill-adapted flowering time severely affect Lupinus luteus yield,

which has high seed protein content, is excellent for sustainable agriculture, but requires genetic
improvement to fulfil its potential. This study aimed to (1) develop a genetic map; (2) define
collinearity and regions of synteny with Lupinus angustifolius; and (3) map QTLs/candidate genes

for anthracnose resistant and flowering time. A few linkage groups/genomic regions tended to be
associated with segregation distortion, but did not affect the map. The developed map showed
collinearity, and syntenic regions with L. angustifolius. Major QTLs were mapped in syntenic regions.
Alleles from the wild parent and cultivar, explained 75% of the phenotypic variance for anthracnose
resistance and 83% for early flowering, respectively. Marker sequences flanking the QTLs showed high
homology with the Lanr1 gene and Flowering-locus-T of L. angustifolius. This suggests orthologous
genes for both traits in the L. luteus genome. The findings are remarkable, revealing the potential

to combine early flowering/anthracnose resistant in fulfilling yield capacity in L. luteus, and can

be a major strategy in the geneticimprovement and usage of this species for sustainable protein
production. Allele sequences and PCR-marker tagging of these genes are being applied in marker
assisted selection.

Food security, soil fertility and sustainable food production can be significantly improved by the greater use and
improvement of various grain legumes' and especially Lupinus spp., which have been traditionally used in human
and animal diets®*. They contribute to the sustainability of cropping systems because of their low requirement for
fertilizer and positive input to soil fertility. They achieve this via their efficient mobilization of soil phosphorus
and their fixation of atmospheric nitrogen (through their symbiotic relationship with Bradyrhizobium)*°. Lupins
belong to the genus Lupinus, of the genistoids clade of the papilionoid legumes’. There are an estimated 267 spe-
cies of lupin distributed around the Mediterranean region ("Old World") and North and South America ("New
World")®. A number of lupin species have been used in cultivation; the major “Old World" cultivated species
are Lupinus albus, Lupinus angustifolius and Lupinus luteus, while Lupinus mutabilis is the major “New World”
species™'’. Based on their seed coat structure, the Old World lupins are divided into two groups; the smooth-
seeded and rough-seeded lupins. The smooth-seeded lupins include at least two lineages, Angustifolius-Luteus
and Micranthus-Albus'. Seed protein content varies between lupin species, with L. luteus (2n=>52) showing the
highest values'?. Its proteins allow the production of high-quality food and feed, its isolate has functional and
physicochemical properties suitable for the health-food industry'*-*°, while in feed for the aquaculture sector,
it is the most prominent species'®. However, this species still needs to be further adapted in order to represent
a realistic alternative in supplying the demand for plant protein. This is made more complex under factors of
climate change that affect many aspects of agricultural systems, including; temperature, water availability, change
in pathogen spread, flowering time and host susceptibility to pests'”. It is well documented that the “rusticity”
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of lupin species is a limitation to their expansion as a crop. Also lupin breeding has faced a new challenge in the
last few decades, the lack of anthracnose resistance. Indeed, in L. [uteus, no elite germplasm has been reported
with resistance, despite it being accepted that one of the best sustainable practices to counteract diseases is the
development and use of disease-resistant cultivars. It is true that some breeding lines, that show partial resistance
to the disease have been identified'®. Anthracnose resistance is critical to improve yield in lupin, the disease has
become a serious problem worldwide, causing significant yield losses, as high as 100%, and a major limiting
factor for lupin production. It is caused by Colletotrichum lupini (Bondar)'**.

Another essential trait in the crop adaptation processes of L. luteus is flowering time, where it is important
to breed germplasm suited to specific environmental conditions, thus directly improving yield. This trait is
cited as an example of the consequence of bottlenecks, where a reduction in genetic variation for flowering time
has previously occurred during domestication process*'. Species like L. luteus, with its recent history of breed-
ing, is likely to have a greater lack of diversity because its domestication has been based on a small number of
founding individuals, and subsequent strong and persistent selection for key traits, all of which have resulted in
severe genetic bottlenecks. Thus, the adaptation of L. luteus now needs to take this into account. In addition, the
deficiency of information on which molecular and genetic is enormous compared to many other crops. Even
though some work has been undertaken on these aspects®*~**, there are still many gaps which need to be filled
to help the species improvement.

Having this in mind, our strategy has been the exploration of novel genetic variability in wild germplasm,
using advanced genomics, developed with model plants and the reference genome from cultivated and related
species. For instance, no gene or markers associated with anthracnose resistance have been reported, and only
recently some flowering time QTLs have been identified in L. luteus*!. Whereas, greater progress had been
achieved in L. angustifolius, which has been proposed as a reference genome in comparative studies*>?. In this
species, the cultivar Tanjil, has been widely used for breeding anthracnose resistance. Its resistance is controlled
by a single dominant gene, Lanr1, mapped on linkage group (LG) NLL-11, and its sequence is localised in a single
Scaffold_133?%%. In flowering time, a major gene (Ku) has been identified and mapped on LG NLL-10; which
controls the vernalisation requirement?**. Recent studies showed that this major Ku gene corresponds to the
FLOWERING LOCUS T homologues (LanFTcl), and that a deletion in the promoter region of it is responsible
for the loss of vernalisation requirement®*.

Synteny has been reported between the reference genome of L. angustifolius, with L. albus, and other model
legume species?®?**!, which highlights the possibility of synteny and collinearity with L. luteus, since both species
have been reported to share the same lineage and clade'".

In order to add more molecular and genetic information to this species, in this study a first attempt was made
to develop the genetic linkage map of the L. luteus genome, and to compare it with L. angustifolius. NextRAD
genotyping (Nextera fragmentation with Restriction Associated Digestion) was used. This technology utilizes
a Nextera (Illumina, Inc.) reaction to fragment genomic DNA and then amplification using modified primers
which are complementary; therefore, only fragments containing this recognition site are amplified. The result is
arandomized collection of DNA fragments that represents a sub-fraction of the tested genome®>*. Applications
using NextRAD include studies of genetic diversity of the Andean lupin, Lupinus mutabilis*, and an insect®*.
This, together with the phenotypic exploration of novel genetic variability for anthracnose resistance and flower-
ing time genes, was used to go forward. Thus, a large mapping population from a cross between a L. luteus wild
accession with an elite variety was used to explore and dissect these relevant traits. The main goal of this study
was to (1) develop the genetic linkage map of L. luteus using de novo genome assembly and NextRAD genotyp-
ing; (2) define collinearity and regions of synteny with the reference genome L. angustifolius; and (3) map QTLs/
candidate genes for anthracnose resistant and flowering time, in order to identify important orthologous candi-
date gene for both traits: key genetics factors for further developing the production of sustainable plant protein.

