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INTRODUCTION

The current treatment of pulmonary tuberculosis (TB) re-
quires combination chemotherapy with 3 or more drugs 
and duration of at least 6 months.1 Although TB (caused 
by Mycobacterium tuberculosis) is curable, there are 
concerted efforts to shorten and simplify the four- drug 
standard regimen and to better treat drug- resistant dis-
ease.2 Conventional regimen development is a process of 
sequential addition or replacement of single new drugs in 

an existing combination, with each drug included at previ-
ously determined doses.3– 5 Codevelopment is intended to 
accelerate this process with regulatory pathways for novel 
drug combinations that are analogous to those for single 
drugs.6 However, phase II dose- finding for TB drugs in 
a regimen is constrained by a 14- day maximum on phase 
IIa monotherapy studies to minimize drug resistance, and 
by practical limits on numbers of treatment arms to iden-
tify component drug doses that may optimize the regi-
men as a whole.7 Although a combination regimen is the 
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Abstract
Clinical development of combination chemotherapies for tuberculosis (TB) is com-
plicated by partial or restricted phase II dose- finding. Barriers include a propensity 
for drug resistance with monotherapy, practical limits on numbers of treatment arms 
for component dose combinations, and limited application of current dose selection 
methods to multidrug regimens. A multi- objective optimization approach to dose se-
lection was developed as a conceptual and computational framework for currently 
evolving approaches to clinical testing of novel TB regimens. Pharmacokinetic- 
pharmacodynamic (PK- PD) modeling was combined with an evolutionary algorithm 
to identify dosage regimens that yield optimal trade- offs between multiple conflict-
ing therapeutic objectives. The phase IIa studies for pretomanid, a newly approved 
nitroimidazole for specific cases of highly drug- resistant pulmonary TB, were used to 
demonstrate the approach with Pareto optimized dosing that best minimized sputum 
bacillary load and the probability of drug- related adverse events. Results include a 
population- typical characterization of the recommended 200 mg once daily dosage, 
the optimality of time- dependent dosing, examples of individualized therapy, and the 
determination of optimal loading doses. The approach generalizes conventional PK- 
PD target attainment to a design problem that scales to drug combinations, and pro-
vides a benefit- risk context for clinical testing of complex drug regimens.
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therapeutic unit for TB, the current approaches to regimen 
development are based on potentially suboptimal single- 
drug doses, which may lessen the chances of successful 
outcomes for pivotal phase III trials. An approach to dose 
selection aimed at the component drugs in a regimen would 
more closely implement the “drug combination as unit of 
development” concept.8

Dose optimization for TB drugs is based on antimi-
crobial pharmacokinetic- pharmacodynamic (PK- PD) 
target attainment.9,10 Target drug exposures are specified 
from the minimum inhibitory concentration (MIC) and 
exposure- efficacy profiles determined from measure-
ments of bacterial load and MIC- normalized PK parame-
ters in nonclinical systems.11 Refinement of the efficacy 
target may be obtained as a therapeutic window around 
the maximum of a clinical utility function, which is a 
composite of weighted exposure- efficacy and exposure- 
toxicity profiles.12 Monte– Carlo (MC) simulations of 
a population PK model are then used to calculate the 
probability of target attainment (PTA) as the fraction of 
simulated patients that meet the target exposure for spec-
ified doses, with optimal values identified in a trial and 
error manner with reference to a desired performance. 
Although PTA- based dose selection provides a rational 
approach for transition of single drugs from phase I to 
phase IIa testing,13 its extension to a TB regimen enter-
ing phase IIb or phase III is limited by uncertainties in 
identification of the efficacy targets,14 in the assignment 
of weighting factors to treatment outcomes,15 and in the 
generation and interpretation of multidimensional dose- 
response output of PK- PD model simulations.16,17

An alternate approach to dose selection based on multi- 
objective optimization18– 20 is considered here for application 
across clinical trial transitions for TB regimen development. 
Dose selection involves conflicting therapeutic objectives for 
safety and efficacy, and value judgments on their relative im-
portance.21 Clinical utility combines these elements through 
value judgments on the weighting factors, which become part 
of the optimal solution. Multi- objective optimization treats 
the objectives separately with trade- off comparisons between 
outcomes, with the best trade- offs (or Pareto optimal solu-
tions) defined as those for which further improvement in one 
objective becomes a detriment to another. Instead of a single 
optimum value, the results are a set of equally permissible 
trade- off optimal solutions with a final selection made by ap-
plication of the value judgments after, rather than before, the 
optimization process. Additionally, in contrast to the forward 
approach of PTA methods where specified input doses are 
evaluated against the computed outcomes, multi- objective 
optimization operates as an inverse method where the desired 
treatment outcome is the specified input, and the correspond-
ing dosage parameters are determined as the optimization 
output. This casts dose selection as a design problem, and 

provides for identification of complex dosage regimens using 
a standard engineering process of modeling, optimization, 
and decision making.22

