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Abstract: Osteogenesis imperfecta (OI) is a genetic disease characterized by bone fragility and
repeated fractures. The bone fragility associated with OI is caused by a defect in collagen formation
due to mutation of COL1A1 or COL1A2. Current strategies for treating OI are not curative. In this
study, we generated induced pluripotent stem cells (iPSCs) from OI patient-derived blood cells
harboring a mutation in the COL1A1 gene. Osteoblast (OB) differentiated from OI-iPSCs showed
abnormally decreased levels of type I collagen and osteogenic differentiation ability. Gene correction
of the COL1A1 gene using CRISPR/Cas9 recovered the decreased type I collagen expression in OBs
differentiated from OI-iPSCs. The osteogenic potential of OI-iPSCs was also recovered by the gene
correction. This study suggests a new possibility of treatment and in vitro disease modeling using
patient-derived iPSCs and gene editing with CRISPR/Cas9.

Keywords: osteogenesis imperfecta; osteoblast differentiation; induced pluripotent stem cell; COL1A1;
gene editing

1. Introduction

Osteogenesis imperfecta (OI), a genetic disease caused by defective synthesis of
type I collagen [1], is associated with mutations in the COL1A1 and COL1A2 genes [2,3].
Type I procollagen, a major constituent of bones, consists of two molecules of pro-α1
chain and one molecule of pro-α2 chain in a triple-helical configuration [4]. Mutation
in the COL1A1 and COL1A2 genes results in defective synthesis of the α-chains, which
in turn leads to structural disintegration of the triple helix [5–7]. Accordingly, clinical
manifestations of OI are characterized by weakened collagen, resulting bone fragility, and
multiple fractures [8]. Depending on the exact genotype, mutations in these genes can also
impact other collagen-rich tissues, leading to symptoms such as tooth defects, blue sclerae,
and auditory impairment [9,10]. Based on the clinical severity, radiological features, and
inheritance, OI is classically divided into four types: mild (type I OI), lethal (type II OI),
severe progressive (type III OI), and moderately deforming (type IV OI) [11]. Type II OI
is the most severe form, which most infants with this disease do not survive [11]. On the
other hand, type I OI is the mildest form of the disease that results from null mutations in
the COL1A1 and COL1A2 gene. Type I OI patients have approximately 50% of normal type
I collagen in their tissue; therefore, the patient may experience bone fractures yet show
fewer deformities [12]. Type I OI patients show clinical characteristics such as osteoporosis,
blue sclera, mild skeletal deformities, and easy bruising.

OI is a rare and intractable genetic disease [13,14]. Various treatments have been
attempted, but they cannot achieve complete recovery. The rarity of the disease, along
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with the fundamental gene abnormality, has prevented the development of an effective
therapy. Bisphosphonates are often used for children who have moderate to severe OI [15].
Bisphosphonates increase bone mineral density and improve bone strength and eventually
reduce bone fracture and pain. Surgery, including intramedullary rodding, reduces fracture
risks when long bones are bowed [16,17]. Transplantation of mesenchymal stem cells
(MSCs) was attempted to treat OI only to modulate the severity of the disease [18,19].
However, it is important to have better understanding of the disease to seek treatment.
To date, clinical therapy or understanding of the disease is limited, and further studies
are required.

One strategy for overcoming the shortage of biomaterial for research on rare dis-
eases is the production of patient-derived induced pluripotent stem cells (iPSCs) [20,21].
Patient-derived iPSCs can recapitulate disease phenotypes in vitro; therefore, it is useful
for understanding the disease and developing novel drug therapies through modeling of
rare diseases.

Along with the development of iPSCs, CRISPR/Cas9 technology has been actively
used to study genetic diseases in the recent years [22–24]. Correction of a defective gene
using CRISPR/Cas9 can reveal the pivotal biological function of the specific gene. Mono-
genic diseases such as OI are plausible candidates for treatment using genome editing
technology. In this study, we established OI patient-derived iPSC clones and corrected the
mutated gene using CRISPR/Cas9. Osteogenic differentiation using OI-iPSCs mirrored
the characteristics of the disease, and the correction of the collagen gene recovered the
impaired differentiation ability. Here, we present new possibilities in iPSC-based in vitro
study and precise gene correction on hereditary bone disease of OI.

2. Experimental Section
2.1. Ethical Approval

All procedures involving animals were performed in accordance with the Laboratory
Animals Welfare Act, the Guide for the Care and Use of Laboratory Animals, and the
Guidelines and Policies for Rodent Experimentation provided by the Institutional Animal
Care and Use Committee of the School of Medicine of The Catholic University of Korea. The
study protocol was approved by the Institutional Review Board of The Catholic University
of Korea (CUMC-2016-0291-02) from the Catholic iPSCs Center.

2.2. PBMC Isolation from OI Patients

Blood was collected in heparin-coated tubes and diluted with phosphate-buffered
saline (PBS). Diluted blood samples were then centrifuged through a Ficoll gradient (Cat-
alogue number, 17-1440-03, GE Healthcare, Little Chalfont, Buckinghamshire, UK) for
30 min at 850× g. PBMCs were collected and transferred to a new tube. After wash
with PBS, peripheral blood mononuclear cells (PBMCs) were resuspended in StemSpan
medium (9805, STEMCELL Technologies, Vancouver, BC, Canada) supplemented with
CC110 cytokine cocktail (8697, STEMCELL Technologies). Prior to use in iPSC generation,
cells were maintained for 5 days at 37 ◦C in an atmosphere containing 5% CO2 [25].

2.3. Generation and Maintenance of OI-iPSCs

Reprogramming of iPSCs was performed as previously described [25]. PBMCs were
collected as described above. Cells were transduced with Sendai viral particles generated
using the CytoTune-iPS Sendai Reprogramming Kit (A16518, Life Technologies, Carlsbad,
CA, USA). Cells were maintained in Essential 8 (E8) medium in vitronectin-coated dishes.

