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The Matthew effect describes the phenomenon that in societies, the rich tend

to get richer and the potent even more powerful. It is closely related to the

concept of preferential attachment in network science, where the more con-

nected nodes are destined to acquire many more links in the future than

the auxiliary nodes. Cumulative advantage and success-breads-success

also both describe the fact that advantage tends to beget further advantage.

The concept is behind the many power laws and scaling behaviour in

empirical data, and it is at the heart of self-organization across social and

natural sciences. Here, we review the methodology for measuring preferen-

tial attachment in empirical data, as well as the observations of the Matthew

effect in patterns of scientific collaboration, socio-technical and biological

networks, the propagation of citations, the emergence of scientific progress

and impact, career longevity, the evolution of common English words and

phrases, as well as in education and brain development. We also discuss

whether the Matthew effect is due to chance or optimization, for example

related to homophily in social systems or efficacy in technological systems,

and we outline possible directions for future research.
1. Introduction
The Gospel of St Matthew states: ‘For to all those who have, more will be given’

(Matthew 25:29). Roughly, two millennia latter, sociologist Robert K. Merton [1]

was inspired by this writing and coined ‘the Matthew effect’ for explaining discre-

pancies in recognition received by eminent scientists and unknown researchers

for similar work. A few years earlier, physicist and information scientist Derek

J. de Solla Price [2] actually observed the same phenomenon when studying

the network of citations between scientific papers, only that he used the phrase

cumulative advantage for the description. The concept today is in use to describe

the general pattern of self-reinforcing inequality related to economic wealth, pol-

itical power, prestige, knowledge or in fact any other scarce or valued resource [3].

And it is this type of robust self-organization that goes beyond the particularities

of individual systems that frequently gives rise to a power law, where the prob-

ability of measuring a particular value of some quantity varies inversely as a

power of that value [4]. Power laws appear widely in physics, biology, Earth

and planetary sciences, economics and finance, computer science, demography

and the social sciences [5–8]. Although there is no single origin of power-law

behaviour—many theories and models have in fact been proposed to explain it

[9–27]—a strong case can be made for the Matthew effect being responsible in

many cases. The purpose of this review is to systematically survey research

reporting the Matthew effect in empirical data.

In fairness, the Matthew effect has close ties with several other concepts in the

social and natural sciences, and it is debateable whether the name we use predo-

minantly throughout this review is the most fitting. The Yule process, inspired by

observations of the statistics of biological taxa [28], was in fact the first in a line of

widely applicable and closely related mechanisms for generating power laws that

relied fundamentally on the assumption that an initially small advantage in num-

bers may snowball over time [29]. The Gibrat law of proportional growth [30],

inspired by the assumption that the size of an enterprize and its growth are

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0378&domain=pdf&date_stamp=2014-07-02
mailto:matjaz.perc@uni-mb.si
http://orcid.org/
http://orcid.org/0000-0002-3087-541X


(b)

(a)

Figure 1. The Matthew effect explained. (a) Starting with three small circles
of practically the same size (small dot on the left), over time, the initial
differences grow (middle), until eventually they become massive (right). At
the beginning, the blue circle has diameter 5, light-blue circle has diameter
4 and the cyan circle has diameter 3. Assuming the growth is proportional
to the size, during each time step the circles may become larger by a factor
equivalent to their current diameter. After the first time step (middle), this
gives us sizes 25, 16 and 9, respectively. Continuing at the same rate, after
the second time step (right), we have sizes 625, 256 and 81. Evidently, such a
procedure quickly spirals out of easily imaginable bounds. (b) Taking the log-
arithm of the same diameters over time (and multiplying by 150 for
visualization purposes only) reveals that, on the log scale, all the circles
grow in diameter linearly by a factor of 2 during each time step from left
to right, and the initial relative differences in size remain unchanged over
time. This preservation of proportions in logarithmic size manifests as a
straight line on a log – log scale—a power-law distribution. In the depicted
schematic example, the diameter of the circles can represent anything, from
the initial number of collaborators to literacy during formative years. (Online
version in colour.)
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interdependent, also predates the formal introduction of the

Matthew effect. Based on the rule of proportional growth,

Simon [31] articulated a stochastic growth model with new

entrants to account for the Zipf law [4]. The concept of pro-

portional growth has also been elaborated upon thoroughly

in Schumpeter’s The Theory of Economic Development [32]. In

terms of popularity and recent impact, however, preferential

attachment would without contest be the most apt terminol-

ogy to use. Barabási & Albert [16] have reasoned that a new

node joining a network can in principle connect to any pre-

existing node. However, preferential attachment dictates that

its choice will not be entirely random, but linearly biased by

the number of links that the pre-existing nodes have with

other nodes. This induces a rich-get-richer effect, allowing

the more connected nodes to gain more links at the expense

of their less-connected counterparts. Hence, over time the

large-degree nodes turn into hubs and the probability distri-

bution of the degrees across the entire network follows a

power law. Although this set-up is rather frail as any non-

linearity in the attachment rate may either eliminate the hubs

or generate superhubs [33,34], the concept of preferential

attachment, along with the ‘small-world’ model by Watts &

Strogatz [35], undoubtedly helped usher in the era of network

science [36–51].

We use the ‘Matthew effect’ terminology for practical

reasons and to honour the historical account of events, even

though the famous writing in the Gospel of St Matthew

might have had significantly different meaning at the time.

It was suggested that ‘for to all those who have, more will

be given’ implied spiritual growth and the development of

talents, rather than today’s more materialist the ‘rich-get-

richer and the poor-get-poorer’ understanding [3]. However,

in present times, the Matthew effect is appreciated also in

education [52], so some of the original meaning has appar-

ently been preserved. Whatever the terminology used, the

understanding should be that here the Matthew effect

stands, at least loosely, for all the aforementioned concepts,

including cumulative advantage, proportional growth and

preferential attachment. An illustration of the Matthew

effect is presented in figure 1.

Already in their seminal work, Barabási & Albert [16]

noted that preferential attachment ought to be readily

detected in time-resolved data cataloguing network growth.

