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ABSTRACT

Background: Symptoms of rhinitis and asthma can be exacerbated during Japanese cedar 
pollen (JCP)-scattering season, even in subjects who are not sensitized to JCP, suggesting that 
innate immune responses may contribute to this process. We previously reported that house 
dust mite directly activates the effector functions of eosinophils. Similar mechanisms may 
play roles in the JCP-related aggravation of allergic diseases.
Objective: To investigate whether JCP or Cry j 1, a major allergen of JCP, can modify the 
effector functions of eosinophils.
Methods: Eosinophils isolated from the peripheral blood of healthy donors were stimulated 
with either JCP or Cry j 1, and their adhesion to human intercellular adhesion molecule-1 was 
measured using eosinophil peroxidase assays. The generation of eosinophil superoxide anion 
(O2

−) was measured based on the superoxide dismutase-inhibitable reduction of cytochrome 
C. Concentrations of eosinophil-derived neurotoxin in the cell media were measured by 
enzyme-linked immunosorbent assay as a marker of degranulation.
Results: Both JCP and Cry j 1 directly induced eosinophil adhesiveness, generation of O2

−, 
and release of eosinophil-derived neurotoxin. Both anti-αM and anti-β2 integrin antibodies 
blocked all of these eosinophil functions induced by JCP and Cry j 1. Similarly, PAR-2 
antagonists also partially suppressed all of these effector functions induced by JCP and Cry j 1.
Conclusion: JCP and Cry j 1 directly activate the functions of eosinophils, and both αMβ2 
integrin and partly PAR-2 are contributed to this activation. Therefore, JCP-induced 
eosinophil activation may play a role in the aggravation of allergic airway diseases in 
nonsensitized patients as well as in JCP-sensitized patients.

Keywords: Cry j 1; Eosinophils; Integrin; Japanese cedar pollen; PAR-2

INTRODUCTION

Japanese cedar pollen (JCP) is widely scattered during springtime, mainly between the 
months of February and April in Japan. The prevalence of the seasonal allergic rhinitis (SAR) 
by JCP (SAR-JCP) has reached 26.5% in our country, and has increased by almost 10% during 
10 years [1, 2]. Even people living in the city have this pollinosis, because JCP can scatter from 
forest areas over long distances. Therefore, SAR-JCP is a serious health issue for many people 
in Japan. Until now, 8 allergens in JCP have been identified, and their characteristics have 
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been elucidated [2]. Among them, Cry j 1, a basic glycoprotein homologous to pectate lyase, 
is a major allergen of JCP [2]. In fact, most patients suffering from SAR-JCP have specific 
immunoglobulin (Ig) E to Cry j 1 [3]. Approximately 35 mg of Cry j 1 is routinely extracted per 
100 g of JCP [2], although individual and genetic variations of Cry j 1 content in JCP have also 
been reported [4].

Several reports suggested that JCP can exacerbate asthma like other pollens [5-7]. The level 
of asthma control deteriorated in the JCP-scattering season in asthmatics with SAR-JCP in 
urban areas, although 84% of the patients received treatment for rhinitis [5]. We previously 
reported that the pulmonary function of asthmatics with SAR-JCP worsened in the JCP-
scattering season, and that the deterioration was associated with an increased generation 
of cysteinyl leukotrienes in the airways [6]. Furthermore, we reported that sublingual 
immunotherapy for SAR-JCP completely suppresses the development of asthma exacerbation 
in JCP season [7], confirming the role of JCP in the seasonal exacerbation of asthma.

Although the mechanisms that contribute to asthma exacerbation by JCP is still unknown, 
possible mechanisms have been suggested [8]. For example, orbicules (about 1 μm in size) 
on JCP can reach the airways and directly worsen the asthma control. Furthermore, nasal 
obstruction, local release of mediators in the upper airways, and systemic production of 
cytokines including type-2 cytokines may play roles in the JCP-induced asthma exacerbation 
[8]. In patients who are sensitized to JCP, exposure to JCP results in the aggravation of 
allergic diseases through the activation of mast cells or basophils by IgE crosslinking and 
the subsequent activation of T cells. However, clinically, pollen or house dust mite (HDM) 
exposure induces allergic symptoms, even in patients who are not sensitized to those specific 
allergens [9, 10]. Although its mechanism is still unknown, one would postulate that innate 
immune responses might play roles in the pathogenesis of airway inflammation via a non-
IgE-specific fashion.