2.4. Construction of RGEN, ssODN and Surrogate Reporter Gene

RNA-guided endonuclease technology (RGEN) target sequences were designed using
the ToolGen optimized CRISPR validation service (http://www.toolgen.com/ accessed
on 29 May 2016). RGEN 3 and 4 had higher out-of-frame scores than RGEN 1 and 2.
However, validation with T7E1 assay confirmed that the polymerase chain reaction (PCR)
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bands for RGEN 1 and 2 were clearer than those for RGEN 3 and 4 relative to the positive
control. Healthy donor DNA was ordered from Macrogen. For the purpose of correcting
the COL1A1 c.2523delT mutation, the single-stranded oligodeoxynucleotides (ssODNs)
was designed as a 48nt homology arm at the mutant site on both sides of the residue
expected to be cleaved by the RGEN. Surrogate reporter systems were used to evaluate the
efficiency of CRISPR/Cas9 in target mutations [26]. OI-iPSCs were transfected with RGEN,
ssODN, and surrogate reporter plasmid constructs using the Neon 10-µL transfection kit
(Life Technologies) and performed according to the manufacturer’s protocol.

2.5. T7 Endonuclease 1 (T7E1) Mismatch Detection Assay

T7 endonuclease 1 (T7E1) assay is a widely used method to analyze the editing ef-
ficiency of CRISPR/Cas9 and to identify cell clones containing mutations at target sites.
We performed a T7E1 assay to detect in/del mutations. Genomic DNA was extracted
using Exgene™ Cell SV kit (cat.no 106-101), and target regions were amplified by PCR
(see Table 1 with High Fidelity (ThermoFisher, Waltham, MA, USA), according to manufac-
turer’s protocol. PCR products were denatured at 95 ◦C for 4min and re-annealed at −2
◦C per second temperature ramp to 85 ◦C, followed by a −0.1 ◦C per second ramp to 25
◦C. The heterocomplexed PCR product (10µL) was incubated with 10X T7E1 buffer (2 µL)
and T7E1(0.3 µL) at 37 ◦C for 20 min. PCR products were electrophoresed on a 0.8% TBE
agarose gel.

Table 1. Off-target information.

RGEN Target Sequence GC Contents
(%)

Out-of-Frame
Score

0 bp
Mismatch

1 bp
Mismatch

2 bp
Mismatch

hCOL1A1_RG1 AAAGGCGAACCTGGTGATGCTGG 21 55 1 0 0
hCOL1A1_RG2 GCTGGTGCTAAAGGCGATGCTGG 30.3 60 1 0 0
hCOL1A1_RG3 GGGGTCCAGCGGGTCCGGCAGGG 41 80 1 0 0
hCOL1A1_RG4 GGGGGTCCAGCGGGTCCGGCAGG 41.5 85 1 0 0

2.6. Osteogenic Differentiation of OI-iPSCs

In vitro osteogenic differentiation used in this manuscript was followed by the proto-
col that we used in our previous studies [27,28]. iPSCs were seeded onto a 0.1% gelatin-
coated dish (1 × 105 cells per well of a 24 well plate) at 37 ◦C, in 5% CO2, and under
95% humidity. When iPSCs were 80% confluent, usually in 2–3 days, the medium was
replaced with osteogenic differentiation medium (ODM). ODM was prepared by supple-
menting DMEM-LG (Dulbecco’s modified Eagle medium, low glucose) with 15% FBS,
100 nM dexamethasone, 10 mM β-glycerol-2-phosphate disodium salt, and 50 µg/mL
ascorbic acid. The medium was replaced every 2 days, and cells were cultured for a total of
3 weeks.

2.7. Alizarin Red S Staining

Alizarin Red S staining was performed to confirm calcium deposition during OB
differentiation. To determine the degree of calcium deposition on day 0, 7, 14, and 21,
differentiated cells were washed with sterile 1× PBS. Alizarin Red S solution was added,
and samples were stained for 30 min in room temperature (RT). Thereafter, the non-
specifically stained portion was rinsed several times with sterilized water. The stained
samples were observed under an optical microscope. To quantify the stained Alizarin
Red levels, samples were reacted with 10% (w/v) cetylpyridinium chloride solution at
RT for 30 min, and the absorbance of the supernatant was measured at 595 nm using a
microplate reader.
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2.8. Von Kossa Staining

Von Kossa staining was performed to confirm the presence of calcified nodules. After
washing with PBS, cells were fixed with 4% PFA for 20 min. After washing with tap water,
samples were treated with 5% silver nitrate solution, exposed to UV light for 40 min, and
then washed with tap water. Finally, samples were incubated with 5% sodium thiosulfate
for 5 min and then washed again with tap water. The stained samples were observed under
an optical microscope.

2.9. OsteoImage Mineralization Assay

The hydroxyapatite portion of the deposited bone-like nodule was identified using
the Osteoimage Mineralization Assay (PA-1503, Lonza, Basel, Switzerland) and performed
according to the manufacturer’s protocol.

2.10. Real-Time Polymerase Chain Reaction (PCR)

Total RNA was isolated using Trizol Reagent (15596026, Invitrogen, Carlsbad, CA,
USA). The cDNA was synthesized using the RevertAid First Strand cDNA Synthesis Kit
(K1621, ThermoScientific, Waltham, MA, USA) according to the manufacturer’s protocol
(Invitrogen). The relative mRNA levels were normalized with the band pixel intensity
of GAPDH. The used primers are shown in Table 2. This assay does not discriminate
wild-type (WT) and mutant COL1A1 mRNA.

Table 2. List of PCR primer sequences used for RT-PCR and qRT-PCR analysis.

