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Revisiting mTOR and Epithelial–Mesenchymal Transition

In the lungs, alveolar epithelial cells (AECs) are essential for the
maintenance of alveolar structure and lung homeostasis. The
alveolar epithelium is composed of flat type 1 cells (AT1), which
are in close proximity to capillaries and mediate gas exchange,
and cuboidal type 2 cells (AT2), which regulate surfactant
production and secretion (1). In recent years, several lines of
evidence suggest that lung diseases can result from failure of
lung repair. For example, in the adult lung, AT2 cells can
proliferate to self-renew and differentiate into AT1 (2, 3).
Investigators have suggested that the self-renewal capacity in
AT2 cells is limited, such that repeated injury or aging preclude
normal epithelial regeneration, perhaps contributing to the
pathobiology of fibrotic lung diseases, including idiopathic
pulmonary fibrosis (IPF) (4). The disassembly of cell–cell
junctions, loss of epithelial identity, and upregulation of the
expression of mesenchymal markers has been termed
epithelial–mesenchymal transition (EMT) and has been
suggested to contribute to lung fibrosis (5, 6). However, direct
evidence of EMT using genetic lineage tracing tools in murine
models or humans with IPF is lacking (7, 8).

The serine/threonine kinase mTOR plays an essential role in
cell proliferation, differentiation, growth, and survival. mTOR forms
two different protein complexes: the mTOR complex 1 (mTORC1;
rapamycin sensitive) and the mTOR complex 2 (mTORC2;
rapamycin insensitive), both of which sense and integrate
intracellular and environmental signals to mediate vital cell
functions (9). Investigators have previously implicated mTOR
signaling in fibroblasts in the pathogenesis of IPF. For example, the
activation of mTOR is involved in the metabolic reprogramming of
fibroblasts and exacerbates TGF-b–induced collagen biosynthesis
(10). Moreover, IPF-derived lung fibroblasts show a persistent
activation of this kinase, which is associated with apoptosis
resistance (11). However, the role of mTOR activation in AT2 cells
is incompletely understood.

In this issue of the Journal, Saito and colleagues (pp. 699–708)
report findings from a transgenic mouse that has constitutive
activation of mTORC1 in AT2 cells (Sftpc-mTORSL11 IT Tg) (12).
In the uninjured lung, Sftpc-mTORSL11 IT Tg mice did not exhibit
a detectable phenotype, but expression of the tight junctional
proteins ZO-I and Cav-1 was reduced. When these mice were given
bleomycin, the recruitment of inflammatory cells into the lungs
and the resulting fibrosis were worse. The authors provide
supportive data in cultured epithelial cells suggesting that
activation of Angptl4 (angiopoietin-like 4) acts downstream of
mTOR signaling to alter the expression of tight junction proteins.
They propose this as a mechanism for their observations but do not
provide causal data in vivo. Their hypothesis is supported by
findings in breast cancer cells in which TGF-b upregulates Angptl4
to promote lung metastases (13). Moreover, deficiency of Angptl4

reduces inflammatory cell recruitment in influenza and LPS-
induced models of lung injury (14, 15).

The findings of Saito and colleagues support a link between
mTOR signaling in the epithelium and the regulation of tight
junctional integrity and inflammatory cell recruitment (12). This
finding is consistent with recent reports by Wu and colleagues,
who found that loss of a small GTPase Cdc42 that regulates cell
division and cell polarization promoted the development of lung
fibrosis after pneumonectomy (16). However, their suggestion
that Angptl4 promotes EMT during pulmonary fibrosis is likely to
be met with skepticism. To make such a claim, the investigators
would need to show that labeled AT2 cells become fibroblasts
during fibrosis when mTOR signaling is activated. Careful studies
of this kind have been conducted by other laboratories and have
failed to find evidence of EMT in the bleomycin model of
pulmonary fibrosis (17). Several other limitations of these studies
should be noted. Most importantly, the transgenic mouse used in
this study has constitutive mTOR activation during development,
raising the possibility that compensatory or alternative pathways
may have compensated for the chronic activation of mTOR,
contributing to the observed phenotypes. Although these studies
suggest a potential new line of investigation, studies combining
inducible systems with genetic lineage tracing and careful
phenotyping of epithelial, immune, and mesenchymal
populations during fibrosis will be required to understand the
role of mTOR signaling in the lung epithelium during fibrosis. n
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