In the present study, Pareto optimal dosage regimens 
were determined for pretomanid monotherapy as part of 
a model- based analysis of the phase IIa early bactericidal 
activity (EBA) studies PA- 824- CL- 007 (CL- 007)23 and PA- 
824- CL- 010 (CL- 010).24 Pretomanid is a recently approved 
nitroimidazole for limited and specific use in combination 
with bedaquiline and linezolid to treat highly drug- resistant 
pulmonary TB,25 but for which further clinical testing re-
mains.3 A pretomanid dose- response model was evaluated 
using an evolutionary algorithm (EA) to determine safe-
ty-  and efficacy- optimized dosage regimens under several 
different design criteria. Examples included optimized reg-
imens for fixed and variable dosing intervals, the identifi-
cation of loading doses, and benefit- risk stratified regimens 
from which final choices can be made based on external 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON 
THE TOPIC?
Dose selection for tuberculosis (TB) drugs is based 
on pharmacokinetic- pharmacodynamic target attain-
ment, with limited application to codevelopment of 
regimens that contain three or more drugs.
WHAT QUESTION DID THIS STUDY 
ADDRESS?
How can multi- objective optimization be applied to 
clinical trial data as an alternate method of dose se-
lection for TB drug regimen development?
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
A demonstration of a general method of model- 
based analysis for dosage regimen design applied 
to an example of early phase clinical trial data for 
the recently approved nitroimidazole pretomanid. 
The results support the recommended dosage, but 
expand the context, and extend the clinical trial data 
to identification of more complex dosage regimens.
HOW MIGHT THIS CHANGE CLINICAL 
PHARMACOLOGY OR TRANSLATIONAL 
SCIENCE?
The approach provides a computational benefit- risk 
tool for dosage regimen design problems that are not 
currently addressed in the context of clinical trial 
transitions for codevelopment, and which may im-
prove the chances of pivotal phase III trial success 
for novel TB regimens.
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clinical judgment and the context of subsequent clinical 
trial aims.

METHODS

Pretomanid EBA study data

The PA- 824- CL- 007 (CL- 007, ClinicalTrials.gov iden-
tifier NCT00567840) and PA- 824- CL- 010 (CL- 010, 
ClinicalTrials.gov identifier NCT00944021) study data were 
obtained from the TB- Platform Aggregation of Clinical TB 
Studies (TB- PACTS; https://c- path.org/programs/tb- pacts). 
There were 122 adult participants (63 men and 59 women) 
with newly diagnosed pulmonary TB who received 14 days 
of once- daily oral pretomanid in separate dose groups of 
50, 100, 150, or 200 mg in CL- 010, and 200, 600, 1000, or 
1200 mg in CL- 007. Data used for dose- response modeling 
included plasma drug concentrations, sputum solid culture 
colony forming unit (CFU) counts, and treatment emergent 
adverse event counts. Detailed descriptions of the study de-
sign, patient characteristics, and clinical outcomes from both 
studies are available in their respective publications.23,24

Multi- objective optimization

A standard formulation of multi- objective optimization22 
was used for dosage regimen design, with one or more design 
(or decision) variables, two or more objective functions, and 
a problem statement of the form:

Minimize: f (x) =
(

f1 (x) , f2 (x) , . . . , fk (x)
)

,

Subject to: x =
(

x1, . . . , xn

)

∈ S

Here, x is a design variable vector, or solution, with values 
in a feasible region, S ⊂ Rn, that includes bounds and constraint 
functions on the design variables. The fi (x) : S → R are the ob-
jective functions. For each solution, x, these functions define a 
point z = f (x) =

(

f1 (x) , . . . , fk (x)
)

 in an objective space Z ⊂ Rk

. A decision vector x∗ ∈ S is Pareto optimal if it is no worse than 
another in all objectives, and strictly better in at least one (i.e., 
there does not exist another x ∈ S such that fi (x) ≤ fi (x

∗ ) for 
all i = 1, . . . , k and fj (x) < fj (x

∗ ) for at least one index value 
j). The Pareto optimal points in objective space are termed the 
Pareto front, and the corresponding decision vectors are termed 
the Pareto optimal solutions or the Pareto set.