Target Name Direction Primer Sequence Target Size (bp) Gene Reference

humanOCT3/4
Forward ACCCCTGGTGCCGTGAA

190 NM_001173531.1Reverse GGCTGAATACCTTCCCAAATA

humanSOX2
Forward CAGCGCATGGACAGTTAC

321 NM_003106.3Reverse GGAGTGGGAGGAAGAGGT

humanLIN28
Forward GTTCGGCTTCCTGTCCAT

122 NM_024674.4Reverse CTGCCTCACCCTCCTTCA

humanNANOG
Forward AAAGGCAAACAACCCACT

270 NM_024865.2Reverse GCTATTCTTCGGCCAGTT

humanTDGF1
Forward TCCTTCTACGGACGGAACTG

140 NM_003212.3Reverse AGAAATGCCTGAGGAAAGCA

humanDPPA5
Forward CGGCTGCTGAAAGCCATTTT

215 NM_001025290.2Reverse AGTTTGAGCATCCCTCGCTC

humanRUNX2
Forward AGTGGACCCTTCCAGACCAG

261 NM_001015051.3Reverse ATGGTCGCCAAACAGATTCA

humanCOL1A1
Forward CAGGGTGTTCCTGGAGACCT

291 NM_000088.3Reverse AGGAGAGCCATCAGCACCTT

humanOCN
Forward CCAGGCGCTACCTGTATCAA

231 NM_199173.5Reverse AGGGGAAGAGGAAAGAAGGG

humanGAPDH
Forward GAATGGGCAGCCGTTAGGAA

414 NM_002046Reverse GACTCCACGACGTACTCAGC

2.11. Immunofluorescence Staining

Immunofluorescence was performed to confirm the expression of pluripotency mark-
ers. Cells were fixed with 4% formaldehyde for 10 min and washed twice in 0.1% PBST
(1× PBS containing 0.1% Tween-20). Samples were then permeabilized for 10 min in PBS
containing 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA). After blocking for
40 min with PBS containing 2% bovine serum albumin (2% PBA), cells were treated with
primary antibody and incubated at RT for 2 h. After the exposure with primary antibodies,
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cells were washed several times with 0.1% PBST. Sections were then incubated with Alexa
Fluor®594–conjugated goat anti-rabbit IgG (H+L) antibody (A11037, Molecular Probes,
Eugene, OR, USA) and Alexa Fluor®488–conjugated goat anti-mouse IgG (H+L) antibody
(A11029, Molecular Probes) for 40 min at RT; both secondaries were diluted 1:200 in PBS.
Nuclear DNA was stained with 4′,6-diamidino-2-phenylindole (DAPI; 10236276001, Roche,
Basel, Switzerland).

Immunofluorescence was also performed to confirm the expression of anti-collagen I
in HC-iPSCs, OI-iPSCs, and geOI-iPSCs. Cells were fixed and permeabilized as described
above. After blocking for 40 min with 10% normal goat serum containing 1% bovine serum
albumin (BSA; Sigma-Aldrich, St. Louis, MO, USA), samples were incubated for 1 h at RT
with anti-collagen I antibody (ab34710, Abcam, Cambridge, UK) diluted in 5% normal goat
serum containing 1% PBA. After washing, sections were incubated for 40 min at RT with
Alexa Fluor®594–conjugated goat anti-rabbit IgG (H+L) antibody in PBS. Nuclear DNA
was stained with DAPI.

2.12. Western Blot Analysis for Type I Collagen

Western blot analysis was performed to confirm the expression of type I collagen and
osteocalcin in OB derived from HC-iPSCs, OI-iPSCs, and editOI-iPSCs. Cells were washed
with PBS and lysed with NP-40 lysis buffer supplemented with protease inhibitors (10 mM
leupeptin and 100 mM PMSF). Cell lysates were centrifuged at 13,000× g for 20 min at
4 ◦C, and Bradford assay was performed. Proteins were separated on 8% SDS-PAGE gels
and transferred to nitrocellulose membranes. Membranes were blocked with 5% skim
milk in PBST for 1 h and incubated with anti-type I collagen antibody (1:1000, C-terminal
telopeptide, GTX82720, GeneTex, Irvine, CA, USA) and anti-osteocalcin antibody (1:500, sc-
30044; Santa Cruz Biotechnology, Dallas, TX, USA) at 4 ◦C. Membranes were then washed
3 times with a 0.1% PBST and incubated for 40 min with a peroxidase conjugated affinipure
goat-anti-rabbit IgG (1:5000, 111-035-144, Jackson Laboratory, Bar Harbor, ME, USA). After
4 washes with 0.1% PBST, the protein-of-interest was detected using a western blotting
imaging analyzer LAS 1000.

2.13. Sample Preparation for TEM

TEM was performed to observe type I collagen structure. Cells were washed three
times with DPBS and then fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer (DukSan,
Seoul, Korea) overnight. Cells were then washed in 0.1 M sodium cacodylate buffer,
and post-fixation was performed for 1 h in a solution of 1% osmium tetroxide in 0.1 M
cacodylate buffer (pH 7.4). Subsequently, samples were gradually dehydrated in ethanol
and washed with propylene oxide for 15 min. Propylene oxide and epoxy resin were mixed
and allowed to infiltrate the cell samples. Finally, samples were incubated overnight with
eponate at 65 ◦C. Samples were then cut using a Leica Ultracut microtome (Leica, Deerfield,
IL, USA) and mounted on amorphous-carbon-coated Cu TEM grids.

2.14. Teratoma Formation

Immunodeficient nude (NOD/SCID) mice were purchased from Jackson Laboratories,
USA. geOI-iPSC clone (1 × 106 cells) were suspended in 30 µL of medium-Matrigel (BD)
mixture (DMEM/F12 medium: Matrigel 1:1). Anesthetized mice were disinfected three
times with 70% ethanol and povidone. The skin and peritoneum were incised, and the
testicles were held with tweezers. The cell mixtures were injected into subcutaneous and
testis capsules in 7-week-old NOD mice. The peritoneum and skin were sutured with
absorbable sutures. Animals were monitored for tumor growth for 10–12 weeks. After
tumors were removed, samples were fixed in 4% paraformaldehyde and embedded in
paraffin. Sections (4-µm thick) were subjected to H&E as follows: Sections were incubated
in Harris’s hematoxylin solution for 10 min, and excess hematoxylin was removed by
adding 1% HCl in 70% (v/v) alcohol for 5 s, followed by a 0.5% ammonium water wash.
Slides were then stained in Eosin Y (1% (w/v)) for 90 s with a subsequent wash in running
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tap water for 1 min. Sections were mounted on clear glass slides and covered with thin
glass coverslips.