Because of preferential attachment, a node that acquires

more connections than another one will increase its connec-

tivity at a higher rate, and thus an initial difference in the

connectivity between two nodes will increase further as the

network grows, while the degree of individual nodes will

grow proportional with the square root of time. This reason-

ing relates also to the so-called first-mover advantage, which

has been found accountable for the remarkable marketing

success of certain ahead-of-time products [53], as well as

the popular acclaim of forefront scientific research despite

the fact that it is often less-thorough than follow-up studies

[54]. Scientific collaboration networks, where two researchers

are connected if they have published a paper together,

were among the first empirical data where the concept of

preferential attachments has been put to the test and con-

firmed [55–60]. Soon to follow were reports of preferential

attachment and resulting scaling behaviour in the protein net-

work evolution [61] and the evolution of metabolic networks

[62,63], the Internet [57] and World Wide Web [20], the

accumulation of citations [57,64–70] and scientific impact
[71,72], the making of new friends and the evolution of

socio-technical networks [57,73–79], population and city

size growth [14,15,80], the evolution of source code [81]

and the most common English words and phrases [82], in

sexual networks [83], as well as the longevity of one’s

career [84], to name but a few examples. Quantitatively less

supported but nevertheless plausible arguments in favour

of the Matthew effect also come from education, where

there is evidence that early deficiencies in literacy may

bread lifelong problems in learning new skills [52], as well

as from cognitive neuroscience, where it was hypothesized

that the effect could be exploited by means of interventions

aimed at improving the brain development of children with

low socioeconomic status [85]. We will review observations

of the Matthew effect in empirical data thoroughly in the sub-

sequent sections, but first we survey the methodology that is

commonly employed for measuring preferential attachment.
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2. Measuring preferential attachment
The observation of a power law in empirical data [8] might be

an indication for the Matthew effect. Importantly, not finding

a power-law distribution or at least a related fat-tailed distri-

bution will falsify the Matthew effect, but the opposite does

not necessarily hold. Observing a power-law distribution is

consistent with the Matthew effect, but indeed many other

processes can also generate power-law distributions [6,7,86].

The probability distribution of a quantity x that obeys a

power law is

p(x) � 1

x1þm with m . 0, (2:1)

where a ¼ 1 þ m is the scaling parameter. As data in the tail

ends of power-law distributions are usually very sparse, one

has to be careful with the fitting. The usage of maximum-

likelihood fitting methods and goodness-of-fit tests based

on Kolmogorov–Smirnov statistics is warmly recom-

mended [8]. Beforehand, there are two ways to get rid of

the noise in the tail, at least visually. One option is to bin

the data logarithmically, so that the bins appear evenly

spaced on a log scale. The second is to use a cumulative

distribution function q(x) � 1/xm, which gives the proba-

bility that the quantity is equal to or larger than x. In

addition to the fact that the later alleviates statistical fluctu-

ations and does not obscure data as do exponentially wider

bins, cumulative distributions can also be used to decide

on the presence of a power law. Namely, if the probability

density function is a power law with the scaling parameter

a, then the cumulative distribution function should also be

a power law, but with an exponent a 2 1. On the other

hand, it the probability density function is exponential, the

cumulative distribution function will also be exponential,

but with the same exponent.

In general, to qualify as a suitable description of empirical

data, the probability density function p(x) � 1/x1 þ m should

hold within a sufficiently large range of x values, extending

over at least two or three decades. It is also advisable that

one understands the origin of the deviations from the power

law, which often appear at both ends of the distribution. It is

also worth pointing out that for m ¼ 1, the power-law distri-

bution is commonly referred to as the Zipf law [4], while the

cumulative distribution function is the Pareto law [87,88].

The m ¼ 1 case is special because it is at the borderline between

the converging and diverging unconditional mean of x. While

many different physical mechanisms may be at the origin of

power laws in complex systems, yielding possibly widely differ-

ent exponents m [6,7,86], preferential attachment is certainly one

viable candidate.

Measuring preferential attachment, however, requires

time-resolved data. We need to be able to measure the rate

at which all the entities (nodes, papers and people) that

make up the studied system acquire the measured quantity x
(links, citations and wealth). Assuming the change in x over

a short time interval Dt is Dx, the mechanism of preferential

attachment assumes that

Dx � Axg , (2:2)

where A is the attachment rate and g determines the non-

linearity of the attachment kernel xg. The attachment rate A
is time-dependent. In particular, the key assumption under-

lying the Matthew effect is that A grows proportionally
with the growing value of x, as schematically depicted in

figure 1. However, the preferential attachment mechanism

will yield a power-law distribution of x values given by

equation (2.1) only if g ¼ 1, when the attachment kernel is

linear [16]. Deviations of g below or above 1 yield sub-

linear and superlinear preferential attachment, respectively.

Sublinear preferential attachment gives rise to a stretched

exponential cut-off, while g . 1 eventually results in a

single entity of the system gaining complete monopoly

[33,34]. In the language of growing networks, g . 1 implies

that a single node will over time connect to nearly all other

available nodes, while for the accumulation of citations to

scientific papers, the superlinear autocatalytic growth may

give rise to immortality by means of a dynamical phase tran-

sition that leads to the divergence of the citation lifetime of

highly cited papers [70,89]. The differences, created by differ-

ent forms of preferential attachment, can be spotted at a

glance in the structure of the resulting networks, as shown

is figure 2.

A direct application of equation (2.2) is problematic

because growth governed by preferential attachment is an

inherently stochastic process. This statement does not necess-

arily refer to the origin of preferential attachment—which

is subject to a slowly evolving but very interesting debate

on whether the Matthew effect is due to dumb luck or

optimization [90]—but simply to the fact that, regardless of

the origin, there will inevitably be strong irregularities

in the way x grows over time for each particular entity of

the system. In fact, already Yule’s theory of power-law distri-

butions in taxonomic groups [29] and Champernowne’s

theory of stochastic recurrence equations [91] showed that

there are important links between the Zipf law [4] and sto-

chastic growth. More specifically, the autocatalytic growth

model actually has the form

dx � ldtþ sdW , (2:3)

where l ¼ Axg ¼ kDxl=Dt is the average deterministic growth

rate over the ensemble of entities with the same x (indicated

by k � l). Moreover, dW is an increment of the Wiener process

with zero mean and standard deviation s. Note also that

while Dx is a discrete variable and equation (2.2) thus essen-

tially a difference equation, l is a continuous variable and

equation (2.3) a stochastic differential equation. To do away

with the stochastic fingerprint of autocatalytic growth and to

estimate reliably whether the process is governed by linear

attachment, one can either employ cumulation or averaging.

Both methods have been used successfully in the past,

although there appear to be persuasive arguments in favour

of the latter [89].