Materials and methods

Plant materials and mapping population. To develop the L. luteus genetic linkage map, a mapping
population of 188 F, individuals was generated by crossing AluProt-CGNA with Core 98 (P1385149). The female
parent, AluProt-CGNA (cultivar developed in Chile by CGNA and now grown in southern Chile) is a very early
flowering variety", with good yield but is susceptible to anthracnose. The male parent, the CGNAs Core 98, is
a wild accession, which has shown resistant to anthracnose and very late flowering time. The cross was made
under greenhouse conditions (16-h light, 23 °C and 60-75% relative humidity). The F, was grown and selfed to
obtain the F, mapping population of 188 individuals. In order to develop the L. luteus genetic linkage map, and
to carry out QTL analysis, an F,; population was then developed by selfing each of the F, individuals, generat-
ing 188 F,; families. Each family was then divided in two, generating two populations, one was used to evaluate
flowering time (188 F,; families) and the other (100 F,; families) to evaluate anthracnose resistance. Both F, 3
populations were evaluated under field condition, in order to validate the F, phenotypic data and QTLs for these
traits.

Isolation of genomic DNA and development of NextRAD markers. Young leaves were collected
from each F, individual of the mapping population and the two parental lines. DNA extraction was based on
a modified CTAB protocol developed at CGNA, as described by Parra-Gonzalez et al.?2. Extracted DNA was
quantified using fluorometric quantification (Qubit) and diluted to 50 ng/pl. Genomic DNA was converted
into NextRAD genotyping-by-sequencing libraries by SNPsaurus (SNPsaurus, LLC)*2. Genomic DNA was first
fragmented with Nextera reagent (Illumina, Inc), which also ligated short adapter sequences to the ends of the
fragments. The Nextera reaction was scaled for fragmenting 20 ng of genomic DNA. Fragmented DNA was then
amplified as follows: 26 cycles at 73 °C, with the primer matching the adapter and extending 9 nucleotides into
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the genomic DNA with the selective sequence GTGTAGAGC. Thus, only fragments starting with a sequence
that hybridized with the selective sequence of the primer was efficiently amplified. The NextRAD libraries were
sequenced on an Illumina HiSeq 4000 instrument with two lanes of 150 bp single-end reads (at the University
of Oregon). Parental lines were sequenced separately to develop the short-read reference sequence to map the
data from the F, population. Thus, marker data can be collected without the need to produce a high quality
reference genome. Bioinformatics analysis of data including SNP calling was provided by the NextRAD ser-
vice provider using a reference-independent pipeline (SNPsaurus, LLC). Briefly, the reads were trimmed using
bbduk (BBMap tools, https://sourceforge.net/projects/bbmap/) with the following parameters: bbmap/bbduk.sh
in=out=ktrim=r k=17 hdist=1 mink =8. The parental samples were used to identify a set of polymorphic loci
and to generate a set of reference DNA sequences in the FASTA text-based format. The reads were then mapped
to this FASTA file with an alignment identity threshold of 0.98, using bbmap. Genotype calling was achieved
using call variants (BBMap tools). Genotype imputation was not used. A genotype table was provided for use
with JoinMap (see below), along with a Variant Call Format (VCF) file of data from all samples, and a FASTA
formatted file containing the short-read sequence common to both parents. These data were used to evaluate
sequencing coverage of the sample. Sequencing depth (DP) at each marker for each sample was evaluated using
DP values from the Variant Call Format (VCF) file that contained nucleotide variation predicted by the software.
The heatmap of sequencing depth at each marker for each sample was created using DP values from the VCF
file, using heatmap.bp in R package vcfR with zero values omitted (https://www.R-project.org/)**. Mean DPs for
all F, samples were plotted, using the barplot function in R.

De novo genome assembly and PCR marker development. Additional molecular markers were
developed using L. luteus scaffold sequences created from low-coverage whole genome sequencing of the paren-
tal line Core 98, by sequencing-by-synthesis using Illumina Hi-Seq 2000, followed by de novo assemblage,
using SOAPdenovo2. Scaffold statistics were prepared using QUAST?. Fastq files in order to prepare scaffold
sequences and raw sequence data used to create NextRAD markers, which are deposited in the NCBI Sequence
Read Archive (BioProject accession PRINA594652, https://www.ncbi.nlm.nih.gov/sra/PRJNA594652). The scaf-
fold sequence was then subjected to BLAST with the sequences of some PCR markers already mapped on the
L. angustifolius map®>*. The markers where those evenly distributed over the L. angustifolius map. Analysis of
the DNA sequences between the species was carried out using Geneious v.6.1.8 software (https://www.genei
ous.com)®. Primers were designed using the algorithm Primer3. Amplifications were carried out in 20 ul PCR
reactions containing 100 ng of genomic DNA, 0.2 mM dNTPs, 2 mM MgCl2, 1X PCR buffer and 2.5% DMSO
(only for SSR (Simple sequence repeats) markers), 1U Taq polymerase (GoTaq G2, Promega) and 2.5 mM of
each reverse and forward SSR primer; and 1 mM of each reverse and forward SNP primer. The PCR protocol
was as follows: 95 °C for 5 min, 30 cycles of 1 min at 95 °C, 1 min at 58 °C, 1 min at 72 °C, and a final extension
at 72 °C was performed for 5 min. SSR PCR products were separated on 6% denaturing polyacrylamide gels
(urea 8 M) run in 1X TBE buffer at 60 watts for 3-4 h and their polymorphised products visualized using silver
stain procedures?*. SNP PCR products were separated on 8% polyacrylamide gels using Asymmetric Single
Stranded Conformational Polymorphism technologies (SSCP)*, run in 1X TBE buffer at 2-3 watts for 16-18 h
and polymorphism visualized using silver stain procedures. The mapping population was genotyped with poly-
morphic co-dominant PCR markers, identifying parental loci as homozygous (allele A or B), and the heterozy-
gous loci constitution (allele H). The allelic constitution for each F, individual was entered on to a matrix in
Excel (Microsoft Corporation) for linkage analysis.