Eosinophils have pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) 
and protease-activated receptors (PARs) [11, 12]. PAR-2 is associated with the inflammatory 
response to some infections and microbial proteases [11]. We previously reported that 
HDM directly activates the functions of eosinophils obtained from the peripheral blood of 
nonallergic healthy subjects partly through PAR-2 [13]. Therefore, similar mechanisms may 
play roles in the JCP-related exacerbation of allergic diseases. However, the effects of JCP and 
Cry j 1 on eosinophil functions have not yet been fully clarified.

Here, we examined whether JCP or Cry j 1 can modify the functions of eosinophils. We found 
that both JCP and Cry j 1 induced eosinophil adhesiveness, superoxide anion (O2

−) generation, 
and release of a specific granule protein, Furthermore, αMβ2 integrin and partly PAR-2 were 
involved in JCP or Cry j 1-induced eosinophil activation. Therefore, the direct activation of 
eosinophils by JCP may contribute to the aggravation of allergic diseases.

MATERIALS AND METHODS

Preparation of eosinophils and JCP
Eosinophils were isolated from the peripheral blood collected from nonallergic healthy 
volunteers with a peripheral blood differential eosinophil count of <5%. Healthy volunteers 
were defined as subjects with no history of allergic disease, such as asthma or rhinitis, and 
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no symptoms associated with allergic disease, such as coughing or sneezing. This study 
was approved by the Ethical Committee of Saitama Medical University (Institutional Review 
Board permission number: 781-III), and written informed consent was obtained from 
the subjects before the collection of each blood sample. Eosinophils were isolated by the 
combination of Percoll density gradient centrifugation and negative selection using anti-
CD16 Ab-coated magnetic beads (Miltenyi Biotec, Auburn, CA, USA), as previously described 
[13-18]. Over 98% of the cells were eosinophils, as determined by morphological criteria 
using May-Grünwald-Giemsa staining. Eosinophil viability was >99%, as determined by 
Trypan blue dye exclusion. Eosinophils were resuspended in Hank's balanced salt solution 
(HBSS) supplemented with gelatin to a final concentration of 0.1% (HBSS/gel). The JCP 
extract (161-μg protein/mg of dry extract) [19] and purified Cry j 1 were kind gifts from Torii 
Pharmaceutical Co., Ltd. (Tokyo, Japan).

Eosinophil adhesion
The effects of JCP and Cry j 1 on eosinophil adhesion to recombinant human (rh) intercellular 
adhesion molecule (ICAM)-1-coated plates were assessed based on the residual eosinophil 
peroxidase (EPO) activity of the adherent eosinophils, as previously described [13-18]. 
Briefly, eosinophils (100 μL of 1 × 105 cells/mL in HBSS/gel) from nonallergic volunteers were 
incubated in the presence or absence of JCP (0.1 to 10 μg/mL) or Cry j 1 (1 to 100 pg/mL) 
in rh-ICAM-1 (10 μg/mL; R&D Systems, Minneapolis, MN, USA)-coated Costar cell culture 
plates (Corning, Inc., Corning, NY, USA) at 37°C for 20 minutes. Corresponding control wells 
were coated with HBSS/gel. The plates were washed with HBSS, and 100 μL of HBSS/gel was 
then added to the wells. Standards comprised of serially diluted cell suspensions (1 × 103, 
3 × 103, 1 × 104, 3 × 104, and 1 × 105 cells/mL; 100 μL each were added to the empty wells. An 
EPO substrate (1 mM o-phenylenediamine, 1 mM H2O2, and 0.1% Triton X-100 in Tris buffer, 
pH 8.0) was then added to all wells, and the plates were incubated for 30 minutes at room 
temperature. The reaction was stopped by adding 20 μL of 4 M H2SO4, and the absorbance 
was measured at 490 nm. In some experiments, suspended eosinophils were pre-incubated 
with an isotype-matched control mouse IgG1 (3 μg/mL; clone MOPC-21, Becton Dickinson, 
Franklin Lakes, NJ, USA), anti-αM integrin monoclonal Ab (mAb; 3 μg/mL; clone 2LPM19c, 
Pierce, Rockford, IL, USA), anti-β2 integrin mAb (3 μg/mL; clone L130, Becton Dickinson), 
or a PAR-2 antagonist (10 μM FSLLRY-NH2 [13, 20-22], R&D Systems, or 10 μM ENMD-1068 
[13, 23-25], Enzo Life Sciences, Farmingdale, NY, USA) for 20 minutes before addition to 
the wells. Each experiment was performed in quadruplicate using eosinophils from a single 
donor, and the percentage of eosinophil adhesion was determined from the mean values that 
were calculated from log-dose response curves. The eosinophil viability after incubation was 
>98%, as determined by Trypan blue dye exclusion.