Cumulation was proposed by Jeong et al. [57], who used it

to test the concept of preferential attachment in a number of

different empirical networks. To perform the cumulation, one

simply has to calculate

k(x) ¼
ðx

0

Dx dx, (2:4)

where within the integral x is the degree of a node up to a cer-

tain time t, and Dx is the increase in the degree of that same

node until t þ Dt. The integration is performed over all the

nodes that at time t have degree at most x. The sensible expec-

tation is that the stochastic fluctuations in Dx will thereby

be averaged out, while the key assumption behind the

method is that the resulting value of k(x) is the same as if



Figure 2. Illustration of network growth by preferential attachment. We start with three nodes, each with a single link to one of the other nodes (small cluster on
the left). Subsequently, at each time step, a new nodes arrives and it connects to an existing node with probability proportional to xg (see equation (2.2)). Here, x is
the degree of nodes. After 300 (centre) and 1000 (right) time steps, sublinear preferential attachment with g ¼ 0.5 yields the upper two networks, linear pre-
ferential attachment with g ¼ 1 yields the middle two networks, while superlinear preferential attachment with g ¼ 1.5 yields the lower two networks,
respectively. The size and colour (from cyan to blue) of the nodes correspond to their degree in log scale. Sublinear preferential attachment gives rise to a stretched
exponential cut-off, thus resulting in somewhat more homogeneous networks than linear preferential attachment. Visually, however, the differences are relatively
subtle. Superlinear preferential, on the other hand, clearly favours the emergence of ‘superhubs’, which attract almost all the nodes forming the network. The
complete time evolution of the three networks can be viewed at http://youtu.be/XcGn2KYEmVM, http://youtu.be/kfuD53o1yKQ and http://youtu.be/vB8yI-WrlRg
for g ¼ 0.5, g ¼ 1 and g ¼ 1.5, respectively. Videos for g ¼ 0.25 and g ¼ 2, corresponding to even more extreme sublinear and superlinear preferential
attachment, are also available at http://youtu.be/85pZodfi4VM and http://youtu.be/85R_AGXk2Ko. (Online version in colour.)
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equation (2.3) would be integrated directly over x at a fixed

time t. Accordingly, we get

k(x) � Axgþ1 (2:5)

from where one can readily estimate both A and g by fitt-

ing k(x) in dependence on x. Naturally, we have used

the network terminology above only as an example, while

of course the same method can be applied on arbitrary

time-resolved data to test for preferential attachment

[59,61,65,68,76].

Averaging, on the other hand, was proposed by Newman

[55], who studied growth and preferential attachment in

scientific collaboration networks. In this case, one simply
bins the data over x, calculates the average growth rate

l ¼ kDxl=Dt for each bin over the ensemble of entities for

which x falls within a particular bin (indicated by k � l) and

finally compares the resulting histogram with the prediction

of equation (2.3). The application of this method requires

that one selects the number of bins to cover the interval of

x values, and Dt also need not be the finest time-resolution

available in the empirical dataset. One can use Dt that are

larger to further smooth out the fluctuations that might be

due to small and intermittent increments of x across short

time intervals. In general, it should be possible to select the

number of bins and Dt such that both A and g could be

fitted based on l ¼ Axg when plotting l in dependence

http://youtu.be/XcGn2KYEmVM
http://youtu.be/kfuD53o1yKQ
http://youtu.be/vB8yI-WrlRg
http://youtu.be/85pZodfi4VM
http://youtu.be/85R_AGXk2Ko
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Figure 3. The Matthew effect in scientific collaboration networks. Depicted is
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on x. This method or a variation thereof has been used in

[60,64,66,71,74,75,82].

While cumulation and averaging are the most frequently

applied methods to measure preferential attachment in

empirical data, they are not the only ones available. We

refer to Golosovsky & Solomon [89] for an in-depth treatment

and comparison of the two methods, as well as for an

additional control method to check the internal consistency

of averaging and cumulation. An additional self-consistent

approach to measure preferential attachment in networks

has also been proposed in [92], and more recently Markov

chain Monte Carlo methodology has been adopted as well

[69]. Interested readers will find further details on how

it is possible to improve the measurement of preferential

attachment if one is in possession of exceptionally detai-

led data in [81], while here we proceed with the review of

the Matthew effect in empirical data that stem from an

impressive array of different systems.

results for the MEDLINE database, whereas the inset shows results for the Los
Alamos e-print Archive. In both cases, the relative probability of a new col-
laborator initially increases linearly with the number of existing collaborators,
but there is a field-specific cut-off occurring at around 600 collaborators in
biomedicine (main panel) and 150 collaborators in physics (inset), which
is related to the fundamental limits of scientific collaboration. (Adapted
from [55] with permission from the American Physical Society.)

0140378
3. Scientific collaboration
We begin with scientific collaboration networks, as they were

the first empirical data where the conjectured mechanisms for

power-law degree distributions in networks have been put to

the test [55–57]. Scientific collaboration networks are a beau-

tiful example of social networks [36,39,93,94], where two

researchers are considered connected if they have publi-

shed a paper together. Notably, for a social network to be

representative for what it stands—an account of human inter-

action—a consistent definition of acquaintance is important.

And while it may be challenging to define friendship or an

enemy in a consistent and precise manner, scientific collabor-

ation is accurately documented in the final product, thus

allowing for a precise definition of connectedness and the

construction of the social network.

The study of scientific collaboration has been put into the

spotlight by the seminal works of Newman [95–98], who

constructed networks of connections among researchers by

using data from MEDLINE, the Los Alamos e-Print Archive

and NCSTRL. Biomedical research, physics and computer

science were thus comprehensively covered, which helped

reveal that some of the discovered structural properties of

these networks have a high degree of universality that is

beyond scientific disciplines, while other properties of pat-

terns of collaboration, on the other hand, are field-specific.

Most notably, it was shown that collaboration networks

form ‘small worlds’ [97], in which randomly chosen pairs

of researchers are typically separated by only a short path

of intermediate acquaintances [35]. Moreover, the mean

and the distribution of the degree of authors revealed the

presence of clustering in the networks, which highlighted a

number of apparent differences in collaboration patterns

between the different fields. The structure of the social science

collaboration network has also been studied [58], revealing

that a structurally cohesive core in the social sciences has

been growing steadily since the early 1960s.

Practically, simultaneously with the research on the struc-

tural properties of scientific collaboration networks, research

on the time evolution of scientific collaboration networks has

been unfolding as well. In [55], Newman has studied empiri-

cally the growth of scientific collaboration networks in

physics and biology, employing again data from the Los
Alamos e-Print Archive and MEDLINE. It was shown that

the probability of a pair of scientists collaborating increases

with the number of other collaborators they have in

common, and that the probability of a particular scientist

acquiring new collaborators increases with the number of

his or her past collaborators—a hallmark property of the Mat-

thew effect. As shown in figure 3, which we reproduce from

[55], the relative probability of a new collaborator increases

practically linearly with the number of existing collaborators.

