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With the advent of next-generation sequencing technology, it has become convenient
and cost efficient to thoroughly characterize the microbial diversity and taxonomic
composition in various environmental samples. Millions of sequencing data can be
generated, and how to utilize this enormous sequence resource has become a critical
concern for microbial ecologists. One particular challenge is the OTUs (operational
taxonomic units) picking in 16S rRNA sequence analysis. Lucky, this challenge can be
directly addressed by sequence clustering that attempts to group similar sequences.
Therefore, numerous clustering methods have been proposed to help to cluster 16S
rRNA sequences into OTUs. However, each method has its clustering mechanism, and
different methods produce diverse outputs. Even a slight parameter change for the same
method can also generate distinct results, and how to choose an appropriate method
has become a challenge for inexperienced users. A lot of time and resources can be
wasted in selecting clustering tools and analyzing the clustering results. In this study, we
introduced the recent advance of clustering methods for OTUs picking, which mainly
focus on three aspects: (i) the principles of existing clustering algorithms, (ii) benchmark
dataset construction for OTU picking and evaluation metrics, and (iii) the performance
of different methods with various distance thresholds on benchmark datasets. This
paper aims to assist biological researchers to select the reasonable clustering methods
for analyzing their collected sequences and help algorithm developers to design more
efficient sequences clustering methods.

Keywords: operational taxonomic units, 16S rRNA, metagenomics, sequence clustering, high-throughput
sequencing

INTRODUCTION

Bacteria constitute an overwhelming majority of domain in the life tree on our planet, occurring
in every habitat on earth from natural environments (e.g., oceans, soils, and lakes) to the human
body (Sanli et al., 2015; Fuks et al., 2018; Gentile and Weir, 2018). They perform critical functions
that range from the regulation of various biogeochemical activities to that of our health and

Abbreviations: AMI, adjusted mutual information; ARI, adjusted rand index (ARI); AL, average linkage; CL, complete
linkage; GIS, greedy incremental strategy; MCC, Matthews correlation coefficient; OTUs, operational taxonomic units; rRNA,
ribosomal RNA; SL, single linkage; SD,standard deviation.
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disease (Shah et al., 2018; Thaiss, 2018; Almeida et al., 2019;
Qu et al., 2019a). Describing the taxonomic structure of the
communities is vital for studying the bacterial composition and
diversity in an environmental or clinical sample (Wei et al.,
2016; Lapierre et al., 2019; Zhu et al., 2019). Until recently,
most of the bacteria were studied with traditional culture-
dependent methods. Because only a small fraction (less than
1%) of all microbial organisms can be isolated, cultivated,
and identified in the laboratory, culture-dependent microbial
methods are inadequate for exploring the hidden world of many
microbial communities (Kellenberger, 2001). On the contrary,
metagenomics study is a rapidly growing field that aims to
understand all organisms via their nucleic acid sequences to
characterize the composition, structure, diversity, and function of
microbial communities in a specific habitat (Jo, 2004; Riesenfeld
et al., 2004; Laudadio et al., 2019; Wemheuer et al., 2020).
Bypassing the needs for isolation and lab cultivation of individual
species in traditional microbial studies (Streit and Schmitz, 2004;
Meyer et al., 2019), metagenomics allows microbiologists to
study the entire genetic materials taken directly from relevant
environments and provides a new opportunity to probe the
microbial community composition and structure (Koslicki et al.,
2013; Zhang et al., 2013; Gao, 2018; Wei and Zhang, 2018;
Chong et al., 2020; Qian et al., 2020). Thus, several large-scale
metagenomics projects, such as the Human Microbiome Project
(Turnbaugh et al., 2007; Integrative HMP (iHMP) Research
Network Consortium, 2014), the International Census of Marine
Microbes1, and the Earth Microbiome Project (Gilbert et al.,
2014), have been proposed.