Construction of genetic linkage map. Pairwise analysis, grouping of markers and mapping, were per-
formed with JoinMap 4.0*!. Single locus analysis (JoinMap Single Locus Analysis, JMSLA) was applied to detect
possible markers or regions with segregation distortion. Since distorted markers were detected, two marker data-
sets were defined: one set contained all markers, and the other having markers without significant segregation
distortion. Linkage analysis and mapping was carried out with both datasets. This was in order to establish the
most accurate map and QTL analysis. The map was constructed based on recombination frequencies and LOD
values. The markers were assigned to LGs based on (modified) LOD scores of pairs of markers. In the grouping
of markers, LOD values from 1 to 8 were used to detect the stability of grouping. Markers in the group were
analyzed for pairwise linkages with initial set up values of REC and LOD thresholds of 0.499 and 1, respectively.
Strong linkage was considered to be present with a REC smaller than 0.01 or a LOD larger than 10. A map dis-
tance was calculated using Kosambi’s mapping function*?.

Comparative mapping of L. luteus and L. angustifolius along with physical location of mark-
ers. The 150 bp marker sequences from NextRAD sequencing along with PCR marker sequences were ordered
according to the LGs prepared with JoinMap. These were used as queries against the Lupinus angustifolius refer-
ence genome (LupAngTanjil v1.0) in a local megablast search where the top scoring hits were retrieved (blastn-
task megablast-query-db-outfmt 6-num_alignments 1-out). Chromosome name, start and end positions were
extracted with awk. Synteny block size was calculated by counting the distance in base pairs between adjacent
markers that mapped to the same L. angustifolius chromosome. Alignments of L. luteus markers to L. angustifo-
lius unassigned scaffold sequences were not considered for this calculation. Circular plots were prepared using
circos*, and lollipop chart using R package ggplot2*. The L. angustifolius genome build contains 13,564 scaffold
sequences. For clarity of graphical representation, alignments to these regions were removed from the circos
plots. Linear comparisons were prepared using starting base pair positions of BLAST hits on L. angustifolius
chromosomes drawn using the R package LinkageMapView and manually connected to the L. luteus genetic
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map®. In order to define collinearity and marker order between L. luteus map and L. angustifolius map, common
markers anchored in both maps were compared along LGs. The order and map interval were then calculated.

Phenotypic evaluation and data analysis for anthracnose resistance and flowering time. The
mapping population of 188 F, individuals, together with the parents, were assessed by QTL analysis for flowering
time and anthracnose resistance. Flowering time, measured as days to flowering (DTF), represents the period
of time from sowing until the first whorl was fully open. The F, population was evaluated for DTF under field
conditions at Vilcun (Southern Chile, La Araucania Region, 38° 41’ 44.04" S and 72° 25' 1.94" O), over the winter
growing season 2013-2014. The segregating population of 188 F,.; families was evaluated for DTF in field condi-
tions at Huichahue (Southern Chile, La Araucania Region, 38° 50’ 6.30” S and 72° 31’ 2.22" O) over the winter
growing season 2016-2017, using a completely randomized block experimental design with three replications.
Each replication comprised 20 plants.

Anthracnose resistance was evaluated in in vitro conditions as describe by Cuccuza and Kao*® using the 188
F, individuals of the mapping population. Colletotrichum lupini var. setosum' was isolated from infected plants
of cultivar AluProt-CGNA, collected from different locations in the southern region of Chile, a major area of
lupin production. Colletotrichum lupini was used, since in southern Chile it has been widely reported as the
only detected and causal agent for anthracnose in lupin®. All fungi collected showed cultural and morphologi-
cal features of Colletotrichum lupini var. setosum as reported by Nirenberg et al.”®. Infected plant organs were
surface-sterilized (water for 20 min, 35% ethanol, 0.5% sodium hypochlorite for 1 min respectively and three
washes with sterile distilled water for 1 min) and placed onto potato dextrose agar (PDA). Cultures were then
grown on PDA at 25 °C until fungus growth was observed (3-5 days). Disks from the edge of the active colony
growth were transferred aseptically to new Petri dishes with PDA media. These cultures were incubated under
the same conditions for 7-10 days. Two cotyledons from each of the 188 F, and parental lines were collected. The
inoculation was performed with a conidial suspension of 1 x 10° conidia per ml into an injury of 2 mm length
on the upper surface of the cotyledon. The inoculated cotyledons were incubated in a moistened Petri dish at
23+2 °C under 16-h photoperiod of white fluorescent light (2000 Ix). The evaluation was carried out 10 days
after inoculation. To evaluate the degree of damage, a scale from 1 to 5 was used. Cotyledons were given the
following scores: Score 1 when they exhibited a spot of soft yellow color in the area of inoculation. Score 2, a
spot of necrosis in the area of inoculation. Score 3, a little localized hypha (diameter less than 2 mm). Score 4,
hyphae with diameter more than 4 mm. Score 5, abundant presence of fungus and tissue degradation. In order
to validate the anthracnose resistance observed in the F, mapping population under in vitro assays, 100 F,;
families derived from the F, mapping population were tested for anthracnose resistance under field conditions,
as described by Fischer et al.*’. A completely randomized block experimental design was used with three replica-
tions, where each replication was represented by 20 plants of each F, ; family sown in two rows (10 plants per row
planted 10 cm apart and 20 cm between rows), and one infection row of 10 plants (seed of the susceptible parent
cv. AluProt-CGNA was inoculated with the suspension of strain Colletotrichum. lupini, as in vitro assay) in the
middle, to obtain a high and permanent infection pressure. The resistant parent (Core 98) was also included as
a control, and similarly to F,; families, was sowed with an infection row. Infection rows were sown two weeks
after sowing the F,; families. The data were collected from all the plants in all the plots, scoring the resistant
plants (non-infested) and susceptible plants (infested), as described by Fischer et al.*’.

Analysis of variance (ANOVA) (SAS Institute, Cary, NC, USA) was carried out to explore the phenotypic
variation of anthracnosis resistance and DTF in the F,; families. Estimates of the extent of genotypic and pheno-
typic variation calculated following Burton and DeVane*® as well as the broad sense heritability (H*)*. Treatment
means were separated by Tukey test for P <0.05.