This is particularly true for the initial part of the curve, but

since no one can collaborate with an infinite number of

people in a finite period of time, the probability falls off as

x (here denoting the degree of authors) becomes large. Inter-

estingly, this point appears to be around 150 collaborators in

physics (inset) and 600 in biomedicine (main panel),

indicating the aforementioned differences in the patterns of

collaboration between scientific disciplines.

A closer look at the results presented in figure 3

reveals that the employed averaging method actually yields

g ¼ 1.04 for MEDLINE and g ¼ 0.89 for the Los Alamos

e-Print Archive, which in agreement with equation (2.2)

corresponds to slightly superlinear and sublinear preferen-

tial attachment, respectively. A closely related study that

was conducted around the same time by Barabási et al. [56],

and which was based on all relevant journals in mathematics

and neuroscience, also produced evidence for sublinear pre-

ferential attachment with g ¼ 0.8. The growth of Slovenia’s

scientific collaboration network [60] and a co-authorship

study based on neuroscience journals [57] also supported

the concept of sublinear preferential attachment, both report-

ing g ¼ 0.79. The lowest g value was reported by Tomassini &

Luthi [59], who showed that the time evolution of the

genetic programming co-authorship network is governed

by g ¼ 0.76. However, time-reversing or permutating ran-

domly the order in which the co-authorship networks

were constructed within the resolution window Dt yielded

g ¼ 0.88 and g ¼ 0.85, respectively. Taken together, these
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results favour the concept of slightly sublinear preferential

attachment governing the growth of scientific collaboration

networks, but as rightfully pointed out by Newman [55],

alternative to linear preferential attachment this difference

may have little effect. As shown by Krapivsky et al. [33] and

reviewed in §2, sublinear preferential attachment gives rise to

a stretched exponential cut-off in the resulting degree distri-

bution, but a similar cut-off is already present in the degree

distribution as a result of the deviation from linear behaviour

for sufficiently large x in figure 3. Indeed, the same deviation

has also been reported for the growth of Slovenia’s scientific

collaboration network [60], thus providing evidence that the

sublinear preferential attachment translates fairly accurately

into the expected degree distribution.

Irrespective of these details, the overwhelming evidence

fully supports the Matthew effect in scientific collaboration

networks, indicating that over time initial differences in the

number of collaborators are destined to grow and give rise

to a strong segregation among authors. Ultimately, some

individuals therefore acquire hundreds while others only a

handful of collaborators during their scientific career.
4. Socio-technical and biological networks
Scientific collaboration networks reviewed above are

obviously also prime examples of social networks and

would thus be fit for this section, but we have awarded

them a separate section due to their forerunner role in testing

preferential attachment in empirical data. There are, however,

a number of other socio-technical [57,73–76,78–81] and

biological [61,63] networks, where the availability of time-

resolved data allowed testing for the Matthew effect. The

evolution of socio-technical networks in particular has

been in the focus of attention for decades [99]. Recent leaps

of progress in the availability of reliable ‘big data’, mathemat-

ical modelling and informatics tools enable increasingly

deeper understanding of contagion processes, emerging tip-

ping points, cascading and related nonlinear phenomena that

underpin the most interesting characteristics of socio-technical

systems [100,101].

The Matthew effect in socio-technical networks was

reported first by Jeong et al. [57], who at that time also pro-

posed cumulation (see equations (2.4) and (2.5)) to measure

preferential attachment in time-resolved data describing net-

work growth. In addition to a scientific collaboration network

(§3) and a citation network (§5), they have shown that the

evolution of the network of movie actors and the evolution

of the autonomous systems forming the Internet are both

governed by near-linear preferential attachment. Akin to

the definition of a scientific collaboration network, in the

movie actor network two actors are connected if they have

acted together in a movie. The investigated network was

made up of all movies and actors from 1892 till 1999, and it

was shown that the growth is characterized by g ¼ 0.81. Simi-

larly as by scientific collaboration, here too the slightly

sublinear character of preferential attachment can be linked

to obvious constrains in the number of co-actors an individ-

ual can possibly amass in the course of a lifetime, and this

also translates to the expected exponential cut-off in the

resulting degree distribution of actors. Notably, preferential

attachment in a movie actor network was also reported in

[76]. For the Internet, Jeong et al. [57] used the data provided
by NLANR, and they have observed slightly superlinear pre-

ferential attachment characterized by g ¼ 1.05. As evidenced

by the examples of network growth depicted in figure 2,

however, such small deviations from g ¼ 1 lead to hardly

recognizable deviations (note that in the depicted examples,

we have used g ¼ 0.5 for sublinear and g ¼ 1.5 for super-

linear preferential attachment), and one can thus in good

faith conclude to the Matthew effect as a more general

description of the mechanism governing the growth of

these networks.

In addition to the Internet, the related World Wide Web

has also been shown to display striking rich-get-richer be-

haviour that is driven by the competition of links on the

web [20,75]. Interestingly, although the connectivity distri-

bution over the entire web is close to a pure power law,

Pennock et al. [20] reported that the distribution within sets

of category-specific web pages is typically unimodal on a

log scale, with the location of the mode, and thus the extent

of the rich-get-richer phenomenon, varying across different

categories. A simple generative model, incorporating a mix-

ture of preferential and uniform attachment to describe these

observations has also been proposed [20].

Online social networks, such as the Internet encyclo-

paedia Wikipedia [74], bulletin board systems [76], social

networking services like Flickr, the obsolete Yahoo! 3608 or

the now popular Facebook [73,77], as well as longitudinal

micro-blogging data [78] also show evidence of the Matthew

effect. Wikipedia growth, for example, can be described by

local rules such as the preferential attachment mechanism,

despite the fact that individual users who are responsible

for its evolution can act globally on the network [74].

Research also revealed that triadic closure—if Alice follows

Bob and Bob follows Charlie, Alice will follow Charlie—is

not such a major mechanism for creating social links in

online networks as initially assumed. Longitudinal micro-

blogging data reveal more complex strategies that are

employed by users when expanding their social circles [78].

In particular, while the network structure affects the spread

of information among users, the network is in turn shaped

by this communication activity. This suggests a link creation

mechanism whereby Alice is more likely to follow Charlie

after seeing many messages by Charlie. Weng et al. [78] con-

clude that triadic closure does have a strong effect on link

formation, but shortcuts based on traffic are another key

factor in interpreting network evolution. Link creation beha-

viours can be summarized by classifying users in different

categories with distinct structural and behavioural character-

istics, as shown in figure 4. Users who are popular, active and

influential tend to create traffic-based shortcuts, making

the information diffusion process more efficient in the net-

work [78]. Notably, the subject of preferential attachment in

online networks has recently been surveyed comprehensively

in [79], where interested readers will find many further

examples and interesting information related specifically to

this type of empirical data.