In metagenomics, the 16S rRNA (ribosomal RNA) exists
in most bacterial species and contains hypervariable regions
that allow them to be used as species-specific signatures
for identifying taxa (Ward et al., 1990; Stackebrandt and
Goebel, 1994; Peterson et al., 2019). Therefore, the 16S
rRNA is an ideal proxy for profiling of complex microbial
communities and inferring the phylogenetic and evolutionary
relations among organisms (Woloszynek et al., 2019). Recently,
the rapid advancements in next-generation sequencing (NGS)
technologies have dramatically promoted metagenomics studies
by offering low-cost and ultra-high-throughput sequencing (Wu
et al., 2011). This enormous progress in NGS has resulted in
an explosive accumulation of 16S rRNA sequence data (Zhu
et al., 2019). How to deal with this massive quantities and
high complexity of sequencing data has become a tremendous
challenge for microbial researchers (Li et al., 2012; Kim et al.,
2013; Qian et al., 2019). As a result, it is needed to develop
efficient and accurate computational methods for analyzing these
enormous sequence data generated from different habitats and
health conditions (Huang et al., 2010; Liu et al., 2014).

Generally, analysis of the 16S rRNA sequencing data typically
begins by grouping them into operational taxonomic units
(OTUs) (Turnbaugh et al., 2007; Peterson et al., 2009; Větrovský
et al., 2018) that contain similar 16S rRNA sequences with high
sequence similarity (Seguritan and Rohwer, 2001; Enright et al.,
2002; Yooseph et al., 2007; Niu et al., 2010; Westcott and Schloss,

1http://icomm.mbl.edu

2017). OTUs can represent the microbial taxa and facilitate the
downstream analysis for the calculation and visualization of
diversity and composition of the microbes (Niu et al., 2011; Zorita
et al., 2015; Zou et al., 2018). Thus, picking OTUs has become
the backbone in the established workflows, such as QIIME2
(Caporaso et al., 2010; Bolyen et al., 2019), mothur (Schloss et al.,
2009), and RDP tools (Wang et al., 2007; Cole et al., 2009, 2013),
which are used to analyze the microbial community structures.

In the last decade, a growing number of clustering methods
have been proposed to cluster the 16S rRNA sequences
into OTUs. However, different methods produce quite diverse
outputs, even though a slight parameter change for the same
method can also generate distinct results. A more general
problem faced by microbial researchers is how to select one
suitable method to obtain better clustering results. Therefore,
understanding the principle and performance of different
clustering algorithms is crucial for users to employ one suitable
method for analyzing their sequence data. In this review,
we summarized existing state-of-the-art clustering algorithms,
explained their clustering mechanisms, analyzed their characters,
compared their clustering performance on several benchmark
datasets, and recommended some directions for developing
new clustering algorithms. We hope this review can assist the
biological researchers to select a reasonable clustering method
for analyzing their collected sequences and help algorithm
developers to design more efficient sequence clustering methods.

METHODS OF OPERATIONAL
TAXONOMIC UNIT PICKING

Numerous OTU picking methods have been developed, which
can be categorized as closed-reference clustering, de novo
clustering (also called taxonomy independent), and open-
reference clustering (Lawley and Tannock, 2017; Whelan and
Surette, 2017; De Filippis et al., 2018). The closed-reference
clustering involves comparing each query sequence to an
annotated reference taxonomy database by utilizing the sequence
classification or searching methods (Liu et al., 2017, 2018; Matias
Rodrigues et al., 2017; Wei et al., 2020), then sequences matched
to the same reference sequence are grouped into the same
OTU. However, if a large portion of microbes in a sample has
not yet been well defined, that is, not recorded in databases
(i.e., unknown taxa), then they cannot be assigned to an OTU.
Thus, closed-reference clustering methods are largely dependent
on the completeness of the reference database, hence, have a
poor performance on the condition that many novel organisms
exist in the sequencing data (Schloss and Westcott, 2011; Chen
et al., 2016). Furthermore, two query sequences matched to the
same reference sequence may have a lower similarity to each
other (Westcott and Schloss, 2015). As a result, closed-reference
methods are often applied for the purpose of sequence annotation
(Sun et al., 2011). For de novo clustering, all sequences are
clustered into OTUs based on the pairwise sequence distances
rather than comparing against a reference database (Forster
et al., 2016). That is, de novo clustering methods compare each
sequence against each other, followed by implementing different
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clustering algorithms at a specified threshold to group sequences
into OTUs. For the open-reference clustering, it is a combination
of the closed-reference and de novo methods. Here, a closed-
reference clustering approach is first used to assign OTUs, and
the unassigned sequences outputted by the closed-reference
approach are then grouped by a de novo clustering method.
Open-reference clustering blends the strengths and weaknesses
of the other method and adds the complication that closed-
reference and de novo clustering use different OTU definitions
(Westcott and Schloss, 2017). As a result, de novo clustering does
not depend on any reference database and, hence, can assign all
sequences into OTUs, including both sequences that have been
deposited in annotated databases as well as novel unknown ones
(Zou et al., 2018). Additionally, several studies (Jackson et al.,
2016; Schloss, 2016) also show that de novo clustering methods
significantly outperform the other two approaches for picking
OTUs. Therefore, de novo clustering attracts more attention
and has become the preferred choice for researchers (Schloss,
2010; Cai et al., 2017). In the following, we mainly focus on de
novo clustering.