Validation of major QTLs. When a major QTL, either for anthracnose resistance or DTE, was detected
and mapped in the F, population, markers previously reported as co-segregating for these traits in L. angusti-
folius and mapped in this study in L. Juteus with highest LOD score, were chosen to validate the QTLs in the
F,.; families. Thus, tracing back the genetic classification of the F, population at both loci and validating QTLs
already mapped. Markers co-segregating with these traits were selected for further application in MAS.

QTL analysis and mapping. DTF and anthracnose resistant segregation were evaluated in the F, popula-
tion, assuming the presence of one main locus and a Mendelian segregation of 3:1. Significant deviations were
tested using the goodness of fit chi-square test (X2), where rejection of the 3:1 segregation was applied at P <0.05.
In the first instance an inspection for the presence of a QTL was carried out using a non-parametric approach,
Kruskal-Wallis test, interval mapping (IM) was then applied. Both methods were implemented in MapQTL
6. In IM LOD thresholds with significance level (P<0.05) were empirically determined for each trait using
the permutation test (1000 iterations). Once a single QTL was detected and mapped, in order to search for
others minor segregating QTLs, further analysis was then carried out using Genome-wide Composite Interval
Mapping (GCIM)*!, implemented by the R package QTL.gCIMapping.GUI v2.0 (https://cran.r-project.org/web/
packages/QTL.gCIMapping.GUI/index.html)*2. Random model was used with a walk speed for genome-wide
scanning of 1 cM, and the LOD score thresholds of 3 for significant QTLs.

To identified candidate genes in the QTL regions for anthracnose resistance and DTF, a search was carried
out in the Lupin Genome Portal (https://www.lupinexpress.org), through BLAST in the nucleotide and protein
database (Narrow-leafed lupin genome scaffold assembly v1.0, Narrow-leafed lupin annotated gene v1.0)* and
the NCBI database (https://www.ncbi.nlm.nih.gov/) was also used in order to confirm suggested candidate genes.
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Results

Genetic linkage map construction. By using the NextRAD sequencing approach, 834 polymorphic sites
were identified (Supplementary Table S1), which generated 685 high quality SNP markers. A heatmap analysis
revealed parental lines with high coverage (Supplementary Fig. S1). Mean coverage in F, individuals ranged
from 0.15 to 155.08 (Supplementary Fig. S2, Supplementary Table S2). 12 F, individuals with a high percentage
of missing data were identified as assay failures and removed (Supplementary Fig. S1). The adjusted average
mean coverage for all F, individuals was 63.13. Mean per marker coverage ranged from 26.47 to 254.20 (Sup-
plementary Table S2). Mean coverage for the parental mapping population, AluProt-CGNA and Core 98 was
495.44 and 433.65, respectively.

Markers developed from the de novo assembled L. luteus genome revealed 311,789 scaffolds > 500 bps, with
N50=2495 and L50 =49,228 (Supplementary Table S3). The BLAST results for these scaffolds with genomic
sequences of some PCR markers of L. angustifolius map generated 28 additional analogous PCR markers in the
L. luteus genome (Supplementary Table S4).

A genetic linkage map was constructed with high LOD score (LOD =6), which allowed detection of all mark-
ers with strong linkage, and stable marker order per LG. The map fell into 26 LGs as expected for the L. luteus
genome, with a total map length of 1,772 cM and 744 loci with a mean density of one marker every 2.8 cM. The
map had the largest gap on LG 20 (33.8 cM) and the smallest gap on LG 6 (3.1 cM) (Fig. 1, Table 1). The loci were
identified with co-dominant markers, SNPs, SSR and INDEL. LG length ranged from 132.7 ¢cM to 26.1 cM, with
a mean of 68.2 cM. The highest number of loci mapped per LG was 47, while the lowest was 3, with a mean of
28.6 markers per LG (Table 1). Two markers, linked together, did not link to LGs and 0.9% of markers remained
unlinked. LGs showed a cluster of markers and longer intervals in specific genomic regions, which is likely to
reflect an uneven distribution of recombination frequencies along L. luteus chromosomes (Fig. 1).

Effect of marker segregation distortion on map construction. Single locus analysis detected 5.9%
of markers with highly significant (P <0.001) distortion, and 7.3% with significant (0.001 <P <0.05) segrega-
tion distortion, giving a total of 98 markers with distortion from the expected Mendelian segregation (Table 1).
Among LGs, 61.5% had a maximum of 9.7% of markers with segregation distortion; LG2, LG6, LG7, LG21 and
LG25 did not have distorted markers, and LG10, LG19 and LG23 had one distorted marker. LG17 (88.9% of
markers with segregation distortion), LG26 (62.5%), LG15 (32.4%), LG18 (25%), LG5 (20%), LG13 (16.7%), LG4
(16.2%), LG24 (16%), LG8 (15.2%) and LG20 (13.8%) had the major proportion of markers with segregation
distortion (Table 1, Supplementary Table S5). To see whether or not these distorted markers affected the map,
a second run for linkage analysis and mapping using a marker dataset that excluded the distorted markers was
carried out. As expected, 26 LGs were again generated, and map coverage was reduced by 13% (231 cM). How-
ever, LG17, LG9, LG4 and LG26 reduced their map length by 88.1%, 75.5%, 47.5% and 33%, respectively, and
compromised 46% of the total map length reduction. LG17 was severely affected by removing distorted markers,
it was almost unmapped, since just the minimum number of markers remained to establish linkage. This LG
had the largest distorted genomic region (30 cM) with a cluster of markers (16 out of 18), with very significant
(P<0.001) segregation distortion. This distortion was found to share a common feature, all allele frequencies of
the 16 loci in the 188 F, individuals were skewed toward homozygosity of the female allele (mean frequency of
42.7%), and only a mean frequency of 13.2% of homozygotes with male alleles, (Supplementary Table S6). The
large map length reduction of LG9 is due to only two distorted markers. LG3 showed no reduction in its map
length, and LG8, LG10 and LG23, their map lengths were reduced by 0.6%, 0.2% and 0.2%, respectively. LG24,
despite 16% of its markers being removed, was almost unaffected in map length (1.3% of reduction). The larg-
est map gap had minor changes (equal to an overall mean of 17 cM) and mean map genetic distance was only
reduced in 0.1 cM. Marker order was almost unaffected, and those collinear markers and syntenic regions with
L. angustifolius map and reference genome, presented equivalent map positions and order with respect to the
map, including all markers (see below). Thus, the map involving all markers, was used for the further analysis of
comparative mapping and QTL analysis.