In addition to the vast landscape of online social net-

works, there are also many socio-technical systems that do

not exist solely online, but for which useful data can still be

obtained. Rozenfeld et al. [80], for example, introduced a

method to designate metropolitan areas called the ‘City

Clustering Algorithm’ and used the obtained data to examine

the Gibrat law of proportional growth [30]. The latter postu-

lates that the mean and standard deviation of the growth rate
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of cities are constant, independent of city size. The study

revealed that the data deviate from the Gibrat law and that

the standard deviation decreases as a power law with respect

to the city size. The ‘City Clustering Algorithm’ allowed for

the study of the underlying process leading to these devi-

ations, which were shown to arise from the existence of

long-range spatial correlations in population growth. Prior

to this empirical research, Gabaix [14] and Brakman et al.
[15] elaborated theoretically on the mechanisms behind city

growth, including prominently on the Zipf law.

Maillart et al. [81], on the other hand, made use of detailed

data on the evolution of open source software projects in

Linux distributions. They have showed that the network

resulting from the tens of thousands of connected packages

precisely obeys the Zipf law over four orders of magnitude,

and that this is due to stochastic proportional growth. The

study thus delivers a remarkable example of a growing com-

plex self-organizing adaptive system that is subject to the

Matthew effect.

Sexual contact networks have also been the subject of

research related to the Matthew effect [83,102]. In particular,

de Blasio et al. [83] have tested the conjecture of preferential

attachment by means of a maximum-likelihood estimation-

based expectation-maximization fitting technique, which was

used to model new partners over a 1-year period based on the

number of partners in foregoing periods of 2 and 4 years, as

well as the lifetime. The preferential attachment model was

modified to account for individual heterogeneity in the incli-

nation to find new partners and fitted to Norwegian survey

data on heterosexual men and women. The research revealed

sublinear preferential attachment governing the growth of

sexual contact networks with 0.5� g � 0.7, which similarly

like for scientific collaboration and movie actor networks

reviewed above, likely has to do with the physical limits of

sexual contacts. Interestingly, the lower value ofgmight suggest

that the constrains on the maximal feasible number of sexual

partners are greater than on the number of collaborators or
co-actors in a movie, thus leading to a stronger exponential

cut-off in the corresponding probability distributions—a

conclusion that certainly seems to resonate with reality. More-

over, a preceding study by Jones & Handcock [102] concluded

that the scaling of sexual degree distributions and the under-

lying assumption of preferential attachment is actually a very

poor fit to the data stemming from several different sexual

contact networks. This in turn has important implications for

reducing the transmissibility of sexually transmitted diseases,

for example by means of condom use or high-activity anti-

retroviral therapy, as such interventions could thus bring a

population below the epidemic transition, even in populations

exhibiting large degrees of behavioural heterogeneity.

To conclude this section, we review examples of the

Matthew effect in biological networks, where in relation to

the socio-technical networks, the examples are comparatively

few. The Saccharomyces cerevisiae protein–protein interaction

network [103] has a scale-free topology, and Eisenberg &

Levanon [61] have shown that the older a protein the better

connected it is, and that the number of interactions a protein

gains during its evolution is proportional to its connecti-

vity. Thus, by using a cross-genome comparison, the study

shows conclusively that the evolution of protein networks

is governed by linear preferential attachment. Eisenberg &

Levanon [61] go on to conclude that preferential attachment

is an important concept in the process of evolution, as it

dynamically leads to the formation of big protein complexes

and pathways, which introduce high complexity regulation

and functionality.

The Matthew effect has also been studied in metabolic

networks [62,63], which are at the heart of interactions

between biochemical compounds in living cells. Light et al.
[62] have determined the connectivity patterns of enzymes

in the metabolic network of Escherichia coli, showing that

enzymes that have representatives in eukaryotes have a

higher average degree, while enzymes that are represented

only in the prokaryotes, and especially the enzymes only pre-

sent in bg-proteobacteria, have a lower degree than expected

by chance. More importantly, the research revealed that new

edges are added to the highly connected enzymes at a faster

rate than to the enzymes with low degree, which is consistent

with the Matthew effect. The proposed biological explanation

for the observed preferential attachment in the growth of

metabolic networks was that novel enzymes created through

gene duplication maintain some of the compounds involved

in the original reaction throughout its future evolution.

Although it remains a major challenge in biology to under-

stand the causes and consequences of the specific design of

metabolic networks, Pfeiffer et al. [63] have shown that the

reported empirical observations, in particular the character-

istic presence of hub metabolites such as ATP or NADH,

could be explained by computer simulations that initially

involve only a few multifunctional enzymes. Then, through

the selection of growth rates governed by essential biochemi-

cal mechanisms, hubs emerge spontaneously through the

process of enzyme duplication and specialization.
5. Citations
After the rather extensive but hopefully interesting depar-

ture from scientific collaboration networks to socio-technical

and biological networks, we may refocus on research, in
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particular on the accumulation of citations to scientific

papers. Researchers seem to delight in meticulously evaluat-

ing their scientific output and its impact. From citation

distributions [104–109], co-authorship networks [98] and

the formation of research teams [110,111], to the ranking of

researchers [112–114] and the predictability of their success

[72,115–117]—how we do science has become a science in

its own right. Not surprisingly, the patterns of citation

accumulation have been, just like the evolution and structure

of scientific collaboration networks, studied extensively

during the past decade [57,64–68,70,89].

Notwithstanding the seminal observations by Robert

K. Merton [1], who actually introduced the Matthew effect

based on the discrepancies in recognition received by

eminent scientists and unknown researchers for similar dis-

coveries, and the work by Derek J. de Solla Price [2], who

was studying the network of citations between scientific

papers already in the early 1960s, the first more rigorous

test of preferential attachment in the accumulation of citations

is again due to Jeong et al. [57]. They have shown that the cita-

tions to papers published in the Physical Review Letters since

1989 accumulate by means of slightly sublinear preferential

attachment with g ¼ 0.95. Soon thereafter, Redner [64]

conducted an analysis of the entire citation history of publi-

cations of Physical Review, at the time spanning 110 years,

and also confirmed that linear preferential attachment appears

to account for the propagation of citations. At closer inspec-

tion, the analysis even hinted towards slightly superlinear

accumulation, although this, as well as the prospect of strictly

linear preferential attachment, was in disagreement with the

reported lognormal distribution of citations. Two papers by

Wang et al. [66,67], using as empirical data citations to

papers published in the Journal of Applied Physics between

1931 and 2005, the Journal of Experimental Medicine bet-

ween 1900 and 2005 and the IEEE Transactions on Automatic
Control between 1963 and 2005, delivered essentially the

same results, reporting g � 1 to govern the accumulation of

citations. Eom & Fortunato [68] also used the full publication

history of the Physical Review minus Reviews of Modern Physics
to study the evolution of citation networks, and they have

proposed a linear preferential attachment model with time-

dependent initial attractiveness that successfully reproduces

the empirical citation distributions as well as accounts for

the presence of observed citation bursts.