2.15. Label-Free Quantification

Cells were centrifuged at 4000× g at 4 ◦C for 20 min. Cells were resuspended in
1 mL of lysis buffer (50 mM Tris, 100 mM NaCl, 20 mM DTT, protease inhibitor, and
1× phosphatases, with pH 7.5 buffer). The samples were sonicated for 5 min at 4 ◦C, and
lysis buffer was replaced by 50 mM ammonium bicarbonate at pH 8.0 using Amicon™
Ultra-15 Centrifugal Filter Units. The protein samples were precipitated in 10% (w/v) TCA,
and the pellets were solubilized in 50 mM ammonium bicarbonate and 1% (w/v) RapiGest
SF (Waters). After protein extraction, quantities were determined by Bradford assay. The
proteins were quantified, and their integrity was confirmed by SDS-PAGE. All LC-MS/MS
analyses were performed on an LTQ Orbitrap XL mass spectrometer (Thermo Scientific,
San Jose, CA, USA). A triplicate MS run was performed for a total of three samples of HC,
OI and editOI, and label-free quantification (LFQ) analysis was performed with SwissProt
Homo sapiens DB using the results.

2.16. Statistical Analysis

All experiments were repeated three or more times. The results are shown as mean
and standard error of the mean. Statistical analyses were performed using GraphPad
Prism Software, 5.0 (GraphPad, San Diego, CA, USA). ANOVA was used to analyze non-
parametric quantitative datasets, and the one-tailed p-value was calculated. *, p < 0.01;
**, p < 0.005; and ***, p < 0.001 indicated statistical significance. hiPSCs were subjected to at
least three independent differentiations, and all experiments were replicated.

3. Results
3.1. Generation of Osteogenesis Imperfecta Patient Derived iPSCs

In this study, we were able to obtain blood sample from one type I OI patient. We
confirmed that a T nucleotide was deleted (c.2523delT) from exon 36 of the COL1A1 gene,
replacing the 842nd amino acid (glycine) with alanine and causing a frameshift mutation
affecting 266 downstream amino acids (Table 3). The mother of the patient harbors the same
COL1A1 mutation (c.2523delT) (Figure 1A). The OI patient participating in this study exhib-
ited bone fragility, frequent fractures, and bone deformations that were observed through
X-ray as well as clinical symptoms, such as blue sclera (Figure 1B). Induced pluripotent
stem cells (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) from
healthy controls (HC) and the OI patient (Figure 1C). Sequence analysis was performed
from iPSCs derived from the OI patient-derived samples (Figure 1D). Different clones
were established from the OI patient-derived iPSCs for this experiment. OI-iPSCs showed
the same COL1A1 mutation as the patient-derived primary cells confirmed by Sanger
sequencing (data not shown). Both OI-iPSCs and HC-iPSCs maintained morphological
characteristics unique to iPSC colonies, and their undifferentiated state was confirmed
by alkaline phosphatase staining (Figure 1E). Expression of the pluripotency-associated
transcription factors, such as OCT3/4, SOX2, NANOG, LIN28, and TDGF1, confirmed high
pluripotency (Figure 1F). In addition, real-time RT-PCR analysis was performed on the
expression of OCT3/4, SOX2, and NANOG in OI-iPSC and HC-iPSC (Figure 1G). The list of
primers used in this study is provided in Table 2. Pluripotency of OI- and HC-iPSCs was
further confirmed by flow cytometry analysis, showing expressions of OCT4, TRA-1-60,
and SSEA-4 (Figure 1H). Pluripotency of OI- and HC-iPSCs was further confirmed by flow
cytometry analysis, showing expressions of OCT4, TRA-1-60, and SSEA-4 (Figure 1I). As a
result, it was confirmed that there was no difference between the clones of HC- and OI-iPSC.
The similar expression of pluripotent markers in cell lines from each group also indicates
that the defect in OI-iPSCs did not affect the pluripotency of the generated patient-derived
stem cells. In conclusion, we confirmed the disease characteristics of the patient-derived
sample and successfully generated OI-iPSCs.
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Table 3. Osteogenesis imperfecta cell lines with mutations in COL1A1.

OI type Type Exon Nucleotide Change Protein Mutation

I DNA mutation 36 c.2523delT p.Gly842Alafs *
* Alanine Frameshift.