Many different de novo clustering methods have been
proposed to pick OTUs in the past decade, which can be
further classified into four general categories: hierarchical
clustering, heuristic clustering, model-based, and network-based
clustering methods.

Hierarchical Clustering Methods
Hierarchical clustering methods generally require a full distance
matrix between all sequences based on pairwise sequence
alignment or multiple sequence alignment, then construct a
hierarchical tree on the distance matrix. By applying a predefined
clustering threshold to the hierarchical tree, sequences within
the threshold are grouped into one OTU, as shown in Figure 1.
Actually, most hierarchical methods implement the complete-
linkage (CL), average-linkage (AL), or single-linkage (SL)
algorithms (Zhang and Wei, 2015). CL, SL, and AL belong to the
agglomerative methods, that is, in the beginning, each sequence
is one cluster, then compute the similarity (i.e., distance) between
each of the clusters and merge the two most similar clusters.
Repeat the previous step until there is only a single cluster left, or
the merging distance meets the given threshold (Figure 1C). The
main differences among CL, SL, and AL are the distance criteria
defined between two clusters (Figure 2), which can reflect the
degree of clustering. For SL, the distance between two clusters
is the minimum distance between two sequences in each cluster
(Figure 2A). For CL, the distance between two clusters is defined
as the maximum distance between two sequences in each cluster
(Figure 2B). For AL, the distance between two clusters is defined
as the average distance between each sequence in one cluster to
every sequence in the other cluster (Figure 2C). We can see that
SL is a loose clustering strategy, CL is the most stringent, and AL
is the middle ground between SL and CL.

DOTUR (Schloss and Handelsman, 2005) is probably the
first published tool for hierarchically clustering sequences into
OTUs by using CL, AL, and SL. mothur (Schloss et al., 2009),
the improved version of DOTUR, has become the representative
hierarchical clustering method for picking OTUs. As with

DOTUR, mothur needs to load the distance matrix into computer
memory before performing clustering. In order to alleviate
the computational complexity and memory usage, Sun et al.
(2009) proposed a novel algorithm (namely, ESPRIT), which
adopts the k-mer (substrings of length k) distance to rapidly
identify the sequence pairs with high similarity and stores the
reduced distance by using a sparse matrix. In the procedure of
picking OTUs, the Hcluster algorithm was devised to perform
CL clustering, which can avoid loading the whole matrix into
memory. Huse et al. (2010) observed that the CL algorithm is
sensitive to sequencing artifacts, then they proposed a single-
linkage preclustering (SLP) to overcome the effect of sequencing
errors and decrease the inflation of OTUs. Cole et al. (2013)
proposed the mcClust algorithm to achieve the CL strategy
that allows the distance matrix computation to be parallelized,
which can lower the time complexity. Matias Rodrigues and von
Mering (2013) presented the HPC-CLUST pipeline, a distributed
implementation of two hierarchical clustering algorithms (CL
and AL) with high optimization. HPC-CLUST takes as input
a set of pre-aligned sequences and efficiently allocates both
memory usage and computing complexity, which can handle
large numbers of sequences on a computer cluster. Franzén
et al. (2015) developed the oclust method in which the distance
matrix and CL clustering are performed with an R package
based on the pre-aligned sequences. Similar to the HPC-CLUST,
the oclust also needs to pre-align sequences, which is usually
computation intensive.