Eosinophil O2
− generation

Eosinophil O2
− generation was measured in 96-well enzyme-linked immunosorbent assay 

(ELISA) plates, as previously described, based on the superoxide dismutase (SOD)-inhibitable 
reduction of cytochrome C [13-18]. We initially added SOD (0.2 mg/mL in HBSS/gel; 20 
μL) to SOD control wells, then added HBSS/gel to all wells of the rh-ICAM-1-coated plates 
(10 μg/mL) to bring the final volume to 100 μl/well. The eosinophil density was adjusted to 
1.25 × 106 cells/mL in HBSS/gel mixed in a 4:1 ratio with cytochrome C (12 mg/mL of HBSS/
gel), and 100 μL of the eosinophil suspension was then added to all wells. Immediately after 
adding JCP (0.1 to 10 μg/mL) or Cry j 1 (1 to 100 pg/mL) to the eosinophils, the absorbance 
of the cell suspensions in the wells was measured at 550 nm in an Immuno-Mini (NJ-2300; 
Japan Intermed Co., Tokyo, Japan), followed by repeated measurements over the next 240 

3/13https://apallergy.org https://doi.org/10.5415/apallergy.2021.11.e26

Japanese cedar pollen activates the functions of eosinophils



minutes. In some experiments, suspended eosinophils were pre-incubated with 3 μg/mL of 
mouse IgG1, anti-αM integrin mAb, anti-β2 integrin mAb, or 10 μM of a PAR-2 antagonist 
(FSLLRY-NH2 or ENMD-1068) for 20 minutes before addition to the wells. Each reaction was 
evaluated in duplicate against the control reaction in wells containing 20 μg/mL of SOD. The 
results were adjusted for a 1-mL reaction volume, and O2

− generation was calculated with an 
extinction coefficient of 21.1 mM-1cm-1 as the nanomoles of cytochrome C reduced per 1.0 
× 106 cells/mL minus the SOD control. The maximum value observed over the incubation 
period was determined for the evaluation of the effects of various factors on eosinophil 
O2

− generation. The cell viability, as determined by Trypan blue exclusion at the end of each 
experiment, remained at 95% after 240 minutes of incubation.

Release of an eosinophil-specific granule protein
Eosinophils (1 × 106 cells/mL) in 96-well plates were incubated for the 240 minutes that were 
required for the measurement of O2

− generation, and were then immediately centrifuged 
(1,500 rpm) at 4°C for 10 minutes. The recovered cell-free supernatants were used for the 
measurements of eosinophil-derived neurotoxin (EDN), as described previously [13-18]. 
Concentrations of EDN were quantified using ELISA kits (Medical and Biological Laboratory 
Co., Ltd., Nagoya, Japan).

Statistical analysis
Values are expressed as the means ± standard error. Results were compared using 1-way 
analysis of variance followed by the Tukey-Kramer test when differences were significant, or 
a paired t test for the analysis of differences between the 2 groups. Values of p < 0.05 were 
considered to be statistically significant.