The dosage regimen design vector was defined as 
x =

(

D1,�1,D2,�2,t�
)

, where D1,D2 are different doses (loading 
and maintenance doses, respectively), constrained by D1 > D2, 
with �1, �2 the corresponding frequencies of administration, and 
t� the transition time from the first to second dose. The dose- 
response model equations were used to define the objective 

vector, f (x)  =  (−EBA[CFU], Pr[AE]), where EBA(CFU) is 
the early bactericidal activity assessed by the decrease of log10 
CFU per milliliter sputum per day, and Pr(AE) is the probabil-
ity of a drug- related adverse event (AE).

Software

The operating system was Linux (version 3.16.0- 4- amd64; 
Debian distribution [https:// www.debian.org]). NSGA- II26 
(version 1.1.6; [https://www.iitk.ac.in/kanga l/codes.shtml]) 
was used for Pareto optimization. The GNU MCSim Modeling 
and Simulation Suite27 (version 5.6.5; [http://www.gnu.org/
softw are/mcsim]) was used for numerical evaluation of the 
dose- response model equations. The R statistical software 
(version 3.3.3; R Development Team, [https://www.R- proje 
ct.org]) was used for statistical analysis, including apcluster 
(version 1.4.8; [http://www.bioinf.jku.at/software/apclus-
ter/]) for cluster analysis.

RESULTS

Modeling, optimization, and dose selection

The pretomanid dose- response model was based on the plasma 
drug concentrations, sputum CFU counts, and drug- related 
AE counts observed in the CL- 007 and CL- 010 studies.23,24 
The dose- efficacy relationship was described previously as a 
population PK- PD model that included sputum CFU kinetics 
as a function of plasma concentration, with the latter being 
a function of time and the dosage.28,29 The model included 
PK- PD parameter sets for the study population, the male and 
female subpopulations, and for the individual participants. 
The dose- safety relationship was modeled as a pretomanid 
concentration- dependent probability of a drug- related AE; 
Pr( AE ) = exp

(

� + β ⋅ C
)

∕
[

1 + exp
(

� + β ⋅ C
)]

. The loca-
tion (α = −3.49) and scale (β = 0.263 ml/μg) parameters were 
determined by a least- squares fit to the observed relative fre-
quencies of drug- related AE counts for each dose group, and 
corresponding 14- day average plasma concentrations, C, ob-
tained from PK model simulations for population- typical pa-
rameter values. The full system of dose- response equations, 
representative PK- PD parameter sets, and AE analysis details 
are provided in the Supplementary Materials.

Dose optimization was formulated as a multi- objective 
optimization problem with design variables and objective 
functions defined by the dose- response model. The design 
variables were the discrete oral doses, their corresponding 
frequencies of administration, and the duration of adminis-
tration for a loading dose. The values for each variable were 
the complete set of integers within specified lower and upper 
bounds. The doses were bounded by 50– 1200  mg as the 

https://c-path.org/
http://www.debian.org
https://www.iitk.ac.in/kangal/codes.shtml
http://www.gnu.org/software/mcsim
http://www.gnu.org/software/mcsim
https://www.R-project.org
https://www.R-project.org
http://www.bioinf
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experimentally measured range; the frequencies of adminis-
tration by 6– 72 h, with the lower bound providing for attain-
ment of peak concentration, and upper bound for a washout 
period of ~ 4 times the elimination half- life28,30; and the 
time of transition from a loading dose to maintenance dose 
by 1– 13  days as the earliest and latest values for a 14- day 
study. The objective function for safety was the Pr(AE), and 
for efficacy the EBA(CFU). The optimization problem was 
to maximize the EBA(CFU) and minimize Pr(AE) from the 
beginning to the end of treatment (24 h after the 14th dose) 
subject to the bounds and design conditions on the dosage 
regimen parameters.