Generally, the computational complexity of hierarchical
algorithms both in time and space is O(N2), where N is the
number of sequences. Thus, the computational cost of most
hierarchical methods quadratically scales with the number of
sequence increases. As a result, hierarchical clustering methods
are not suitable for handling huge numbers of sequences because
of their intrinsic computing complexity (Barriuso et al., 2011).

Heuristic Clustering Methods
Heuristic clustering processes input sequences one by one,
avoiding the expensive step of computing distances of all
pairwise sequences. Most classical heuristic clustering methods
use pairwise sequence alignment and generate clusters in a greedy
incremental strategy (GIS), which is shown in Figure 3. These
methods use one sequence (called seed) to represent its cluster,
and each query sequence is compared with all seeds of existing
clusters (Chen et al., 2016). One query sequence is assigned to a
cluster if the distance between the sequence and one seed meets
the clustering threshold (Figure 3A). Otherwise, a new cluster
is created, and the query sequence becomes the seed sequence
(Figure 3B). Due to the comparison of all sequences just with the
seeds of clusters, greedy heuristic clustering is computationally
much more efficient than hierarchical clustering methods. As a
result, many different heuristic clustering algorithms have been
developed, and the main differences are the seed selection and
distance calculation.

CD-HIT (Li and Godzik, 2006; Huang et al., 2010; Fu et al.,
2012) and USEARCH (Edgar, 2010) are the two best-known
heuristic methods for picking OTUs. The main discrepancy
between these two methods is the sequence sorting before
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FIGURE 1 | Schematic diagram of hierarchical clustering algorithms. (A) Input reads set, (B) distance matrix, (C) hierarchical Tree, and (D) OTUs formation.

FIGURE 2 | The distance between two clusters defined in single-linkage (SL) (A), complete-linkage (CL) (B), and average-linkage (AL) (C) clustering algorithms.
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FIGURE 3 | Schematic diagram of classical heuristic clustering methods. (A) sequence assignment, (B) new seed generation, and (C) OTUs results.

clustering. CD-HIT sorts by the length of sequences while
USEARCH by sequence abundance. UPARSE (Edgar, 2013) is
an improved version of USEARCH, which adds the chimera
detection for seed sequences. Different from sequence distance
calculation in CD-HIT and USEARCH, GramClust (Russell
et al., 2010) designs a distance metric based on the inherent
grammar of each pairwise sequences for clustering a set of
sequences. DNACLUST (Ghodsi et al., 2011) also follows the
GIS way, but it uses a novel k-mer-based filtering algorithm
to accelerate the clustering procedure. Similar to DNACLUST,
LST-HIT (Namiki et al., 2013) introduces a new filtering
scheme to remove dissimilar sequence pairs on the basis of
the longest common subsequence before performing pairwise
sequence alignment, which can speed up the computation.
SUMACLUST (Mercier et al., 2013) and OTUCLUST (Albanese
et al., 2015) are another two greedy clustering methods that
are designed to perform exact sequence alignment, rather than
semiglobal alignments implemented in CD-HIT and USEARCH.
Additionally, OTUCLUST performs sequence de-duplication
and chimera removal. LSH (Rasheed et al., 2013) is also another
greedy clustering algorithm that utilizes the locality-sensitive
hashing to accelerate the pairwise sequence comparisons and
incorporates a matching criterion to improve the quality of
sequence comparisons. Considering that using a single global
clustering threshold is too relaxed for slow-evolving lineages,
Mahé et al. (2014) designed Swarm, which first generates an
initial set of OTUs by iteratively agglomerating similar sequences,
then breaks them into sub-OTUs to refine the clustering results
by using abundance information and OTUs’ internal structures.
VSEARSH (Rognes et al., 2016) is a free 64-bit and open-
source versatile program and is designed as an alternative to the
USEARCH tool for which the source code is not publicly available
and only a memory-confined 32-bit version is freely available
for academic users.