RESULTS

Effects of JCP and Cry j 1 on eosinophil adhesion
We first examined the effect of JCP on eosinophil adhesion. Eosinophils were incubated with 
JCP (0.1 to 10 μg/mL) in rh-ICAM-1-coated plate, and eosinophil adhesion to ICAM-1 was 
measured. JCP at a concentration of more than 1 μg/mL significantly increased eosinophil 
adhesion when compared to the control (Fig. 1A). We then investigated whether Cry j 1, a 
major allergen of JCP, could also modify the eosinophil adhesion. Cry j 1 at a concentration of 
more than 10 pg/mL increased eosinophil adhesion when compared to the control (Fig. 1B).

Effects of JCP and Cry j 1 on eosinophil O2
− generation and EDN release

We then examined whether JCP and Cry j 1 could modify eosinophil O2
− generation. JCP at 

a concentration of 10 μg/mL induced O2
− generation of eosinophils in ICAM-1-coated plate 

when compared to the control (Fig. 1C). Furthermore, Cry j 1 at a concentration of more than 
1 pg/mL induced O2

− generation of eosinophils when compared to the control (Fig. 1D). We 
then investigated the effects of JCP and Cry j 1 on eosinophil degranulation. Compared to the 
control, JCP at a concentration of more than 0.1 μg/mL induced the release of EDN (Fig. 1E). 
Cry j 1 at a concentration of more than 1 pg/mL also induced the release of EDN (Fig. 1F).

Effects of anti-integrin mAbs on the eosinophil adhesion, O2
− generation, and 

EDN release induced by JCP and Cry j 1
We previously observed that the HDM-activated functions of eosinophils were β2 integrin-
dependent [13]. Consequently, to examine the eosinophil integrin(s) involved in JCP-induced 
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Fig. 1. Effects of Japanese cedar pollen (JCP) and Cry j 1 on eosinophil functions. (A) JCP increases eosinophil adhesion to recombinant human (rh) intercellular 
adhesion molecule (ICAM)-1-coated plates. Eosinophils (100 μL of 1 × 105 cells/mL in Hank's balanced salt solution [HBSS]/gel) obtained from the blood of 
healthy donors were incubated with JCP (0.1 to 10 μg/mL) or interleukin (IL)-5 (100 pM) as a positive control in rh-ICAM-1-coated plates. The adhesiveness of 
the eosinophils was then assessed by an assay of the residual eosinophil peroxidase activity. Data are shown as the means ± standard error of five experiments 
using cells from different donors. Spon, spontaneous adhesion. (B) Cry j 1 increases eosinophil adhesion to rh-ICAM-1-coated plates. Eosinophils from the blood 
of healthy donors were incubated with Cry j 1 (1 to 100 pg/mL) or IL-5 (100 pM), then eosinophil adhesion to ICAM-1 was measured (n = 5). Spon, spontaneous 
adhesion. (C, D) Effect of JCP and Cry j 1 on eosinophil O2

− generation. The eosinophil cell density was adjusted to 1.25 × 106 cells/mL in HBSS/gel mixed in a 4:1 
ratio with cytochrome C, then the eosinophil suspension was added to ICAM-1-coated 96-well plates. Immediately after adding (C) JCP (0.1 to 10 μg/mL) or (D) 
Cry j 1 (1 to 100 pg/mL), eosinophil O2

− generation was measured based on the SOD-inhibitable reduction of cytochrome C, followed by repeated measurements 
over the next 240 minutes. The maximum values during the incubation period are shown as the means ± standard error of 6 experiments using cells from 
different donors. Spon, spontaneous O2

− generation. (E, F) Effects of JCP and Cry j 1 on eosinophil eosinophil-derived neurotoxin (EDN) release. Eosinophils (1 × 
106 cells/mL) in 96-well plates were incubated with (E) JCP (0.1 to 10 μg/mL) or (F) Cry j 1 (1 to 100 pg/mL) for 240 minutes. The concentration of EDN in the cell-
free supernatants was then quantified using enzyme-linked immunosorbent assay. Data are shown as the means ± standard error of 6 experiments using cells 
from different donors. Spon, spontaneous EDN release.	