Pareto optimal solutions were found using an EA,22 with 
the basic operations of random sampling from a population 
of values for the design variables, comparison and selection 
of the corresponding objective function outputs that best sat-
isfy the optimization criteria, and regeneration of the design 

space population through a random process of mutation and 
crossover operations. Each of these generations is repeated 
until adequate convergence of the Pareto front is attained. 
The optimization was implemented using NSGA- II26 with 
parameter values: population sample size equal to 400, num-
ber of generations equal to 50, crossover probability equal 
to 0.9 with distribution index equal to 15, and probability of 
mutation equal to 0.3 with distribution index equal to 30. The 
NSGA- II problem definition and MCSim model files are pro-
vided in the Supplementary Materials.

Final dose selection from the Pareto optimal solutions re-
quires external evaluation criteria, such as threshold values 
for EBA(CFU) and Pr(AE). A partial unsupervised reduction 
of Pareto optimal dosages was made using a clustering algo-
rithm,31 and by benefit- risk (BR) ratios of normalized EBA to 
Pr(AE), where the maximum EBA value was the normaliza-
tion constant. The number of clusters was set manually to four 

F I G U R E  1  Once- daily dosing to 
maximize early bactericidal activity (EBA) 
colony forming unit (CFU) and minimize 
probability of a drug- related adverse 
event (Pr(AE)). Pareto fronts and cluster 
exemplars (a), and benefit- risk profiles 
(b), for population- typical, male- typical, 
and female- typical dose- response. Monte- 
Carlo simulations of end- of- treatment 
outcomes for EBA(CFU) (c) and Pr(AE) 
(d) for population- typical Pareto front 
cluster exemplars. Plots show median 
(points) and 90th percentile range (error 
bars) with simulation sample size equal to 
10,000. Plasma concentration- time profiles 
and day- 14 outcomes for EBA(CFU) and 
Pr(AE) with once- daily dosing for the 
first 3 participants in the CL- 007 200 mg 
dose group (e). Each row shows model 
simulations for the administered (Adm) 
200 mg doses and optimized (Opt) doses of 
230, 100, and 380 mg for participants ID1, 
ID2, and ID3; respectively

(a) (b)

(c) (d)

(e)
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or five as typical numbers of treatment arms for early phase 
TB studies,23,32 and dosage regimens for maximum BR values 
were identified. The maximum BR values were also reported 
as a mean (SD) from an additional 15 Pareto fronts that were 
generated for each of the total, male, and female PK- PD pa-
rameter sets, with the latter as normally distributed samples 
defined by the mean and SE of each parameter (Table S2), and 
bounded by the mean ± 2·SE. The optimized dosage variables 
were reported to the nearest 10 mg for dose and to the hour for 
frequency of administration. Summaries were also described in 
practical units, with doses rounded to the nearest 50 mg as the 
smallest tested tablet unit,30,33 and frequencies to the nearest 
12 h as a product target for a maximum twice- daily dosing.34

Once- daily dosing

Optimized once- daily pretomanid doses, as a variable- 
dose and fixed- frequency problem, were determined for 
population- typical, male- typical, and female- typical dose- 
response profiles; and for the first 3 participants randomized 
to the CL- 007 200 mg dose group as examples of individual-
ized dosing. Figure 1 shows the Pareto fronts, BR profiles, 
dose- response model MC simulations using previously de-
scribed model parameter distributions,28,29 and the individual 
dose- exposure- response outcomes. The differences between 
male and female dosing can be accounted for as a PK effect. 
For the same dosage, there are typically higher pretomanid 
plasma concentrations observed in women than men,24,35 
which results in correspondingly larger modeled Pr(AE) 
values. However, the differences are small and the cluster 
exemplars and ranges shown in Table  1 are similar across 
the population- typical PK- PD parameter sets. Optimal once- 
daily mean (SD) doses corresponding to the maximum BR 
values were, 220 mg (10 mg), 230 mg (10 mg), and 200 mg 

(10 mg), respectively, for the population total, male, and fe-
male PK- PD parameter sets (Table S2). The MC simulations 
show the day 14 efficacy and safety outcome distributions 
(sample size equal to 10,000), which may provide a basis for 
decisions on subsequent testing. For example; a desired limit 
on Pr(AE) values equal to 5%, suggests 200 mg as a cutoff 
based on an acceptable level for safety. To the nearest 50 mg, 
the once- daily 100, 200, 400, and 800 mg cluster exemplars 
represent a selection of (low- risk and low- efficacy) to (high- 
risk and high- efficacy) stratified regimens for population- 
typical dose- response profiles.