The above heuristic methods just select one sequence as the
seed to represent the cluster. Once the seed is selected, it will
not be changed anymore, resulting in the outcomes sensitive
to the selected seeds. Therefore, how to select a “good” seed
that includes more cluster information is significantly important.
Some methods have been proposed to achieve this target. Zheng
et al. (2012) introduced a dynamic seed-based clustering method
(namely, DySC) to reselect seed sequences. DySC first uses the
traditional GIS to form the pending clusters. Once a pending
cluster reaches a threshold size, it is converted into a fixed
cluster, and a new fixed seed is reselected, which is defined
as the sequence that maximizes the sum of k-mers shared
between the fixed read and other reads in one cluster. Chen
et al. (2013a) proposed MSClust, a multiseed-based heuristic
clustering method. The multiseeds for one cluster are generated
based on an adaptive strategy, that is, one query sequence is
assigned to one cluster if the average distance between the
sequence and seeds is smaller than the user-defined threshold;
otherwise, the sequence is marked as unassigned. In order to
reduce the sensitivity of seeds to sequencing errors, we developed
DBH (Wei and Zhang, 2017), a de Bruijn (DB) graph-based
heuristic clustering method. It first forms temporary clusters
using the traditional GIS. When the size of a temporary cluster
reaches the predefined minimum sequence number, DBH builds
a DB graph for this cluster and generates a new seed to represent
this cluster. Finally, the remaining sequences are assigned to
the corresponding OTUs. Later, We designed DMSC (Wei and
Zhang, 2019), a dynamic multiseed clustering method for OTU
picking. DMSC first generates a series of clusters based on the
GIS strategy. When the sequence number in a cluster is larger
than the value of a predefined size, the multicore sequence (MCS)
selection procedure is triggered, and the MCS is applied as
the seeds of the cluster. The MCS is determined as the n-core
sequences (n≥ 3) that the distance between any two sequences in
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the MCS is less than the clustering threshold. If a new sequence
is added to one cluster according to the average distance to MCS
and the distance standard deviation in MCS, DMSC will update
the MCS. By reselecting seed sequences, these four methods can
achieve higher clustering accuracy than the traditional heuristic
methods such as CD-HIT and USEARCH. Recently, Bazin et al.
(2018) proposed a fuzzy OTU-picking algorithm that adds the
uncertainty information to the clustering based on fuzzy sets,
which can also improve the clustering quality.

Different from most existing clustering methods that
use the seed sequences to represent clusters, Cai and Sun
(2011) developed the ESPRIT-Tree method, which initially
constructs a PBP (pseudometric-based partition) tree that
provides a coarse representation of the entire sequences,
then iteratively finds the closest pairs of sequences or clusters
and merges them into a new cluster. Later, they proposed
an improved method of ESPRIT-Forest (Cai et al., 2017),
which can cluster massive sequence data in a subquadratic
computational complexity. Pagni et al. (2013) introduced
DBC454 for clustering ITS1 (fungal internal transcribed
spacer 1) sequences using a density-based hierarchical
clustering procedure. Recently, Westcott and Schloss (2017)
designed OptiClust that maximizes the value of Matthews
correlation coefficient (MCC) by iteratively reassigning
sequences to new OTUs.

Broadly speaking, heuristic clustering methods have a
lower computational complexity of O(KN), where K is
the final number of clusters. Usually K ≤ N, and hence,
heuristic clustering methods are computationally much more
efficient than hierarchical clustering methods and are more
widely employed to deal with hundreds of thousands of
16S rRNA sequences.