and Cry j 1-induced eosinophil adhesion, eosinophils were pre-incubated with anti-αM 
integrin or anti-β2 integrin mAb, or control mouse IgG1, then eosinophil adhesion to ICAM-1 
was examined. The enhancement of eosinophil adhesion by JCP (1 μg/mL) was suppressed 
by anti-αM integrin Ab as well as anti-β2 integrin Ab (Fig. 2A). Similarly, the enhancement of 
eosinophil adhesion by Cry j 1 (10 pg/mL) was also suppressed by anti-αM integrin Ab as well 
as anti-β2 integrin Ab (Fig. 2B). Anti-α4 integrin mAb did not affect the JCP-enhanced and 
Cry j 1-enhanced eosinophil adhesion (data not shown). Neither anti-αM integrin nor anti-β2 
integrin mAb suppressed the spontaneous adhesion of eosinophils (data not shown).

We next examined the effects of anti-αM integrin or anti-β2 integrin Ab on JCP-induced and Cry 
j 1-induced eosinophil O2

− generation and EDN release. The eosinophil O2
− generation induced 

by JCP (10 μg/mL) and Cry j 1 (100 pg/mL) was suppressed by anti-αM integrin Ab as well as by 
anti-β2 integrin Ab (Fig. 2C, D). Anti-αM integrin and anti-β2 integrin mAbs did not modify 
the spontaneous O2

− generation by eosinophils (data not shown). Finally, anti-αM integrin and 
anti-β2 integrin mAbs inhibited the EDN release induced by JCP (10 μg/mL; Fig. 2E) and Cry j 1 
(100 pg/mL; Fig. 2F).

Effects of PAR-2 antagonists on the eosinophil adhesion, O2
− generation, and 

EDN release induced by JCP and Cry J 1
We further evaluated whether PAR-2 was involved in the JCP-induced and Cry j 1-induced 
eosinophil adhesion. PAR-2 antagonists (FSLLRY-NH2 and ENMD-1068) suppressed the 
enhanced eosinophil adhesion by JCP (1 μg/mL; Fig. 3A). PAR-2 antagonists (FSLLRY-NH2 
and ENMD-1068) suppressed the enhanced eosinophil adhesion by Cry j 1 (10 pg/mL; Fig. 3B). 
Therefore, JCP and Cry j 1 appear to upregulate eosinophil adhesion, at least in part, via a PAR-
2-dependent mechanism.

We next examined the effects of PAR-2 antagonists on JCP-induced and Cry j 1-induced 
eosinophil O2

− generation and EDN release. The eosinophil O2
− generation induced by JCP 

(10 μg/mL) and Cry j 1 (100 pg/mL) was inhibited by PAR-2 antagonists (Fig. 3C, D). PAR-2 
antagonists did not affect the spontaneous O2

− generation by eosinophils (data not shown). 
Furthermore, the PAR-2 antagonists significantly inhibited the EDN release induced by JCP 
(10 μg/mL; Fig. 3E) and Cry j 1 (100 pg/mL; Fig. 3F).

DISCUSSION

In this study, we found that JCP and Cry j directly induced eosinophil adhesiveness, O2
− 

generation, and release of EDN. Anti-αM integrin as well as anti-β2 integrin mAb inhibited 
the JCP-induced and Cry j 1-induced eosinophil adhesion, O2

− generation, and EDN release, 
indicating that the effects of JCP and Cry j 1 involve eosinophil αMβ2 integrin. Moreover, PAR-2 
antagonists inhibited the eosinophil activation induced by JCP and Cry j 1. These results suggest 
that eosinophil activation by JCP may contribute to the aggravation of allergic airway diseases.