3.2. OI Patient-Derived iPSCs Exhibit Delayed OB Differentiation

Osteoblast (OB) differentiation of OI-iPSCs and HC-iPSCs was performed to confirm
if OI-iPSCs have lower ability to differentiate into bone. For differentiation into OBs, we
induced OB differentiation with a osteogenic differentiation medium (ODM) (Figure 2A).
OBs differentiated from HC-iPSCs showed a significant increase in mineralized nodule
formation during OB differentiation, whereas OBs differentiated from OI-iPSCs showed no
increase in mineralized nodules (Figure 2B and Figure S1A,B). The formation of mineral
nodules in OB differentiated from HC-iPSCs and OI-iPSCs was evaluated by Alizarin Red
S, von Kossa, and OsteoImage staining. Alizarin Red S staining is a method commonly
used to identify calcium containing osteocyte in differentiated OBs. Von Kossa staining is
commonly used to observe the presence of calcium phosphate in differentiated OBs, and
silver ions react with phosphate to produce black precipitates. Mineralized matrix was
quantified with an OsteoImage™ mineralization assay, and the hydroxyapatite portion of
the mineralized matrix was assessed qualitatively by fluorescence microscopy. Calcium
deposition and matrix calcification were evaluated on days 7, 14, and 21 (Figure 2B and
Figure S1A,B). Calcified nodules appeared red by Alizarin Red S staining, brown by von
Kossa staining, and fluorescent green in the OsteoImage assay. On day 21 of OB differen-
tiation, OI-iPSCs contained fewer calcium deposits and a smaller calcification area than
HC-iPSCs (Figure 2B). Staining results quantified using the ImageJ software confirmed
that OI-iPSCs had less OB differentiation ability (Figure 2C and Figure S1C–E). Quanti-
tative RT-PCR analysis of mRNA expression levels of RUNX2, COL1A1, and Osteocalcin
(OCN) genes was performed in OBs differentiated from HC-iPSCs and OI-iPSCs. In OBs
differentiated from HC-iPSCs, the expression of RUNX2 and OCN mRNA was significantly
increased compared to that of OBs differentiated from OI-iPSCs (Figure 2D). We observed
the collagen fibril structure from OI-iPSCs by transmission electron microscopy (TEM). The
abnormal expression levels of type I collagen in OI-iPSCs was confirmed by TEM images
(Figure 2E). Through these results, it was confirmed that OI-iPSCs-derived OB can reduce
normal collagen levels in vitro or cause structural defects in collagen fibers. This suggests
that damaged bone formation can be reproduced.
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phosphatase (AP) staining (lower panel). (F,G) Expression of pluripotency markers in HC-iPSCs (n = 3) and OI-iPSCs (n = 3),
as determined by RT-PCR and quantitative RT-PCR. GAPDH is a reference gene and was used for quantitative analysis.
(H) Flow cytometry analysis of cells expressing OCT4, TRA-1-60, and SSEA4. The percentage of OCT4+, TRA-1-60+, and
SSEA+ cells in OI and HC-iPSCs. (I) Staining for pluripotency transcription factors Oct3/4, Sox2 and KLF4 and cell-surface
markers TRA-1-60, TRA-1-81, and SSEA4.
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Figure 2. Reduced formation and mineralization of nodules in OI-iPSCs. Differentiation of osteoblasts from OI- and
HC-iPSCs. (A) Schematic representation of the osteoblast differentiation protocol for OI-, HC-iPS cells by osteogenic
differentiation medium (ODM). (B) OI-iPSCs and HC-iPSCs were cultured under osteogenic differentiation media and
stained after days 7, 14, and 21 with Alizarin Red S and von Kossa to visualize calcium mineral deposition. The amount of
hydroxyapatite was measured using the OsteoImage mineralization assay, in which a fluorescent green dye binds to the
hydroxyapatite portion of the mineralized matrix (scale bars: 100 µm). (C) Quantitative measurements of Alizarin Red S
and von Kossa using ImageJ software. The amount of hydroxyapatite was measured using the OsteoImage mineralization
assay and quantified using the ImageJ software. Data are means ± SEM. *** p < 0.001 vs. OI, ** p < 0.005 vs. OI, * p < 0.01
vs. OI, indicates statistical significance (Unpaired t-test). (D) Quantitation of expression of osteogenic marker genes (OSX,
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values ± standard deviation of three independent experiments. Data were statistically analyzed using a one-way ANOVA.
* p < 0.05; ** p < 0.01. (E) Decrease in collagen production due to abnormal changes in the structure of type I collagen, as
confirmed by TEM.

3.3. Correction of COL1A1 Mutation by CRISPR/Cas9

We used CRISPR/Cas9 to edit the COL1A1 mutation in OI-iPSCs. As noted above,
a deletion (c.2423delT) in exon 36 of the COL1A1 gene caused a frameshift mutation
affecting 266 downstream amino acids. We designed an exogenous ssODN template
encoding homology arms spanning the target site, and RG2 was constructed to target the
mutation in exon 36 (Supplementary Figure S2A). RNA-guided endonucleases (RGENs)
uses short guide RNA (gRNA) to recognize DNA, bind endonuclease, and induce site-
specific cleavage [29]. To select the single guide RNAs (sgRNAs) that can be recognized
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by the CRISPR/Cas9 enzyme at the COL1A1 gene site, each exon region was inserted into
CRISPR RGEN tools. Thus, four sgRNAs were selected. Four RGENs were selected, and
all four RGENs had 1-0-0 mismatches, which indicates lower probabilities of off-target
reactivity [30]. A list of primers is provided in Table 1. T7E1 assay was used to test the
efficiency of the four RGENs. Clear bands were observed for RGEN 1 and 2 relative
to the positive control. Based on this result, these two RGENs were selected for use
in subsequent experiments (Supplementary Figure S2B). We confirmed the transfection
efficiency of the red fluorescent protein (RFP) reporter gene in HEK 293T cells, which
is constitutively expressed by the CMV promoter (PCMV) (Supplementary Figure S2C).
The sgRNA target site and primers used for the T7E1 assays are shown in Table 4. To
promote repair and gene conversion via homology-directed repair (HDR), a donor template
was co-transfected with the CRISPR/Cas9 system (Cas9, RGEN, and surrogate vector) in
iPSCs (Figure 3A and Figure S3D). Also, we used a surrogate Reporter that expresses a
hygromycin-resistant protein-EGFP fusion protein only when frame-shifting indels are
generated in the target sequences of the reporter by nuclease activity. Over the 2–3 days
after transfection, cells expressed green fluorescent proteins (GFPs) and RFPs (Figure 3B,
upper panels). GFP is not expressed without RGEN activity because the GFP sequence is
out of frame, and there is a stop codon before it. As a result, GFP signal can only arise from
the correct, in-frame insertion at the COL1A1 locus. Thereafter, stable, GFP-positive cells
were obtained by selection with hygromycin B. The cells were passaged and maintained
(Figure 3B, lower panels). Genes edited were determined by T7E1 assays of genomic DNA
from unselected or hygromycin B (GFP+) selected OI-iPSCs (Figure 3C). We confirmed
successful correction in the deleted target site through sequencing (Figure 3D). Gene-
edited OI-iPSCs (editOI-iPSCs) retained the morphological characteristics unique to iPSC
colonies; their undifferentiated state was confirmed by alkaline phosphatase expression
(Figure 3E), and positive expression of pluripotency markers was confirmed in the edited
cells (Figure 3F–H). Teratoma formation was observed eight weeks after subcutaneous
injection of iPSCs in NOD/SCID mice, and the three germ layers were confirmed in the
generated teratoma tissues (Figure 3I). Karyotype analysis of the gene-edited patient-
derived iPSCs revealed the same a normal male karyotype of 46, XY as the original cells
(Figure 3J). Taken all together, we successfully gene-edited the COL1A1 mutation in OI-
iPSCs and generated geOI-iPSCs using the CRISPR/Cas9 system. We also confirmed that
the generated geOI-iPSCs maintained their stemness and genetic characteristics.