Model-Based Clustering Methods
One of the critical problems with most existing hierarchical and
heuristic clustering methods is the need to select a constant
and optimal distance threshold to define OTUs at a distinct
taxonomic level (e.g., species). A slight change in threshold can
result in very different OTUs. Model-based clustering methods,
such as CROP (Hao et al., 2011), BEBaC (Cheng et al., 2012),
and BC (Jääskinen et al., 2014), were developed to address this
issue. CROP (Hao et al., 2011) builds a Bayesian model to cluster
sequences, which utilizes a Gaussian mixture model and a birth–
death process to characterize a specific cluster. BEBaC (Cheng
et al., 2012) first uses the heuristic trick to assign the highly
similar sequences to form a pregroup, then similar 3-mer count
vectors are assigned into crude clusters by searching for the
best partitions that achieve the maximum posterior possibility
for given sequence data. In the fine clustering phase, BEBaC
applies a minimum description length criterion to determine
the number of OTUs, generating the final partitioning. BC
(Jääskinen et al., 2014) first models the sequences using Markov
chains, then uses a Bayesian partition model with the Dirichlet
process to split and merge clusters. Although these methods
partition sequences into OTUs without additional information
besides the sequence data itself, it is not suitable for large-scale
sequence datasets.

Network-Based Clustering Methods
Several network-based clustering methods such as M-pick (Wang
et al., 2013), MtHc (Wei and Zhang, 2015), and DMclust (Wei
et al., 2017) were also proposed to solve the problem of requiring
a given clustering distance to pick OTUs. Figure 4 shows the
schematic diagram of the main processing steps in network-based
clustering methods. M-pick (Wang et al., 2013) first compute
the distances across all pairs of sequences to construct a fully
connected graph, then prunes the complete graph to generate
a neighborhood graph; finally, a modularity-based community
detection approach is recursively performed to form OTUs. Based
on the concept of network motif, we proposed MtHc (Wei and
Zhang, 2015). MtHc first searches for sequence motifs using a
heuristic strategy then uses these sequence motifs as seeds to
generate candidate clusters, which are hierarchically merged into
OTUs based on the distances of motifs between two clusters.
Later, we developed DMclust (Wei et al., 2017); it first searches for
the sequence dense groups, which are viewed as nods to construct
a weighted graph, then a modularity-based clustering method is
applied to capture the community structures in sequence data to
generate clusters.

Network-based methods require a full distance matrix of all
pairwise sequences to construct a graph and, hence, has a high
computational complexity in terms of run time and memory
usage. They cannot handle large numbers of sequences.

Based on the above analysis, Figure 5 describes the
development history of clustering methods according to their
published years. It can be summarized that hierarchical clustering
(either based on AL, SL, or CL) and network-based clustering
methods need to compute and store a full distance matrix of
all pairwise sequences, adding the computational complexity
and memory space usage. Although the model-based clustering
method could produce better clustering results, their run time
would render them unusable on massive quantities of sequences.
Due to the comparison of each sequence just with the seed
sequences, heuristic clustering methods are capable of handling
millions of sequences and are more widely employed to analyze
massive 16S rRNA datasets (Cai and Sun, 2011). With the
sequencing technology development, the volume of sequences
increases drastically, and heuristic clustering methods continue
to attract more attention in picking OTUs.

MATERIALS OF BENCHMARK
DATASETS AND EVALUATION METRICS

Benchmark Datasets
Three benchmark studies, including one simulated and two
real-world sequence datasets, were conducted to assess the
performance of 12 existing OTU-picking algorithms. The
simulated dataset was directly produced by Seq-Gen (Rambaut
and Grass, 1997) sequence simulator. It can be directly
downloaded from BEBaC (Cheng et al., 2012). Two real-life
sequence datasets are the V4 hypervariable region dataset from
the murine gut and the global 16S bacterial rRNA gene sequence
dataset, respectively. These sequence datasets have been widely
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FIGURE 4 | Schematic diagram of network-based methods.

FIGURE 5 | Published years of operational taxonomic unit (OTU) picking methods (mentioned in this paper).

used to validate the performance of clustering results (Cheng
et al., 2012; Wei and Zhang, 2017, 2019).