Model simulations of individual plasma concentration- 
time profiles and 14- day EBA and Pr(AE) outcomes are 
shown in Figure  1E. The benefit- risk optimal doses were 
220  mg, 100  mg, and 380  mg, for ID1, ID2, and ID3, re-
spectively. The simulations show the difference in outcomes 
between the optimized and originally administered 200 mg 
doses. Participant ID1 was nearly optimally dosed at the orig-
inal 200 mg, whereas 100 mg for ID2 improves safety with 
a relatively small reduction in efficacy, and 380 mg for ID3 
would improve efficacy while maintaining Pr(AE) below 5%.

Dosing interval

Optimal frequencies of administration, as a fixed- dose 
and variable- frequency problem, were determined for 
population- typical PK- PD parameters as the maximum 
values of BR profiles for fixed 100, 200, 300, and 400 mg 
doses. Expressing the results as (dose, frequency mean [SD]; 
EBA[CFU], Pr[AE]), the optimized regimens and outcomes 
were: (100 mg, 13 h [1 h]; 0.102 /d, 0.043), (200 mg, 22 h 
[1 h]; 0.103 /d, 0.044), (300 mg, 28 h [1 h]; 0.105 /d, 0.045), 
and (400 mg, 33 h [1 h]; 0.105 /d, 0.046). The optimized fre-
quencies can be summarized as twice- daily for 100 mg, once- 
daily for 200 mg, once- daily for 300 mg, and once every 36 h 
for 400 mg. The less- than- proportional increase in frequency 
with dose implies a potential for suboptimal treatment with 
concentration- dependent or intermittent dosing.

Pattern of bactericidal effect

Optimal (dose and frequency) pairs, as a variable- dose 
and variable- frequency problem, were determined for a 
population- typical PK- PD profile. Constraints for a mini-
mum EBA of 0.09 log10 CFU/ml/day and maximum Pr(AE) 
less than 0.05 were included as an example of a target profile 
guided design. Figure 2 shows the optimal solutions, Pareto 
front, and benefit- risk profile, together with the cluster ex-
emplars. The optimal dose range was 70– 250  mg and fre-
quency range equal to 11– 21  h. These results distinguish 
time- dependent and concentration- dependent patterns of 

T A B L E  1  Optimized once- daily dosing to maximize EBA(CFU) 
and minimize Pr(AE) for the total population- typical, male- typical, and 
female- typical CL- 007 and CL- 010 study participants. Pareto fronta 
cluster exemplars and ranges

Regimen 
(mg/day) Total Male Female

C1 70 (50, 90) 70 (50, 90) 70 (50, 80)

C2 110 (90, 150) 110 (90, 150) 110 (80, 140)

C3 210 (150, 290) 210 (150, 280) 200 (140, 270)

C4 410 (290, 580) 400 (280, 560) 400 (280, 580)

C5 840 (590, 
1200)

800 (570, 
1200)

840 (590, 
1200)

Note: Ci , i = 1, ..., 5: cluster exemplar label.
Abbreviations: EBA(CFU) early bactericidal activity (colony forming unit); 
Pr(AE), probability of a drug- related adverse event.
aEvolutionary algorithm population size equal to 400. 
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drug kill, with pretomanid being consistent with the former 
by the presence of small doses more frequently administered 
and the absence of large doses with longer dose intervals. 
The (dose, frequency; EBA[CFU), Pr[AE]) values for the 
cluster exemplars were C1 = (110 mg, 17 h; 0.094/d, 0.041), 
C2 = (150 mg, 15 h; 0.108/d, 0.046), C3 = (160 mg, 19 h; 
0.0102/d, 0.044), and C4 = (200 mg, 18 h; 0.113/d, 0.049). 
The maximum benefit- risk regimen was (120  mg, 15  h; 
0.103/d, 0.044), or ~ 100 mg twice daily.