Importantly, the accumulation of citations to scientific

papers has recently been revisited by Golosovsky & Solomon

[70], who confirmed the hints reported already by Redner [64],

namely that the citation dynamics is nevertheless governed by

superlinear preferential attachment with 1.25 � g � 1.3. The

research used as data the citation history of 40 195 physics

papers published in 1 year, and it was emphasized that the

citation process cannot be described as a memoryless

Markov chain as there is a substantial correlation between

the present and recent citation rates to a paper. Based on

these observations, a stochastic dynamical model of a growing

citation network based on a self-exciting point process has

been proposed, and it was demonstrated that it accounts per-

fectly for the measured citation distributions. An intriguing

consequence of this result is that the superlinear autocatalytic

growth conveys immortality to highly cited papers by means

of a dynamical phase transition that leads to the divergence

of the citation lifetime—in the language of epidemiology,

these papers become endemic [70,89].
Lending further support to the conclusions of Golosovsky &

Solomon [70] are several preceding accounts of superlinear

preferential attachment in the accumulation of citations, how-

ever not to scientific papers, but rather to patents [65,69].

Valverde et al. [65], for example, studied the patent citation

network resulting from the patents registered by the US Patent

and Trademark Office, and in the light of similarities with article

citation networks, concluded towards a universal type of

mechanism that links ideas, designs as well as their evolution.

This mechanism can be broadly classified as the Matthew

effect, which governs how credit is amassed by research as

well as technological innovations.

Notably, the subject of preferential attachment in the

accumulation of citations has recently been surveyed compre-

hensively in [89], where interested readers will find further

interesting information related specifically to this type of

empirical data.
6. Scientific progress and impact
The Matthew effect in the evolution of scientific collaboration

networks and in the propagation of citations begets the ques-

tion whether scientific progress and impact in general might

be subject to the same effect. The increasing availability

of vast amounts of digitized data, in particular massive data-

bases of scanned books [118] as well as electronic publication

and informatics archives [119], fuel large-scale explorations of

the human culture that were unimaginable even a decade

ago. And since science is central to many key pillars of the

human culture, the science of science is scaling up massively

as well, with studies on World citation and collaboration net-

works [120], the global analysis of the ‘scientific food web’

[121], and the identification of phylomemetic patterns in

science evolution [122], culminating in the visually compelling

atlases of science [123] and knowledge [124].

Riding on the wave of increasing availability of digitized

data is also the study of scientific impact, which is gaining

momentum rapidly [72,116,117,125,126]. Recent research

has revealed, for example, that there is ‘no bad publicity’ in

science as criticized papers are in fact highly impactful

[125], and that atypical combinations in science have a

higher chance to make a big impact [126]. Clear limits have

also been established on the predictability of future impact

in science [116,117], contrary to the overly optimistic predic-

tions reported earlier [115]. Wang et al. [72] have recently

proposed a mechanistic model for the quantification of

long-term scientific impact, which allows the collapse of the

citation histories of papers from different journals and disci-

plines into a single curve, indicating that all papers tend to

follow the same universal temporal pattern. The study

revealed that the proposed lognormal model without prefer-

ential attachment is able to correctly capture only the citation

history of small impact papers, while the modelling of the

citation patterns of medium- and high-impact papers requires

preferential attachment be turned on. In fact, the model

has enabled the team to make an analytical prediction of

the citation threshold when preferential attachment becomes

relevant, which was reported to equal 8.5 [72]. Hence, the

impact of papers that surpass this threshold will benefit

from the Matthew effect, while papers with fewer citations

will not. Wang et al. [72] also emphasized that the reported

analytical prediction is in close agreement with the empirical
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finding that preferential attachment is masked by initial

attractiveness for papers with fewer than seven citations, as

reported earlier by Eom & Fortunato [68].

The availability of digitized text, however, enables also the

observation of the textual extension of the Matthew effect in

citation rates, or alternatively, the large-scale ‘semantic’ version

of the Matthew effect in science [71]. By using information pro-

vided in the titles and abstracts of over half a million

publications that were published by the American Physical

Society during the past 119 years, and by identifying all

unique words and phrases and determining their monthly

usage patterns, it is possible to obtain quantifiable insights

into the trends of physics discovery from the end of the nine-

teenth century to today (the n-gram viewer for publications of

the American Physical Society is available at http://www.

matjazperc.com/aps). The research revealed that the magni-

tudes of upward and downward trends yield heavy-tailed

distributions, and that their emergence is due to the Matthew

effect. This indicates that both the rise and fall of scientific

paradigms is driven by robust principles of self-organization,

which over time yield large differences in the impact particular

discoveries have on subsequent progress. Similar research has

also been conducted by Pfeiffer & Hoffmann [127], who ana-

lysed the temporal patterns of genes in scientific publications

hosted by PubMed. They observed that researchers predomi-

nantly publish on genes that already appeared in many

publications. This might be a rewarding strategy for research-

ers, because there is an obvious positive correlation between

the frequency of a gene in scientific publications and the

impact of these publications [127]. In a way, the Matthew

effect can thus be engineered, or at least facilitated, by focusing

on the ‘hot topics’ in a specific field of research.

Figure 5 reveals that the Matthew effect in the impact of

scientific research translates also to geography [71], where
the USA and large contingents of Europe were able to set

the pace in the production of physics research over extended

periods of time, interrupted only by periods of war. The col-

lapse of the Soviet Union, the fall of the Berlin Wall and

the related changes in World order during the 1980s and

1990s, however, contributed significantly to the globalization,

so that today countries like China, Russia, South America

and Australia all contribute markedly to the production of

physics. However, a beautiful citation map of the world

produced by Pan et al. [120], where the area of each country

is scaled and deformed according to the number of cita-

tions received, still reveals a strongly biased geographical

distribution of impact. Notably, an in-depth analysis of the

scientific production and consumption of physics revealed

that even cities can be pinpointed based on their leading pos-

itions for scholarly research [128]. Although for now research

along this line seems to be focused predominantly on physics,

the applied methodology certainly opens up the possibility

for comparative studies across different disciplines and

research areas, where the Matthew effect is still to be either

confirmed or refuted.
7. Career longevity
The overwhelming evidence in favour of the Matthew effect

in science, affecting the patterns of collaboration, the propa-

gation of citations and ultimately also scientific progress

and impact, probably make it little surprising that the same

effect affects also career longevity. Importantly, not just the

longevity of scientific careers, but also the longevity of careers

in professional sport, as demonstrated in [84].