For the simulated dataset, the ground truths (labels of
sequences) are directly taken from simulated data, in which we
exactly know the species of each sequence. However, for real-
life datasets, we need to construct the ground-truth information
by searching a reference database. The processing procedures
of obtaining ground truth information for real-life datasets are
described in Supplementary Figure S1. First, the V4 pair-end
sequencing data are merged by the FLASH (Magoè and Salzberg,
2011) assembly tool. Then, the merged sequences are cleaned
to remove sequences with low quality and short length by
quality USEARCH (Edgar, 2010) filtering software. The Python
executive command (assign_taxonomy.py) in QIIME (Caporaso
et al., 2010) is applied to align the cleaned sequences to the
default reference database (Greengenes DeSantis et al., 2006)
to obtain the species information. Last, aligned sequences with
high alignment quality (i.e., >97% identity over an aligned
region >90% of the length of the sequences) are retained, and
the remaining annotated sequences are adopted to construct
the final ground-truth. These procedures of constructing the
ground-truth information are based on previous studies (Cai
and Sun, 2011; Wei and Zhang, 2019). Some detailed features

(such as taxon number, sequences number, and average sequence
length) of three benchmark datasets are listed in the following
Table 1.

Evaluation Metrics
The number of OTUs, normalized mutual information (NMI),
Matthews correlation coefficient (MCC), adjusted rand index
(ARI), and adjusted mutual information (AMI) metrics are
used to evaluate the clustering performance. OTU number is
the cluster number that directly inflects the count of species
(or genera). NMI value is commonly applied to estimate the
clustering accuracy, that is, how the outcome of one clustering
algorithm agrees with the ground truth (Chen et al., 2013b).
ARI (Nguyen et al., 2015; Jin and Bi, 2018) represents the
number of pairwise sequences that are either in the same
cluster or in different clusters in both partitions. AMI is similar
to ARI. Different from NMI, AMI, and ARI that rely on
an external reference, the metric of MCC can be calculated
according to the clustering threshold and distances between
sequences (Schloss and Westcott, 2011); thus, MCC is regarded
as an objective criterion to evaluate the clustering quality of
different algorithms for OTU picking (Westcott and Schloss,
2015; Schloss, 2016; Liu et al., 2019). AMI, ARI, and MCC vary
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TABLE 1 | Statistics of three benchmark datasets for operational taxonomic unit (OTU) picking.

Sequence data Taxon number Total sequences Average length Variable regions References

Simulated dataset 9 22 K 500 - Cheng et al., 2012

V4 dataset 68 ∼511 K 253 V4 Westcott and Schloss, 2015

Global 16S rRNA 1,498 ∼887 K ∼1,400 V1-V9 Matias Rodrigues and von Mering, 2013

between -1 and 1, and a larger value represents better clustering
quality. How to calculate these metrics are provided in the
Supplementary File.

COMPARISON RESULTS

We evaluate 12 state-of-the-art OTU picking methods, that is,
CD-HIT (v.4.6.8) (Li and Godzik, 2006), USEARCH (v.11.0.667)
(Edgar, 2010), DNACLUST (Ghodsi et al., 2011), Swarm
(v.1.2.19) (Mahé et al., 2014), VSEARCH (v.2.3.4) (Rognes et al.,
2016), DBH (Wei and Zhang, 2017), DMSC (Wei and Zhang,
2019), DySC (v.06-1-2012) (Zheng et al., 2012), ESPRIT-Forest
(Cai et al., 2017), GramClust (v.1.3) (Russell et al., 2010),
average linkage (AL) clustering method employed in mothur
software (v.1.44.3) (Schloss et al., 2009), and CROP (Hao et al.,
2011). Among these methods, CD-HIT, USEARCH, DNACLUST,
Swarm, VSEARCH, DySC, ESPRIT-Forest, DBH, GramClust,
and DMSC are the typical heuristic clustering methods; mothur
is a comprehensive software package for sequence clustering,
and it is demonstrated that the AL clustering implemented
in mothur (mothur-AL) is a reliable method to represent the
actual distances between sequences (Westcott and Schloss, 2015);
CROP is a model-based method. All methods were executed
on the same Linux server for OTU picking. The running
parameters and command lines of each algorithm are given in
Supplementary Table S1.