JCP and Cry j 1 significantly increased eosinophil adhesion in nonsensitized healthy 
donors (Fig. 1A, B), which were consistent with the findings that allergens, such as pollen, 
exacerbate allergic diseases, even in nonsensitized patients [9, 10]. One possible mechanism 
for this may be the involvement of local IgE responses [26, 27]. Another possibility is the 
involvement of innate immune responses. We recently confirmed that HDM can directly 
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activate the functions of eosinophils mainly through PAR-2 [13]. Collectively, nonspecific 
activation through PRRs, such as TLRs or PARs, may also play a role in the JCP-related 
aggravation of allergic diseases.
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− generation is inhibited by both anti-αM 
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− generation. (E, F) JCP-induced and Cry j 1-induced eosinophil eosinophil-derived neurotoxin (EDN) release is inhibited by both anti-αM and anti-β2 integrin 
mAbs. Eosinophils were pre-incubated with anti-αM integrin mAb, anti-β2 integrin mAb, or control IgG (3 μg/mL each) for 20 minutes prior to the analysis of 
EDN release from eosinophils in the presence or absence of JCP (10 μg/mL; n = 4) (E) or Cry j 1 (100 pg/mL; n = 4) (F). Spon, spontaneous EDN release.



In the present study, JCP-induced and Cry j 1-induced eosinophil activation was inhibited 
by PAR-2 antagonists (Fig. 3). PARs are expressed in various type of cells and activated by 
specific proteases [11]. There are 4 types of PARs (PAR-1 to PAR-4) in humans. Among these, 
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Fig. 3. Effects of PAR-2 antagonists on Japanese cedar pollen (JCP)-induced and Cry j 1-induced eosinophil activation. (A, B) Effects of PAR-2 antagonists on JCP-
induced and Cry j 1-induced eosinophil adhesion. Eosinophils were pre-incubated with or without a PAR-2 antagonist (FSLLRY-NH2 or ENMD-1068; 10 μM each) 
for 20 minutes prior to the analysis of adhesion to intercellular adhesion molecule-1 in the presence or absence of JCP (1 μg/mL; n = 6) (A) or (B) Cry j 1 (10 pg/
mL; n = 6). Spon, spontaneous adhesion. (C, D) Effects of PAR-2 antagonists on JCP-induced and Cry j 1-induced eosinophil O2

− generation. Eosinophils were pre-
incubated with or without a PAR-2 antagonist (FSLLRY-NH2 or ENMD-1068; 10 μM each) for 20 minutes prior to the analysis of O2

− generation from eosinophils in 
the presence or absence of JCP (10 μg/mL; n = 5) (C) or Cry j 1 (100 pg/mL; n = 5) (D). Spon, spontaneous O2

− generation. (E, F) Effects of PAR-2 antagonists on 
JCP-induced and Cry j 1-induced eosinophil eosinophil-derived neurotoxin (EDN) release. Eosinophils were pre-incubated with or without a PAR-2 antagonist 
(FSLLRY-NH2 or ENMD-1068; 10 μM each) for 20 minutes prior to the analysis of EDN release from eosinophils in the presence or absence of JCP (10 μg/mL; n = 
5) (E) or Cry j 1 (100 pg/mL; n = 5) (F). Spon, spontaneous EDN release.



PAR-2 has been confirmed to play a role in the pathogenesis of allergic inflammation [11, 
28-32]. For example, the activation of PAR-2 induces the production of proinflammatory 
cytokines such as granulocyte-macrophage colony-stimulating factor [28-31]. The deletion 
of the gene encoding PAR-2 and treatment with a PAR-2 antagonist have both been shown to 
suppress eosinophilic airway inflammation [32]. Furthermore, human eosinophils express 
PAR-2 protein and PAR-2 mRNA [33]. However, the involvement of PAR-2 in JCP-mediated and 
Cry j 1-mediated cell activation has not yet been fully elucidated.