Comparative analysis of L. luteus with map and reference genome of L. angustifolius. Com-
paring the L. luteus map with the referential consensus L. angustifolius map, which has been highly saturated,
represented about 72% of the total map length, which is interesting considering that the loci mapped in L. luteus
genome represents about 25.4% of the loci mapped on the consensus map of L. angustifolius. Markers already
mapped in L. angustifolius were mapped onto the L. luteus map, representing 3.1% of loci, where LG11, LG13
and LG23, have 4, 5 and 5 common loci, respectively. Collinearity was observed between both species, i.e. L.
luteus LG13, LG23 and LG11, were collinear with LG11, LG10 and LG17 of the L. angustifolius reference genetic
map, respectively (Fig. 2a,c,e). Markers identified loci in similar genetic positions, in the same order, but with
different map length intervals. Clearly L. luteus LGs had longer intervals map than L. angustifolius in one distal
genomic region, with shorter intervals length at the other end. However, LG13 and LG11 of L. luteus which com-
pare with LG11 and LG17 of L. angustifolius, respectively (Fig. 2a,e), exhibit equal cluster features of markers at
one end of both LGs, which might indicate that both could share unequal chromosome arm lengths, indicating
possible submetacentric chromosomes. Moreover, LG23 of L. luteus shared the same marker distribution with
LG10 of L. angustifolius, with a clustering of markers in the central region (Fig. 2¢), which could suggest similar
metacentric features in this chromosome.

A comparative analysis of marker sequences was performed with the L. angustifolius genome. In total, 56.7%
of the marker sequences in L luteus produced homologous alignments with L. angustifolius pseudochromosomes.
Of these, 28% aligned to scaffold sequences of L. angustifolius. Considering this sequence homology, L. luteus
LG would correspond to the following L. angustifolius pseudochromosomes (with their relevant proportions):
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Figure 1. Genetic linkage map of L. luteus genome comprising 744 loci distributed among 26 linkage group

(LG1-LG26).
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No. of Map length Mean density | Maximum gap No. of distorted markers Total distortion | Map length* | Mean genetic | Maximum
LG markers (cM) (cM) (cM) (0.001<P<0.05) | (P<0.001) | markers (cM) distance (cM) | gap (cM)
1 45 1117 25 12.8 2 1 3 109.1 2.6 12.9
2 11 27.6 25 7.7 0 0 0 27.6 25 7.7
3 47 43.0 0.9 12.2 2 1 3 43.0 1.0 125
4 37 105.1 2.8 18.0 4 2 6 55.2 1.8 17
5 35 35.1 1.0 11.0 5 2 7 34.4 12 10.7
6 30 26.5 0.9 3.1 0 0 0 26.5 0.9 3.1
7 3 35.5 11.8 222 0 0 0 35.5 11.8 222
8 33 118.6 3.6 241 3 2 5 117.9 42 242
9 30 104.1 35 26.8 2 0 2 255 0.9 26.8
10 30 89.1 3.0 15.4 1 0 1 88.9 3.1 153
11 24 73.9 3.1 32.8 1 1 2 66.7 3.0 32.8
12 22 429 2.0 6.4 1 1 2 23 2.1 10.4
13 42 85.7 2.0 255 7 0 7 843 24 25.5
14 31 449 14 15.0 2 1 3 49.0 1.8 19.7
15 37 92.3 25 20.1 8 4 12 90.7 3.6 20.1
16 34 85.6 2.5 15.8 3 0 3 79.8 2.6 15.9
17 18 65.8 3.7 216 1 15 16 7.8 3.9 7.8
18 36 48.4 1.3 215 8 1 9 46.7 17 217
19 30 82.1 2.7 12,5 0 1 1 70.9 24 125
20 29 78.3 2.7 33.8 1 3 4 76.2 3.0 33.8
21 28 66.0 24 157 0 0 0 66.0 24 157
22 28 29.4 11 4.8 1 1 2 26.4 1.0 5.0
23 27 132.7 4.9 225 0 1 1 132.5 5.1 225
24 25 68.0 2.7 19.1 0 4 4 67.1 32 20.8
25 24 54.0 2.3 15.6 0 0 0 54.0 2.3 15.6
26 8 26.1 33 8.1 2 3 5 17.5 5.8 13.6
ol |74 1772.4 2.8 54 44 98 1541.5 2.9
100% 7.3% 5.9% 13.2% 87.0%
Table 1. Description of basic characteristics for 26 linkage groups in F, mapping population of L. luteus. LG
Linkage group; *Map length (cM) without distorted markers.
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Figure 2. Comparative mapping and physical position of marker sequences of LGs of L. luteus in
pseudochromosome (Chr) of L. angustifolius®. (a,c.e) collinearity between LGs of both lupin species. (b,d,f)
Syntenic genomic regions with pseudochromosome of L. angustifolius in black lines, and in red lines regions
containing genes controlling anthracnose resistance and DTE
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Figure 3. Syntenic link between linkage group (LG) of L. luteus and pseudochromosomes (Chr) of L.
angustifolius. Pseudochromosomes and linkage groups are not drawn to scale.