Table 4. sgRNA target site sequences.

Target Name Target Sequence Target Size (bp) Tm

COL1A1_ex36_F CCCCCATCATTTTTCATCAC
477 60COL1A1_ex36_R CAGAGAGGCGGGTGATACTC
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bars: 100 μm). (C) T7E1 assay for insertions and deletions. (D) Direct sequencing analysis. We gen-
erated a COL1A1-corrected iPSC clones of OI patient (editOI-iPSCs). (E) Microscopic morphology 
and AP staining of the COL1A1-corrected iPSC clones (editOI-iPSCs) (upper panel; scale bars: 100 
μm, lower panel; scale bars: 200 μm). (F) Pluripotent marker PCR results and (G) flow cytometry 
analysis of cells expressing OCT4, TRA-1-60, and SSEA4. (H) Immunofluorescence image of editOI-
iPSCs analyzed for pluripotency markers (scale bars: 100 μm). (I) editOI-iPSC teratoma histology 
(scale bars: 100 μm). (J) Morphology and karyotype of editOI-iPSCs. 
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Figure 3. CRISPR/Cas9-mediated editing of the COL1A1 gene in OI-iPSCs. (A) Schematic representation for CRISPR/Cas9-
mediated editing of the COL1A1 gene in OI-iPSCs. (B) Fluorescence image of transfected colony. Stable GFP-positive
cells were obtained by selection with hygromycin B (scale bars: 100 µm). (C) T7E1 assay for insertions and deletions.
(D) Direct sequencing analysis. We generated a COL1A1-corrected iPSC clones of OI patient (editOI-iPSCs). (E) Microscopic
morphology and AP staining of the COL1A1-corrected iPSC clones (editOI-iPSCs) (upper panel; scale bars: 100 µm, lower
panel; scale bars: 200 µm). (F) Pluripotent marker PCR results and (G) flow cytometry analysis of cells expressing OCT4,
TRA-1-60, and SSEA4. (H) Immunofluorescence image of editOI-iPSCs analyzed for pluripotency markers (scale bars:
100 µm). (I) editOI-iPSC teratoma histology (scale bars: 100 µm). (J) Morphology and karyotype of editOI-iPSCs.

3.4. Recovery of Collagen Fibril Structure of Bone Formation in Gene-Edited OI-iPSCs

We compared OB differentiation with geOI-iPSCs, OI-iPSCs, and HC-iPSCs (Figure 4A
and Figure S2). HC-iPSCs and geOI-iPSCs underwent differentiation and formed mineral-
ized nodules starting on day seven, which was confirmed by Alizarin Red S, von Kossa, and
OsteoImage staining (Supplementary Figure S2A–C). Mineralization reduced in OBs differ-
entiated from OI-iPSCs was recovered in geOI-iPSCs, which showed similar levels to that
of HC-OBs. Alizarin Red S staining showed that OBs differentiated from OI-iPSCs showing
no deposition of calcification compared to OBs differentiated from HC-iPSCs and geOI-
iPSCs (Figure 4A and Figure S2A–C). The deposition of calcium phosphate by von Kossa
staining showed that OBs differentiated from HC-iPSCs and geOI-iPSCs were strongly
deposited compared to OBs differentiated from OI-iPSCs (Figure 4A and Figure S2A–C).
Similar to Alizarin Red S and von Kossa staining, the amount of green fluorescent staining
was strongly deposited in OBs differentiated from HC-iPSCs and geOI-iPSCs (Figure 4A
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and Figure S2A–C). The mineralized nodules and staining area of Alizarin Red S, von
Kossa staining, and OsteoImage™ mineralization assay were quantified (Figure 4B). We
measured representative Pro-Collagen 1 and Osteocalcin as biochemical markers of bone
metabolism to observe the changes in biochemical bone metabolism caused by collagen
mutations. Pro-Collagen 1 and Osteocalcin levels in OB supernatant were measured on day
21 of OB differentiation (Figure 4C). Measurements of Pro-Collagen 1 accounts for 90% of
the total protein in the bone organic matrix and is a typical osteoblast marker [31]. The level
of Pro-Collagen 1 was higher in editOI compared to OI. In addition, Pro-Collagen 1 levels in
HC and editOI showed similar expression, but there was no significant difference between
HC and editOI (Figure 4C, upper panel). Osteocalcin, the major protein involved in the for-
mation of mineralized matrix, was present at significantly lower levels in the supernatant
of OI-iPSCs (Figure 4C, lower panel). We reconfirmed that OCN was more abundant in
editOI-iPSCs than OI-iPSCs using western blot analysis (Figure 4D). Interestingly, COL1A1
expression was increased in OI and decreased after gene editing (Figure 4D). Western blots
band were quantified with Image J software and normalized. (Figure 4E). Quantitative
RT-PCR analysis of COL1A1 mRNA expression levels was performed in OBs differentiated
from HC, OI, and editOI-iPSCs (Figure 4F). COL1A1 mRNA levels were similar between
the OBs differentiated from HC, OI, and editOI-iPSCs and had no significant difference.
The expression of COL1A1 was confirmed by immunofluorescence staining (Figure 4G).
As a result of immunofluorescence staining, uniform distribution of type I collagen was
observed in OBs differentiated from HC-iPSCs, but abnormal distribution was observed
in OBs differentiated from OI-iPSCs. To quantify abnormality distribution, intracellular
type 1 collagen was evaluated (Figure 4H). Type I collagen area was quantified, confirming
that OB differentiated from editOI, and HC-iPSCs contained comparable levels of collagen
that were significantly greater than those in OB differentiated from OI-iPSCs (Figure 4H).
Ultrastructural morphological analysis was performed using transmission electron mi-
croscopy (TEM) to analyze the structure of collagen fibers of HC-iPSCs, editOI-iPSCs, and
OI-iPSCs. Normal collagen fibers with a twisted structure were observed in editOI-iPSCs.
ECM with lower collagen fibril density and poorly formed fiber morphology was observed
in OI-iPSCs (Figure 4I). These results confirmed that gene editing using the CRISPR/Cas9
system restored the reduced expression of type I collagen in OI-iPSCs.