Career longevity is a fundamental metric that influen-

ces the overall legacy of an employee, because for most

http://www.matjazperc.com/aps
http://www.matjazperc.com/aps
http://youtu.be/0Xeysi-EfZs
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individuals the measure of success is closely related to the

length of their career. In particular, the more successful an

individual, the longer his or her career is going to last.

Using this as motivation, Petersen et al. [84] analysed publi-

cation careers within six high-impact journals, including

Nature, Science, Proceedings of the National Academy of Sciences,

Physical Review Letters, New England Journal of Medicine and

Cell, as well as sports careers within four different leagues,

including Major League Baseball, Korean Professional Base-

ball, the National Basketball Association and the English

Premier League. The conducted research delivered testable

evidence in favour of the Matthew effect, wherein the longev-

ity and past success of an individual lead to a cumulative

advantage in further developing his or her career [84].

From the methodological point of view, it is worth pointing

out that for science and professional sports, there exist well-

defined metrics that quantify career longevity, success and

prowess, which together enable a relatively clear and

unbiased assessment of the overall success of each individual

employee. In many other professions, however, these criteria

are significantly more vague, and thus the same research

agenda could be difficult to execute.

To support their quantitative demonstration of the

Matthew effect in career longevity, Petersen et al. [84] also

developed an exactly solvable stochastic career progress

model, which is schematically illustrated and summarized

in figure 6. Model predictions have been validated on the

careers of 400 000 scientists and 20 000 professional athletes.

The authors emphasized the importance of early career

development, showing that many careers are stunted by the

relative disadvantage associated with inexperience. This is

closely related to the workings of the Matthew effect in

education (§9), where tests suggest that falling behind in lit-

eracy during formative primary school years creates

disadvantages that may be difficult to compensate all the

way to adulthood [52].
8. Common words and phrases
Moving away from scientific production and impact for

good, in this section, we review recent research related to

the evolution of the most common English words and

phrases [82]. Already during the 1960s, the economist

Herbert Simon and the mathematician Benoı̂t Mandelbrot

had a dispute over the origin of the power-law distribution
of word frequencies in text [4,129–133]. Simon defended

the role of randomness and preferential attachment, while

Mandelbrot argued in favour of an optimization framework

[134]. The original proposal made by Zipf, on the other

hand, was that there is tension between the efforts of the

speaker and the listener, and it has been shown by means

of mathematical modelling that this may indeed explain the

origins of scaling in the usage of words [135]. The ecophysics

of language change [136]—the application of models from

statistical physics and theoretical ecology to the study of

language dynamics—has since evolved into a beautiful and

vibrant avenue of research [137–144].

A direct test for preferential attachment in the evolution of

the most common English words and phrases [82] was made

possible by the work of Michel et al. [118], which was

accompanied by the release of a vast amount of data com-

prised metrics derived from approximately 4% of books ever

published. Raw data, along with usage instructions, are avail-

able and updated at http://books.google.com/ngrams/

datasets as counts of n-grams that appeared in various book

corpora over the past centuries with a yearly resolution. By

recursively scanning all the files from the English corpus in

the search for those n-grams that had the highest usage fre-

quency in any given year, it is possible to determine the

most common English words and phrases with a yearly resol-

ution. Tables listing the top 100, top 1000 and top 10 000

n-grams for all available years since 1520 inclusive, along

with their yearly usage frequencies and direct links to the

Google Books Ngram Viewer, are available at http://www.

matjazperc.com/ngrams. From this, it is possible to derive evi-

dence in favour of preferential attachment as shown in figure 7,

which indicate that the higher the number of occurrences of

any given n-gram, the higher the probability that it will occur

even more frequently in the future. More precisely, for the

past two centuries, the points quantifying the attachment rate

follow a linear dependence, thus confirming that the Matthew

effect is behind the power-law distribution of word frequencies

in text, as argued by Herbert Simon. Evidently, this does not

rule out an optimization framework that was favoured by

Benoı̂t Mandelbrot, as preferential attachment itself might be

the outcome of optimization [24,27,90].

Somewhat related to the study of the most common Eng-

lish words and phrases is also the study of popular memes,

which has recently attracted considerable attention [145–151].

According to Dawkins, memes are the cultural equivalent of

genes that spread across the human culture by means of imita-

tion [152]. The competition among memes has been studied by

Weng et al. [150], who by means of an agent-based model

accounting for the dynamics of information diffusion,

showed that in a world with limited attention only a few

memes go viral while most do not. These predictions are con-

sistent with empirical data from Twitter, and they explain the

massive heterogeneity in the popularity and persistence of

memes as deriving from a combination of the competition

for our limited attention and the structure of the social net-

work, without the need to assume different intrinsic values

among ideas [150]. The study of how memes compete with

each other for the limited and fluctuating resource of user

attention has also amassed the attention of physicists, who

showed that the competition between memes can bring a

social network to the brink of criticality [153], where even

minute disturbances can lead to avalanches of events that

make a certain meme go viral [151].

http://books.google.com/ngrams/datasets
http://books.google.com/ngrams/datasets
http://www.matjazperc.com/ngrams
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9. Education and beyond
In addition to the above-reviewed examples of the Matthew

effect in empirical data, there exist many more, related for

example to education [52] and brain development [85],

which we here review in passing for a more complete

coverage of the subject.

In his synthesis titled Matthew effects in reading: some
consequences of individual differences in the acquisition of literacy
[52], Stanovich presents a framework for conceptualiz-

ing the development of individual differences in reading

ability, with special emphasis on the concepts of reciprocal

relationships—situations where the causal connection between

reading ability and the efficiency of a cognitive process is bidir-

ectional, and on organism–environment correlation—the fact

that differentially advantaged organisms are exposed to non-

random distributions of environmental quality. Foremost, it

is explained how these mechanisms operate to create the

rich-get-richer and the poor-get-poorer patterns of reading

achievement, and the framework is used to explicate some per-

sisting problems in the literature on reading disability and to

conceptualize remediation efforts in reading. Owing to the

Matthew effect, early deficiencies in literacy may bread lifelong

problems in learning new skills, and falling behind during for-

mative primary school years may create disadvantages that

could be difficult to compensate all the way to adulthood

[52]. It must be noted, however, that the degree to which the

Matthew effect actually holds true in reading development is

a topic of considerable debate [154–156].