LG1-Chr6 (37.5%), LG2-Chr8 (62.5%), LG3-Chr1(14.3%), LG4-Chr6 (15.8%), LG4-Chr4 (15.8), LG5-Chr2
(43.8%), LG6-Chr14 (20%), LG6-Chr17 (20%), LG7-Chr14 (100%), LG8-Chr12 (57.1%), LG9-Chr13 (45%),
LG10-Chr20 (38.9%), LG11-Chr17 (50%), LG13-Chrl1 (53.6%), LG14-Chr3 (20%), LG15-Chr5 (58.8%), LG16-
Chrl15 (30.4%), LG17-Chr3 (36.4%), LG18-Chr18 (30.8%), LG19-Chr4 (33.3%), LG20-Chr7 (31.3%), LG21-Chrl
(43.8%), LG22-Chr16 (31.3%), LG23-Chr10 (60%), LG24-Chr8 (44.4%), LG25-Chr19 (26.7%) and, LG26-Chr9
(40%) (Fig. 3, Supplementary Fig. S3, Supplementary Tables S7, S8). Within L. luteus LG, LG13 showed two
syntenic regions, a short one: 2315179 bp, and a larger one: 7775501 bp (Fig. 2b). LG23 gave the largest syntenic
region with 15558191 bp (Fig. 2¢). LG11 showed two syntenic regions, a short one: 5294198 bp, and a larger one:
7978928 bp (Fig. 2f). LG1 and LG4; LG4 and LG19, shared syntenic region with Chr6 and Chr4 of L. angustifolius,
respectively (Supplementary Tables S7, S8).

Mapping QTLs for anthracnose resistance and DTF in L. [uteus. Clear and contrasting phenotypes
for anthracnose resistance and DTF were observed in the parents and mapping population, allowing unambigu-
ous phenotyping of the F, mapping population. The mean frequency distribution for anthracnose resistance and
DTF in the 188 F, individuals followed a typical 3:1 Mendelian segregation (X?=0.1134, P=0.75; X*>=0.2553,
P=0.75 respectively, Supplementary Fig. S4), i.e. three classes of resistance level and flowering time, thus, as
would be expected, they did not show normal distributions, as typifying the presence of a single dominant genes
for anthracnose resistance and early flowering (Supplementary Fig. S4). The mean performance of the F,; popu-
lation for anthracnose resistance, and the mean performance of the F,; population for DTE, evaluated under
field condition, gave highly significant (P <0.05) differences between families, and no significant effect due to
replications (Table 2). Looking at each F,; family of each population for each trait, three phenotypic classes
were observed, either for anthracnosis resistance or DTF: full resistance, % resistance or fully susceptible and
early flowering, % early flowering or late type, which validated the genetic constitution of the loci under study as
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Source of variation ‘ df ‘ SS ‘ MS ‘ F ‘ P o’g |o’p |H?
Anthracnose resistance 581 |589 |0.98
F,., families 99 [17,395.0 |175.7 |217.1 |0.0000

Replication 2 0.4 0.2 0.2 1079

Error 198 160.3 0.8

DTF 31.6 | 358 |0.88
F,.; families 187 | 18,540.0 99.1 23.6 | 0.0000

Replication 2 44 2.2 0.5 |0.59

Error 374 1574.0 4.2

Table 2. ANOVAs for differences in anthracnose resistance and DTF, along with population parameters of the
F,; families. df degrees of freedom, SS sum of square, MS mean square, 0¢ genotypic variance, o°p phenotypic
variance, H? heritability.

inferred from the F,, and the allelic dominance displayed in the next generation. High values of genotypic and
phenotypic variances were observed for each trait. Broad sense heritabilities (H?) were obtained, and consider-
ing that H? captures the proportion of the total variance due genetic effect, the high heritability values obtained
confirm the strong genetic effect determining each trait (Table 2), which is in agreement with the result obtained
from the F, mapping population.

A major QTL for anthracnose resistance was identified and mapped in the L. luteus LG13 in the F, population
(Figs. 2, 4a). The non-parametric, Kruskal-Wallis test, revealed that markers mapped between 67.7 and 73.3 cM
of LG13, were highly significantly associated with the phenotypic variation of the trait (P <0.0001) (Supplemen-
tary Table S9). Interval mapping confirmed this result; a significant QTL was mapped in the same genomic region,
and the marker sca82470, which mapped to a position of 67.7 cM, gave the highest LOD score (LOD =56.5) in
F, (Table 3). As expected, the alleles from the wild, resistant parent at this locus explained 75% of the phenotypic
variance of the trait in the F, population (Table 3). Similarly, a single major QTL was also identified for DTE The
markers localized between 68.1 cM to 69.6 cM of LG23 were highly significantly associated with the variation
in DTF (P <0.0001) by Kruskal-Wallis test (Supplementary Table S9). Interval mapping detected a single major
QTL, where marker sca43802, mapped at the position of 68.1 cM, presented the highest LOD score (LOD =68.4)
in the F, population and explained 81.4% of the phenotypic variance for DTF (Fig. 2, Table 3). In both genomic
regions neither clusters or distorted markers were mapped, thus giving greater confidence in the QTL positions.

Despite the phenotypic performances showing clear evidence of a single major QTL for each trait, a further
analysis was carried out to search for any minor segregating QTLs. By using a GCIM approach, no other minor
segregating QTLs were detected in this F, mapping population for anthracnose resistance, and the major QTL was
detected (LOD =61.9) and mapped to the same position as Interval Mapping (Fig. 4a, Table 3). However, for DTF
three minor QTLs were detected and mapped on LG4 (LOD =4.7), LG10 (LOD =5.1) and LG11 (LOD =12.5),
together with the major QTL which was detected (LOD =94.5) and mapped in the same position as Interval
Mapping (Fig. 4b, Table 3).

In order to validate these major QTLs confirmed by three mapping methods, the marker sca82470 for anthrac-
nose resistance and marker sca43802 for DTF, were used to validate each QTL (Table 3). These markers were
then used to trace back the allelic constitution in both traits in each F,; family. The results showed that F, plants
had a good correlation between genotypic and the phenotypic values; it was noted that as expected for a single
dominant gene, the LOD values, when based on mean performance and classes of F,.; families, gave lower rela-
tive values to those based on individual F, plant (Tables 2, 3). Thus, validating both QTL position on LG13 and
LG23 in the L. luteus map.

Candidate genes anthracnose resistance and DTF. By searching in the Lupin Genome Portal, nucleo-
tide BLAST results on marker sca82470, which was highly associated with anthracnosis resistance in L. luteus
in this study, produced a hit of 90.86% identity (E value=0.00) to Scaffold_133 (Narrow-leafed lupin genome
scaffold assembly v1.0) on pseudochromosome 11, 3376319-4744591 bp (Fig. 2b), where the Lanrl gene for
anthracnose resistance has been localized?. The marker sequence of sca82470 predicted gene Lup005048. A
further BLAST search on NCBI predicted L. angustifolius uncharacterized LOC 109360795 (LOC109360795) in
this marker, with a 91.71% identity (E vale =0.0).