3.5. Label-Free Quantitative Proteomic Analysis of OI-OBs and Gene-Edited OI-OBs

To characterize HC-, OI-, and editOI-OBs more comprehensively, we performed
label-free quantitative (LFQ) LC-MS/MS analysis. LFQ analysis was performed using the
SwissProt Homo sapiens Database, and a total of 563 proteins were quantified. A list of
identified proteins can be found in supplementary information. The hierarchical clustering
of proteins showed differential expression between OI-OBs and editOI-OBs. The different
levels of abundance were visualized and shows that HC-OBs and editOI-OBs have the
same expression pattern (Figure 5A). Among these proteins, four proteins with high Score
Sequest HT in editOI-OBs (Figure 5B) and four proteins with high Score Sequest HT in
OI-OBs were identified (Figure 5C). All four proteins that had high score Sequest HT in
editOI-OBs showed a similar expression pattern; the expression was decreased in OI-OBs,
and the expression was restored by gene editing, which resulted in similar levels to that
of HC-OBs.
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Figure 4. Improvement of collagen structure stability and osteoblast differentiation of edited OI-iPSCs. editOI-iPSCs,
OI-iPSCs, and HC-iPSCs were cultured in osteogenic differentiation medium for 21 days. (A) Observation of morphological
features by bright-field microscopy. Osteoblastic (calcium phosphate) deposition by osteoblasts was measured by Alizarin
Red S and von Kossa staining. The amount of hydroxyapatite was measured using the OsteoImage mineralization assay
(scale bars: 100 µm). (B) Quantitative measurements of Alizarin Red S and von kossa using ImageJ software. The amount of
hydroxyapatite was measured using the OsteoImage mineralization assay and quantified using the ImageJ software. The
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graphs show the mean values ± standard deviation of three independent experiments. Data were statistically analyzed
using a one-way ANOVA. * p < 0.05; ** p < 0.01; *** p < 0.001. (C) Pro-Collagen I alpha and Osteocalcin levels were measured
in the osteogenic differentiation supernatant. The graphs show the mean values ± standard deviation of three independent
experiments. Data were statistically analyzed using a one-way ANOVA. * p < 0.05. (D) Representative western blot analysis
of COL1A1 and OCN in cell lysates, with quantification. GAPDH was used as a loading control. (E) Western blot band
quantification through image analysis software. Data were statistically analyzed using a one-way ANOVA. * p < 0.05;
** p < 0.01. (F) Quantitation of expression of osteogenic marker genes (COL1A1) in HC, OI, and editOI-iPSCs after 21 days of
osteogenic differentiation. Data were statistically analyzed using a one-way ANOVA. * p < 0.05. (G) Representative images
of immunostaining of type I collagen in HC-iPSCs, OI-iPSCs, editOI-iPSCs (scale bars: 100 µm). (H) Percentage of type I
collagen positive area, as assessed using the ImageJ software. Quantification of intracellular type I collagen. The graphs
show the mean values ± standard deviation of three independent experiments. Data were statistically analyzed using a
one-way ANOVA. * p < 0.05. (I) Decrease in collagen production due to abnormal changes in the structure of type I collagen
was confirmed by TEM images (scale bars: 300 nm).
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with high Score Sequest HT in HC and editOI-OBs and four proteins with high Score Sequest HT in OI-OBs were identified.

4. Discussion

OI is a genetic disorder caused by defects in the formation of type I collagen [32],
characterized by fragility and multiple fractures of the bone. OI is predominantly caused
by an autosomal dominant mutation of type I collagen and is known to be associated with
mutations of the COL1A1 or COL1A2 genes involved in type I collagen synthesis [33–35].
This pro-collagen chain exists in a triple helix structure consisting of two pro-α1 chain
molecules and one pro-α2 chain molecule. It has a unique helix structure that is twisted
together by the repetition of glycine (G)-X-Y units [36]. The most important amino acid
that forms the G-X-Y helical structure is glycine. When it is replaced by another amino
acid, structural defects in the helical structure occur and fails to form a normal functioning
procollagen chain. One abnormal chain can result in an abnormal triple helix structure
even when one chain is normal. Also, it is known that the disease appears due to a problem
with the formation of the type I collagen triple helix [37,38]. Many mutations of glycine
have been reported in OI patients [37,39,40].

Since the clinical features of OI are relatively diverse, Sillence et al. [39]. proposed a
classification system suggesting four major types of OI. This classification system is based
on signs and symptoms, such as the presence or absence of clinical features, such as tooth
defects, blue sclerae, or auditory impairment. Recently, a new classification system has been
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proposed in which the subtypes of OI are classified in more detail [41]. Most importantly,
however, the quality of type I collagen is the most important characteristic between each
type of OI. In this study, we investigated the effect of abnormal collagen structure on OB
production and mineralization using OI patient-derived iPSCs. We produced three different
iPSC clones from the PBMC of one OI patients using Sendai virus (SeV)-reprogramming
vectors. The generated cell lines showed similar levels of pluripotency as HC-iPSC. As
a result, OB differentiation and formation of bone matrix were suppressed in OI-iPSCs,
resulting in abnormal mineralization. Our results indicate that type I collagen production
in OI-OBs is reduced compared to that in HC-OBs. Also, the unstable collagen structure
is thought to be responsible for the abnormal mineralization, collagen production, and
OB differentiation in OI-iPSCs [32,42]. Using OI-iPSCs, we confirmed that genes related
to OB differentiation were weakly expressed during the process of in vitro osteogenesis.
It is thought to have reduced the number and activity of bone-forming OBs, mechanical
strength, and bone mass by producing defective collagen in OB formation. Therefore, these
results indicate that in vitro osteogenesis using OI patient-derived iPSCs closely reflects
the in vivo characteristics of OI.