JCP has protease activity [34, 35], e.g., the serine protease CPA9 [2], and PAR-2 may therefore 
play a role in the JCP-induced cell activation. However, whether Cry j 1 has protease activity 
remains unclear [36, 37]. For example, Kouzaki et al. [36] reported that JCP-induced IL-
25 production from airway epithelial cells through PAR-2-dependent mechanisms [36]. 
However, Cry j 1 did not induce IL-25 production, suggesting that PAR-2 is unlikely to be 
involved in the Cry j 1-induced cell activation. Kumamoto et al. [37] reported that Cry j1 itself 
did not have protease activity; however, Cry j1 increased the protease activity transiently in 
the medium of cultured keratinocytes, and this increase was inhibited by PAR-2 antagonists 
[37]. It was speculated that the interaction of Cry j1 with epidermal keratinocytes induces 
the PAR-2 activation [37]. A similar mechanism may contribute to the Cry j 1-induced PAR-
2-mediated eosinophil activation observed in this study, and should be examined in the 
future. Furthermore, other PARs including PAR-3, the mRNA of which is transcribed in 
human eosinophils [33], and other PPRs including TLRs, may be involved. We examined the 
effects of anti-TLR4 mAb on JCP-induced and Cry j 1-induced eosinophil adhesion as JCP 
may be contaminated with lipopolysaccharide; however, the anti-TLR4 mAb did not inhibit 
eosinophil adhesion (data not shown). Furthermore, as eosinophils constitutively express 
functional TLR7 [38], we examined the effects of TLR7-signal blocking on JCP-induced and 
Cry j 1-induced eosinophil adhesion using synthetic oligodeoxynucleotides with immuno-
regulatory sequences that specifically block signaling via TLR7 [39]; however, no suppression 
of eosinophil adhesion was observed (data not shown).

Pollen, including JCP, has nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
activity [40, 41], which can generate reactive oxygen species. The NADPH oxidase activity of 
pollen grains differs between species [40]. The activity of JCP was found to be localized at the 
inner surface and cytoplasm, but not on the outer wall of pollen, which is sloughed off after 
rupture [40]. Although the NADPH oxidase activity seems to be lower in JCP than in ragweed 
or birch, it may be involved in the JCP-induced eosinophil O2

− generation observed in this 
study. Additionally, pollen has eicosanoid-like lipids [42, 43] that may play a role in JCP-
induced eosinophil activation. Indeed, cysteinyl leukotrienes and prostaglandin D2 directly 
activate eosinophils [44, 45].

Recently, Kanno et al. [46] reported that β-D-glucan in JCP acts as an immunological 
adjuvant for allergic inflammation, and may be associated with exacerbated sneezing in 
a mouse model. β-D-glucan was detected in the exine and cell wall of the generative cell 
and tube cell of the grain of JCP [46]. In that study, β-D-glucan in the exine stimulated the 
production of tumor necrosis factor α and IL-6 in bone marrow-derived dendritic cells 
through dectin-1 [46]. As for eosinophils, the expression of dectin-1 remains controversial 
[12, 47, 48]. For example, Ahrén et al. [47] reported that non-typeable Haemophilus influenzae 
activates human eosinophils through dectin-1. Therefore, there is a possibility that β-D-
glucan in JCP directly activates eosinophils through dectin-1, although we did not examine the 
role of dectin-1 in this study. On the other hand, Yoon et al. [48] reported that eosinophils do 
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not express dectin-1, and that β-D-glucan activates eosinophils through αM integrin (CD11b). 
We found in the present study that the JCP-induced eosinophil adhesion, O2

− generation, and 
EDN release were suppressed by anti-αM integrin Ab (Fig. 3). Therefore, if β-D-glucan in JCP 
activates eosinophils through αM integrin, our results regarding the role of αM integrin in 
JCP-induced eosinophil activation are consistent with the results of Yoon et al. [48].

A limitation of this study is that we did not examine the role of NADPH oxidase or dectin-1 
in JCP-induced eosinophil activation, as was described above. Dectin-1 may contribute to 
the development of allergic inflammation [49]. Another limitation is that there is little 
information available regarding PAR-2 antagonists such as the optimal concentrations, 
specificity, and so on [13, 20-25]. Moreover, we used PAR-2 antagonists only for investigation 
of the role of PAR-2 in the JCP-induced and Cry j 1-induced eosinophil activation, and other 
approaches including the transfection of small-interfering RNAs should be considered to 
confirm the role of PAR-2.

In conclusion, JCP and Cry j 1 activate the functions of eosinophils through αMβ2 integrin and 
in part through PAR-2-dependent mechanisms. Therefore, eosinophil activation by JCP may be 
involved in the aggravation of allergic airway diseases, even in nonsensitized individuals.
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