DTF nucleotide BLAST result for marker sca43802 of L. luteus produced a 77.97% identity (E value=0.00)
to Scaffold_276_44 (Narrow-leafed lupin genome scaffold assembly v1.0) localized to pseudochromosome 10
from base positions 8,013,021 to 8,250,716 in L. angustifolius (Fig. 2d). The LanFTcI gene is localized to Scaf-
fold_276_44 in L. angustifolius®. The marker sequence of sca43802 was homologous to LanFTc1, Lup015264.
NCBI BLAST search in this marker predicted the presence of L. angustifolius protein TWIN SISTER of FT-
like (LOC109357767), with a 93.13% identity (E value=0.0). Out of three minor QTLs detected by GCIM,
marker sca409063 flanking QTL on LG4, predicted the L. angustifolius floral homeotic protein AGAMOUS
(LOC109345242) with a 97.91% identity (E value 2e-110) to L. angustifolius. With the marker 13561_55_79 flank-
ing QTL on LG10, no significant similarity was found in NCBI database. The marker scal172949 flanking QTL on
LG11, predicted a L. angustifolius CBS domain-containing protein CBSX1, chloroplastic-like (LOC109330470).
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Figure 4. QTLs for anthracnose resistance (a) and DTF (b) in the F, mapping population of L. luteus using
QTL.gCIMapping.GUIL The LOD score of QTLs are marked in red line, and — log, (P value) for additive and
dominance, are marked in grey and green lines, respectively. Black solid horizontal line is the LOD thresholds
for significant QTLs. Candidate genes and flanking markers are shown by blue and black colors, respectively.
Interval mapping G wide composite inteval Mapping
Position Marker Position
QTL Pop |LG | (cM) interval LOD | Add Dom | PVE (%) | (cM) Marker interval LOD | Add Dom | PVE (%)
Anthracnose | F2 | 13 | 67.7 5ca82470 56.5 | 1.8 -03 | 749 67.7 5ca82470 6193 |1.73 0 73.06
resistance g . |13 |67.7 $ca82470 327 9.0 -39 |77.8 - - - - - -
4 |nd nd nd |nd nd |nd 81 $cad09063~13840_95_80 474 |0 172 |04
; 10 |nd nd nd |nd nd |nd 52.5 13561_55_79 508 |-15 |0 0.6
DTF : 11 nd nd nd nd nd nd 48 10497_69_66~scal72949 | 12.50 | —3.39 0 3.2
23 |68.1 scad3802 684 |-161 |-95 |814 68.2 $cad3802~13204_107_42 94,53 | -16.15 | -8.97 |82.7
Fy; |23 [681 scad3802 150 |-46 |-07 |308 - - - - - -

Table 3. Anthracnose resistance and DTF QTLs in F, and F, ; population of L. luteus, detected by interval
mapping and genome-wide composite interval mapping. Pop. population evaluated, LG linkage group, PVE
proportion of phenotypic variance explained by QTL, Add additive effect, Dorm dominance effect, - not
analyzed in F,; family, nd not detected.

Discussion

Lupinus luteus has high seed protein content with values 60% (DM) in dehulled seed have been achieved in
south macro area of Chile'®. This large area provides a favorable environment for lupins, with deep volcanic soil,
deficient in phosphorus (P) but with abundant organic matter and high rainfall®, which helps explain the good
performance of L. luteus. Lupins have the potential to mobilize scarcely available nutrients, in particular P and
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micronutrients, for themselves or subsequent crops. Their ability to symbiotically fix gaseous nitrogen is widely
acknowledged as a factor contributing to soil improvement*-®. This natural adaptation for nutrient acquisition,
not present in most major crops, is highly relevant for a sustainable agriculture, helping to face the global chal-
lenge of food security, with lower fertilizer and water footprints. However, elite germplasm of L. luteus is suscepti-
ble to anthracnose disease in high rainfall areas, meaning its yield can be dramatically reduced!**>*. Even more,
fluctuating temperatures, frost, day length, and other climate changes, means flowering time is another important
trait. Breeding efforts toward combining optimal expression of these two key traits: anthracnose resistance and
early flowering time/no vernalisation requirement, is indeed essential to allow expression of the yield potential
in elite germplasm of this species. In L. albus this strategy has proved successful, despite the complexity, because
of alow frequency of early flowering progenies and the apparent quantitative nature of anthracnose resistance in
this species®. Flowering is a vital stage in plant development; it plays an important role in the initiation of grain
setting and is highly sensitive to stresses®®. The existence of DTF variability allows selection to maximize yield by
optimizing plant phenology in different environments. It allows selection for better crop adaptation in different
climatic conditions and different geographical regions®. Common flowering pathways and a number of highly
conserved genes described across species have suggested a tight genetic control for this trait™.

Here, we report novel QTLs harboring a very early DTF gene from elite germplasm, and a single dominant
gene Lanrl, from a wild accession, for anthracnose resistance in the L. luteus genome. These QTLs were mapped
in a large F, segregating population, with three QTL mapping approaches, consistent with previous studies of
these traits in model legume plants and in the reference genome®**. It is interesting that three significant minor
QTLs associated with DTF, were detected only with the GCIM approach, but only one of these QTLs was har-
boring a candidate gene associated with flowering. The sequence of the marker sca409063 flanking this QTL,
predicted the L. angustifolius Floral homeotic protein AGAMOUS (AG). The AG gene encoding a MADS-box
transcription factor has been reported in plant flowering regulation in different species®¢!. It is also relevant to
point out that these significant minor QTLs were detected with GCIM-random methods, which is in agreement
with Wen et al.’. Who have demonstrated the power of this method in the detection of QTL in F, population.

Anthracnose resistance and DTF are a key combination of genes, and will allow better adaptation and thus
fulfilment of the yield potential of L. luteus elite germplasm. This is even more relevant if it is noted that this spe-
cies already has important natural adaptation for nutrient acquisition, allowing more sustainable agriculture. The
mapping of LanrI gene in L. luteus, allows interesting projections, since it was first identified in L. angustifolius,
in which the cultivar Tanjil has been widely used for breeding anthracnose resistance in this species, because
this single dominant gene had proved to show durable resistance?®*.