In this study, we were able to obtain blood cells from one type I OI patient and
confirmed that a T nucleotide was deleted (c.2523delT) from exon 36 of the COL1A1 gene,
replacing the 842nd amino acid (glycine) with alanine and causing a frameshift mutation
affecting 266 downstream amino acids. While this mutation is already reported in previous
studies [43], the OI patient participating in this study exhibited OI-specific symptoms, such
as bone fragility, frequent fractures, and bone deformations, as well as clinical symptoms,
such as blue sclera. The expression of type I collagen was altered in the OI patient-derived
cells; however, the results differed by the antibodies that were used. While almost no
expression of type I collagen was detected using western blot in our first trial (data not
shown), we confirmed positive expression in OI in later experiments with a different
antibody against type I collagen. The mRNA levels between HC, OI, and editOI showed no
significant difference (Figure 4F). Further experimenting is required, but several predictions
can be made through these results. Firstly, it can be predicted that the glycine residue
replaced by alanine results in a premature termination codon, and the causal variant leads
to a frameshift. This may eventually induce the degradation of the mutant mRNA and
produce no mutant type I collagen as a result. On the other hand, based on the different
outcome, it can be predicted that the mutation results in a simple loss of one allele, which
results in partially normal production of type I collagen from the remaining normal allele
of COL1A1 gene. Kawai et al. previously reported osteogenic differentiation and rescue
of diseased phenotypes using OI-iPSCs [44]. The authors reported that OI-iPSC-derived
osteogenic cells did not show any significant difference of pluripotent markers or osteogenic
markers; the amount of calcium deposition was lower in OI-iPSC-derived osteogenic cells.
The distribution and amount of type I collagen was also greatly uneven and lower in OI
cells. However, the intracellular type I collagen was higher in OI-iPSC-derived osteogenic
cells. The authors discussed that, despite sharing a same responsible mutant gene, the
heterogeneity may appear in various mutations, and the genotype-phenotype correlation
is not yet clear. Our results also may have limitations in showing the exact genotype-
phenotype correlation; therefore, further analysis may be critical to fully understand OI,
and OI patient-derived iPSCs are still thought as a potential cell source to accomplish
this issue.

The attempt to correct the diseased phenotype in OI cells has been previously at-
tempted. Deyle et al. approached this endeavor by inactivating the mutant collagen
gene in mesenchymal cells from OI patients and generated iPSCs [28]. MSCs generated
from the gene-corrected iPSCs successfully differentiated into osteoblasts. Kawai et al.
attempted substituting the mutated nucleotides in OI-iPSCs with wild-type nucleotides
by genome editing [43]. The abnormal features that showed during osteogenic differenti-
ation in OI-iPSCs was successfully recovered. Here, we proposed a possible strategy for
treating OI using gene-corrected, autologous iPSCs with restored collagen structure. The
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CRISPR/Cas9 system was used to edit the mutation in the COL1A1 gene, the causative
gene in OI, with the goal of producing iPSCs with normal genes. After gene editing, the
same versatility as the parent iPSC control was confirmed in geOI-iPSCs (Figure 3). After
selecting the Proto-Spacer Adjacent Motif (PAM) 5′-NGG-3′ sequence recognized by the
CRISPR/Cas9 system [45,46], a 20-bp RGEN was constructed starting from the PAM [11].
RGEN 1 and 2 were selected based on off-target removed list 1-0-0, GC content 30–70%,
and high out-of-frame scores, indicating that a frameshift is more likely to occur when
the indel occurs [14]. RGEN 3 and 4 had higher out-of-frame scores than RGEN 1 and 2.
However, T7E1 analysis showed that the PCR bands of RGEN 1 and 2 were clearer than
those of RGEN 3 and 4. Therefore, RGEN 1 and 2 were selected for subsequent experiments.
An ssODN consisting of a total of (<120 nt) residues was designed and commercially
procured (http://www.macrogen.com/ accessed on 3 July 2016) [16]. The prepared donor
DNA consisted of a nucleotide sequence spanning a total of 80 residues on both sides of
the mutation and the residues predicted to be cleaved by the RGEN [47,48]. As a result,
geOI-iPSCs generated OBs with similar morphology and mineralization levels to those
observed in OBs differentiated from HC-iPSCs. In addition, the production levels of type
I collagen and the restoration of the defected structure were confirmed in geOI-iPSCs
(Figure 4). In this study, we differentiated OBs from iPSCs derived from OI patient samples
with genetic defects. In conclusion, iPSCs derived from the OI patient sample successfully
reflected the in vivo characteristics of OI, such as the abnormal COL1A1 gene that leads to
decreased expression of type I collagen protein in the differentiated OBs. The decreased
type I collagen expression in patient cells was recovered by correcting the mutant COL1A1
gene using the CRISPR/Cas9 system.

5. Conclusions

Induced pluripotent stem cells (iPSCs) were generated from an osteogenesis imperfect
(OI) patient sample harboring a mutation in the COL1A1 gene. Using this patient-derived
iPSC, the decrease in type I collagen production due to the mutation in the COL1A1 gene
was confirmed along with the reduced mineralization and calcium deposition during
in vitro osteogenesis. We successfully restored the expression of type I collagen and the
osteogenic ability of the cells by correcting the COL1A1 gene using the CRISPR/Cas9
system. Taken all together, this study suggests a new possibility of treatment and in vitro
disease modeling using patient-derived iPSCs and gene editing with CRISPR/Cas9.
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