The review by Raizada & Kishiyama [85] on the effects of

socioeconomic status on brain development also draws on

the Matthew effect, in particular as a potential triggering

mechanism for a long-term self-reinforcing trend in training

executive function in young children, with improved self-

control enabling greater attentiveness and learning, which
would in turn help to make a child’s educational experiences

more rewarding, thereby facilitating yet more intellectual

growth. The authors are sceptical about this rather ‘rosy-

sounding’ scenario, but note that specific interventions

aimed at improving the cognitive development of children

with low socioeconomic status may well trigger the desired

effect. Indeed, Cohen et al. [157,158] have shown that even

brief self-affirmation writing assignments aimed at reducing

feelings of academic threat in ethnic minority high-school

students had the effect of producing significant improve-

ments in grade-point average, which endured over a period

of 2 years—a potential indication that the Matthew effect

might have kicked in.

As noted in the Introduction, the concept today is in wide

use to describe the general pattern of self-reinforcing inequality

that can be related to economic wealth, political power, prestige

and stardom. Although these examples are to a degree rooted

in folktales and lack firm quantitative support, they can never-

theless be supported by plausible arguments in favour of the

Matthew effect. Being born into poverty, for example, greatly

increases the probability of remaining poor, and each further

disadvantage makes it increasingly difficult to escape the econ-

omic undertow. The Matthew effect also contributes to a

number of other concepts in the social sciences that may be

broadly characterized as social spirals. Economists speak of

inflationary spirals, spiralling unemployment and spiralling

debt. These spirals exemplify positive feedback loops, in

which processes feed upon themselves in such a way as to

cause nonlinear patterns of growth. To make a complete

account of such examples exceeds the scope of this review,

and so we are content to draw from the recent book The
Matthew effect: how advantage begets further advantage by Rigney

[3], which we warmly recommend to interested readers.
10. Discussion
As we hope this review shows, the Matthew effect is puzzling

yet ubiquitous across social and natural sciences. It affects

patterns of scientific collaboration, the growth of socio-techni-

cal and biological networks, the propagation of citations,

scientific progress and impact, career longevity, the evolution

of the most common words and phrases, education, as well

as many other aspects of human culture. The recently

acquired prominence of the Matthew effect is largely due to

the rise of network science [51], and the concept of preferen-

tial attachment in particular [16]. Accordingly, the title of this

review might as well have been ‘Preferential attachment in

empirical data’, but since the Matthew effect describes more

loosely the general principle that advantage tends to beget

further advantage, the age-old Matthew ‘rich-get-richer’

effect ultimately won the toss.

The theory of evolving networks based on growth and

preferential attachment was motivated by extensive empirical

evidence documenting the scale-free nature of the degree

distribution, from the cell to the World Wide Web, and it

was this theory, along with the ever increasing availabi-

lity of digitized data at the turn of the twenty-first century,

that ultimately led to the development of the methodology

for measuring preferential attachment and the subsequent

application of these methods on a wide variety of complex

systems. Although the progress made during the past

decade related to data-based mathematical models of
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complex systems has been truly remarkable, the data

explosion we witness today is surely going to accelerate

research along this line even more. Indeed, ‘big data’ [159]

is the keyword for current complex systems research, and

the data windfall is also surely going to promote research

on the Matthew effect. Especially, data from social media,

but also from neuroscience as well as electronic publication

and informatics archives, offer many opportunities for

fascinating scientific discoveries in the nearest future.

Concepts such as preferential attachment, cumulative

advantage and the Matthew effect are at the heart of self-

organization in biology and societies, and they give rise

to emergent properties that are impossible to understand,

let alone predict, at the level of constituent agents. The

emergent collective modes of behaviour are due to the

heterogeneity of the interaction patterns, the presence of non-

linearity and feedback effects, and it is here were the reasons

behind the Matthew effect ought to be sought. This, however,

raises the question whether the Matthew effect is due to

chance or optimization [24,27,90]. While theoretical models

in general rely on dumb luck to yield the power laws, in

reviewing the subject on empirical data, one finds it difficult

to believe that the selection of a collaborator or a sexual part-

ner, or the hiring for a tenure-track position, would be left to

chance. These decisions certainly do depend also on unpre-

dictable factors, but predominantly they are nevertheless

based on factors such as common appeal, competence and

prowess. The argument in favour of randomness gains trac-

tion when cognition and reasoning obviously no longer

apply—consider the emergence of hubs in protein-interaction

networks through gene duplication [160] (see also [61] for a

thorough discussion). But more often than not, the line
between chance and thought is much more blurred, like by

the propagation of citations. Common sense tells us that

credit should be given where credit is due, yet researchers

often cite a paper just because it has been cited many times

before. An interesting discussion of this was recently deliv-

ered by Golosovsky & Solomon [89], who concluded that

such spreading of citations and ideas is akin to the epidemiolo-

gical process [161] and to the copying mechanism [23]. Google

Scholar has even been criticized for strengthening the Matthew

effect by putting high weight on citation counts in its ranking

algorithm [162], by means of which highly cited papers that

appear in top positions gain ever more citations while new

papers hardly appear in top positions and therefore struggle

to amass new citations. Ultimately, one ends up agreeing

with Barabási [90], who noted that we do not need to choose

between luck and reason in preferential attachment, but

simply strive towards a deeper understanding of this puzzling

yet ubiquitous force.

The Matthew effect is obviously at the interface of many

different fields of research, and while its potential has been

realized in the realm of complex systems as being one in a

series of fundamental laws that determine and limit their be-

haviour, the concept deserves also to reach a wider audience

and to inform public policy decisions that have an impact on

inequality in areas such as taxation, civil rights and public

goods [163,164].
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47. Barrat A, Barthélemy M, Vespignani A. 2008
Dynamical processes in complex networks.
Cambridge, UK: Cambridge University Press.

48. Arenas A, Diaz-Guilera A, Kurths J, Moreno Y,
Zhou C. 2008 Synchronization in complex networks.
Phys. Rep. 469, 93 – 153. (doi:10.1016/j.physrep.
2008.09.002)

49. Fortunato S. 2010 Community detection in graphs.
Phys. Rep. 486, 75 – 174. (doi:10.1016/j.physrep.
2009.11.002)
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110. Guimerà R, Uzzi B, Spiro J, Amaral LAN. 2005 Team
assembly mechanisms determine collaboration
network structure and team performance. Science
308, 697 – 702. (doi:10.1126/science.1106340)
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