Loading dose

Optimized loading dose regimens, with variable loading and 
maintenance doses, and variable duration of loading dose ad-
ministration, were determined for population- typical PK- PD 
parameters. Constraints were specified for a minimum EBA 
of 0.09 log10 CFU/ml/day, maximum Pr(AE) less than 0.05, 
and loading dose larger than the maintenance dose. Figure 3 
shows plots of the optimal dosage regimen parameter values, 
the Pareto front, and the benefit- risk profile. The dosages and 
corresponding outcomes for the cluster exemplars, expressed 
as (loading dose, maintenance dose, duration of loading dose; 
EBA[CFU], Pr[AE]), were C1 =  (250 mg, 150 mg, day 1; 

0.0936/d, 0.041), C2 =  (300 mg, 200 mg, day 2; 0.0999/d, 
0.043), C3 = (400 mg, 250 mg, day 1; 0.106/d, 0.046), and 
C4 = (500 mg, 300 mg, day 1; 0.112/d, 0.049), and for the 
maximum benefit- risk (350  mg, 200  mg, day 2; 0.1030/d, 
0.044). The loading dose for 1 day is ~ 1.6 times the main-
tenance dose, which matches the standard PK loading dose 
calculation12 for a pretomanid elimination half- life of 17 h.36

DISCUSSION

Although phase II dose- finding is a critical prerequisite 
for phase III trials, the current and proposed implementa-
tions of codevelopment for TB drug regimens do not in-
clude a dose- finding phase beyond the single- drug level.7 
The objective of this study was to demonstrate a multi- 
objective optimization approach to dose selection aimed at 
the component drugs and clinical trial transitions of novel 
TB regimens. The approach is a model- based analysis of 
drug exposure, safety, and efficacy data that results in a set 
of trade- off optimal dosage regimens with final selections 
made in the context and aims of subsequent testing. The 
analysis can be applied with each advancing stage of devel-
opment, where the dose- response model from a previous 

F I G U R E  2  Bactericidal effect. Cluster exemplars and dosage parameter sampling space (a), Pareto front (b), and benefit- risk curve (c), for 
variable dose and frequency of administration to maximize early bactericidal activity (EBA) colony forming unit (CFU) and minimize probability 
of a drug- related adverse event (Pr(AE))

(a) (b) (c)

F I G U R E  3  Loading dose. Cluster exemplars and dosage parameter sampling space (a), Pareto front (b), and benefit- risk curve (c) for two 
variable doses and day of dose change to maximize early bactericidal activity (EBA) colony forming unit (CFU) and minimize probability of a 
drug- related adverse event (Pr(AE))

(a) (b) (c)
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stage is updated based on current study results, and the 
optimization process repeated to inform dosage regimens 
for the next. This application to pretomanid served as an 
example for a phase IIa starting point, with the CL- 007 
and CL- 010 studies being the first with safety and efficacy 
outcomes for pretomanid- containing regimens, and which 
provided for comparison between the analysis and empiri-
cally established results as a measure of validation.

The recommended dosage for pretomanid is 200 mg once- 
daily (for 26  weeks in combination with bedaquiline and 
linezolid), and was established from testing in 19 clinical stud-
ies with more than 1000 participants who were administered 
pretomanid alone or in combination with other TB drugs.36 In 
this analysis, the same dosage was identified (within 20 mg) 
as a maximum benefit- risk dose for a fixed once- daily admin-
istration, and as maximum benefit- risk frequency (within 2 h) 
for a fixed 200 mg dose. The recommended dosage was also 
placed in a population- typical context, and optimization ex-
amples for individual participants demonstrated the extent of 
potential suboptimal response for differing PK- PD profiles. 
The Pareto optimal solutions from the variable frequency 
and variable dose optimization problem showed a difference 
between time- dependent and concentration- dependent dos-
ing, with the former being optimal and in agreement with 
the time- dependent activity characterized by preclinical 
dose- fractionation results.37 The application of the analysis 
method to more complex regimens was demonstrated for 
three parameters in the loading dose example. This approach 
to loading dose identification differs from the conventional 
PK method aimed at rapid attainment of a specified target 
concentration,12 where here it arises from the regimen design 
goal and includes the drug exposure and response dynamics. 
Although the results of this computational analysis were also 
established empirically, the comparison provided a first test 
of Pareto optimization and a basis for future applications to 
later phase clinical testing.