Our key result was the development of the genetic linkage map of L. luteus genome, which showed collinearity
with the L. angustifolius reference map and syntenic genomic regions harboring major QTLs for these important
traits. The advance of Next Generation Sequence technology and its wide application, together with genomic
knowledge of the L. angustifolius reference genome, have greatly reduced the cost of nucleotide sequencing and
facilitated our work. The work presented here may be the first example of using NextRAD markers to develop
a genetic map in plants. The NextRAD markers were developed with a PCR step utilizing an oligo with a nine-
nucleotide selective sequence to further reduce genome complexity. It is therefore expected that a higher density
map of L. luteus can be directly prepared with more markers by simply removing or reducing this base-discrim-
ination step. While the current map was suitable to identify candidate genes in two traits, a higher density map
may be desirable for breeding future traits. We therefore conclude that NextRAD is a suitable approach for SNP
discovery for genetic map development. The markers developed from the de novo assembly of L. luteus genome
helped the comparative mapping studies with the reference map of L. angustifolius, by anchoring common mark-
ers in the maps of both lupin species, which confirmed LGs, map and syntenic regions found in this species.

Igbal et al.? recently described GBS for L. luteus whereby low-coverage sequencing data and imputation
resulted in 948 selected SNP markers. The GBS markers from that study were combined with 2,006 DArT markers
to produce a genetic map containing 40 LGs. Cytological studies of L. luteus support 2n=>52, or 26 LGs'" %, thus
the comparisons of this L. luteus map with the map generated in our study is complex. The map generated in this
study represents 78.4% of the map length generated by Igbal et al.?*. Who covered a total length of 2,261 cM.

The mapping population used in this study had a wild male parent, containing valuable genetic variation
for many traits. Interestingly, our results highlight that this cross with the wild accession also had the natural
phenomenon of segregation distortion as observed in other species and crops®. According to the distribution
of distorted markers along linkage groups of L. luteus, two types were identified: segregation distortion loci
(SDL), i.e. loci widespread between chromosomes, with alleles in either parental class, and a segregation distor-
tion region (SDR), i.e. markers showing highly significant distortion skewed in the same direction, clustered
in a specific genomic region. SDRs, as found in LG17, with markers highly skewed toward the female parent,
and in LG15, with markers highly skewed toward homozygosity i.e. to both parental types. An example of SDR
is showed in Supplementary Table S6. This is the first reported distribution and direction of distorted markers
in L. luteus, and shares the same features as other species and crops widely reported®*>. However, its genetic
causation remains to be studied in L. luteus, as they are important when it is considered that the introduction of
further wild accessions will be needed in order to reduce the genetic variation bottleneck apparent in this species.

Recently in soybean the effect of segregation distortion has been elucidated in mapping and QTL analysis,
across diverse mapping populations and genetic backgrounds. Few chromosomes and clusters of markers gener-
ates complexity, and when distorted markers were included a more accurate map was obtained®. Interestingly,
our results in L. luteus were very much in agreement with the results found in soybean, few chromosomes and
genomic regions of L. luteus were mainly associated with segregation distortion. When these distorted markers
were removed, the map generated was not entirely consistent with the map including all markers, that shared
good collinearity and syntenic regions with the map and reference genome of L. angustifolius. In our study neither
SDL or SDR were located in the genomic regions harboring QTLs for anthracnose resistance or DTFE.
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Since anthracnose resistance was studied in a large F, mapping population and F,; families, in in vitro and
field conditions, allowing the validation of methods and data. This supported the high LOD score found for this
QTL, and identified a linked and fully co-segregating marker in the target syntenic region. High correlations
between in vitro assay and field evaluation for anthracnose resistance have been reported previously®®®’. Anthrac-
nose resistance in several other legumes has been reported as being genetically control by a single dominant
gene®®%%% which is coherent with the single dominant gene mapped in this study. This also reflect the narrow
range of pathogenic races of this fungus and follow the gene-for-gene model”. The assembly of homologous
sequences with L. angustifolius in the syntenic region for anthracnose resistance QTL, suggested Lanrl as an
orthologous candidate gene in the L. luteus genome (Figs. 2, 4). Moreover, BLAST results of genomic DNA
sequences in the gene region of L. angustifolius chromosome 11 to EST sequences of L. luteus (SRA055806)
produced a significant alignment, suggesting the gene encoded in this region was expressed®, supporting the
QTL results of this study. In L. angustifolius, in a different genetic background, a fine map location of Lanrl
showed complete conservation, allowing the proposal of an NLR gene as a likely candidate for Lanr1?°. Flower-
ing time was also evaluated in large F, and F,; populations, in different environments and seasons, allowing
the identification and validation, for the first time in this species, of a major QTL for this trait in the L. luteus
genome. Like the LanrI gene, it was also mapped in a syntenic and collinear genomic region of L. angustifolius
reference genome. From previous studies in L. angustifolius, the LanFTcl gene has a large effect in terms of the
regulation of DTE. FTcl expression is increased with vernalisation in late genotypes of L. angustifolius®. In
other legumes, such as Glycine max, Pisum sativum and Medicago truncatula, FT genes have been described as
regulators of flowering time”'~7>.

The results of this study are in close agreement with previous studies in legumes; strongly suggesting that
the QTL found in the L. luteus genome is harboring an orthologous FTc! gene, with highly probably of sharing
similar functional effects as L. angustifolius and other legumes species.

The L. luteus map reported here, its collinearity and synteny of specific genomic regions allowed the discovery
of important domestication traits. Considering these results, it is highly possible that L. luteus is also preserving
collinearity with the reference legume genomes of Arachis duranensis, Glycine max and Medicago truncatula®"*.

Thus, the results of comparative mapping, synteny analysis, and presence of orthologous genes between L.
luteus and the L. angustifolius reference genome, are suggesting that L. luteus LG13, LG23 and LG11 correspond
to the pseudochromosomes: Chr11, Chr10 and Chrl17, respectively.

The discoveries in this study provide strong validation of the synteny approach for transferring genomic
knowledge from a model genome to a less well-resourced crop genome, with reduced time and economy of
effort. It is proving that the sequence information in model genome plants, advanced molecular and functional
information from species like L. angustifolius, are helping enormously to target and explore important genes for
breeding improvement, especially under the pressure of sustainable production and food security.
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