The basic sources of uncertainty are the dose- response 
model, the EA optimization process, and the selection of 
doses from the Pareto front for subsequent testing. Beyond 
model specification error,38 there is uncertainty in the objec-
tive functions calculated with dosage parameter values that 
were not experimentally tested. This may be minimized by 
the bounds and constraints on the sampled dosage parame-
ters. Although the pretomanid doses were restricted to the 
tested ranges in CL- 007 and CL- 010, the frequencies of ad-
ministration were sampled from a larger range than the tested 
once- daily values. The validity of model results for this wider 
range of dosing intervals have not been accessed, and the 
AE model is uncertain due to the sparseness of the data on 
which it was developed. However, the identification of once- 
daily optimal dosing for 200  mg was consistent with both 
the fixed- dose and variable- frequency, and fixed- frequency 
and variable- dose problems. The EA involves the sorting and 

ranking of model simulation outputs, and acts as a source of 
error propagation. The accuracy and precision of the dose- 
response model is the primary determinant for minimizing 
this error. For the case of pretomanid, the large tested dose 
range was exceptional, and provided for accurate model 
specification including the identification of nonlinear effects. 
The ability to identify complex dosage regimens using such 
highly determined models may motivate wider dose- ranging 
EBA study designs. The dose selection process includes sub-
jective decisions based on external criteria that include clini-
cal judgment and the aims and purpose of subsequent clinical 
trial designs. Final choices from the set of equally permis-
sible Pareto optimized regimens are context- dependent and 
are not included as part of the computational framework. 
The dosage regimens that result from the partial reduction 
of possible choices based on the BR profile and cluster anal-
ysis may vary depending on the EA population size used to 
generate the Pareto front. This source of uncertainty may be 
minimized with EA population sizes that are large enough to 
fill in the Pareto fronts without significant gaps from unsam-
pled dosage regimen parameters.

Multi- objective optimization and evolutionary algorithms 
are widely used throughout engineering and the sciences,22 in-
cluding examples from drug discovery and development,39,40 
and with several theoretical descriptions of Pareto optimal 
dosing appearing over the past 20 years.18– 20,41,42 However, 
for conventional drug development there is no apparent advan-
tage to such methods over the simplicity and transparency of 
target exposure attainment. It is only with the recent regula-
tory changes for codevelopment6 that the problem of regimen- 
based dose optimization in a clinical trial setting has become 
an option. There are a wide range of clinical trial designs for 
TB regimens, including adaptive studies with multiple stages 
and seamless progression43 for which quantitative analysis 
tools have not been fully developed. The barriers of combi-
natorial complexity for testing regimens with three or more 
drugs17 provides a motivation for Pareto optimization. The 
safety and efficacy outcomes are bacterial load and a limited 
set of measures for toxicity, which remain relatively fixed and 
independent of the number and type of drugs. The EA opti-
mization acts on these outcomes rather than the input doses, 
which provides for the efficient sampling and identification 
of highly complex dosage regimens. The ability to identify 
optimized individual dosing based on initial PK- PD profiles 
provides a tool for seamless trial designs, where an interim 
analysis could be performed with dose adjustments at the indi-
vidual participant level. The effect of such an approach is the 
replacement of variation in response from a predefined small 
set of input doses, with possibly large variation in dosing that 
instead leads to a narrow and desired response by design.

Although applied here to pretomanid monotherapy, 
the method of analysis was developed for the large num-
ber of new drugs and possible regimens that are advancing 
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through the TB drug pipeline.44 Several ways to extend 
these preliminary results with phase III data include the 
use of an updated population PK model developed with 
pretomanid in combination regimens, particularly with be-
daquiline and linezolid,45 and the use of a model for QT 
prolongation46 as an objective function for toxicity. The 
three parameters used for the loading dose example could 
equivalently be the doses for three separate drugs admin-
istered once- daily, with extension to several larger param-
eter sets being well within the operating specifications for 
EA algorithms. Although Pareto optimization and target- 
attainment for dose selection differ in the method of PK- PD 
model input sampling and evaluation of the model output, 
both approaches share the same limitations that arise from 
uncertainty in the values of the model parameters. A major 
challenge to taking full advantage of the capabilities of 
Pareto optimization is the development of accurate multi-
drug dose- response models, which depend on informative 
experimental data from nonclinical and clinical sources. 
Such model development may benefit from experimental 
studies that incorporate methods of optimal design,47,48 
with additional dosage arms, and sample sizes and timings, 
chosen to minimize error in the PK- PD model parameter 
estimates. Additionally, oral drug delivery with only a 
few fixed tablet sizes presents a practical barrier to imple-
menting individualized or fine- grained dosage regimens. 
However, emerging tablet printing technologies49 offer a 
promising companion to the computational framework de-
scribed here, to identify and implement complex dosage 
regimen designs.
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