Benchmarking on the Simulated Dataset
Figure 6 shows the NMI values of 12 clustering methods as
a function of distance thresholds ranging from 0.01 to 0.1.
Because Swarm does not apply the distance threshold to cluster,
and just uses the parameter d (d nucleotide differences) to
generate OTUs, the setting of d is calculated by d = dth × Lave,
where Lave is the average length (i.e., 500) of this simulated
data, dth is the distance threshold ranging from 0.01 to 0.1.
From Figure 6, we can see that all methods, except VSEARCH
and GramClust, show a similar trend, that is, they achieved
higher NMI values near 0.04 distance but lower NMI when
the distance threshold increases. The NMI peak values of
the different methods occur at different distance thresholds.
This is mainly due to the discrepancies of distance calculation
and clustering strategy in each method. VSEARCH shows a
different trend from other methods. It obtained the NMI peak
at 0.07 distance, while the other methods achieved their NMI
peak value near 0.04 distance. The NMI values of GramClust
is always between 0.85 and 0.90 even in lower distances.
The peak NMI scores of 11 methods and the corresponding
inferred OTU number at different distance thresholds are

reported in Table 2. It can be found that DMSC, CROP,
DBH, CD-HIT, VSEARCH, DNACLUST, Swarm, GramClust,
and mothur-AL successfully generated nine OTUs at their
maximum NMI values, while USEARCH, DySC, and ESPRIT-
Forest overestimated OTUs.

Figure 7 illustrates the MCC values of 12 OTU picking
methods at different clustering thresholds. Similar to the NMI
curve, all methods achieved the highest MCC value near 0.04
distance threshold, while USEARCH and VSEARCH obtained
their MCC peak values at 0.01 distance. Table 3 reports
the average, standard deviation (SD), and maximum of MCC
scores with the inferred OTUs number. It can be observed
that DMSC, CROP, Swarm, GramClust, DBH, and mothur-AL
methods also can produce the exact OTU number at their best
MCC values, while USEARCH, DySC, ESPRIT-Forest, CD-HIT,
VSEARCH, and DNACLUST overestimated the OTU number.
Based on the MCC values listed in Table 3, we can see that
DMSC, ESPRIT-Forest, CD-HIT, and mothur-AL have a better
clustering quality (ave. MCC > 0.9) than other methods, and
mothur-AL has the best average MCC value. The NMI values,
OTUs number, and MCC values of the different methods
in the range of 0.01–0.1 distance thresholds can be seen in
Supplementary Table S2.

Supplementary Figures S2, S3 depict the ARI and AMI curves
of 12 OTU picking methods at different clustering thresholds. On
the whole, the curves of ARI and AMI are similar to those of NMI.
That is, most methods, e.g., CD-HIT, DBH, DySC ESPRIT-Forest,
DNACLUST, Swarm, DMSC, and mothur-AL obtained higher
ARI and AMI values near 0.04 distance but lower ARI when
the distance threshold increases, while VSEARCH and UCLUST
show a different trend from other methods where they obtained
the ARI peak at 0.07 distance. The ARI values of GramClust are
always between 0.65 and 0.67 even in lower distances, and AMI
values are between 0.79 and 0.81. Although CROP achieved the
highest ARI (at 0.01 distance threshold) among all methods, it
generated 158 OTUs, 17 times larger than the true number. The
maximum ARI and AMI values of the 11 methods at different
clustering thresholds are listed in Supplementary Tables S3, S4.
It can be found that some clustering methods (such as DMSC,
VSEARCH, DNACLUST, Swarm, GramClust, DBH, and mothur-
AL) can exactly infer the true number of OTUs at their best ARI
and AMI values for the simulated dataset.

Benchmarking on V4 Dataset
For the V4 dataset, just eight methods of USEARCH, CD-HIT,
DBH, GramClust, DNACLUST, VSEARCH, DMSC, and mothur-
AL can generate the clustering results at each distance threshold,
while ESPRIST-Forest, DySC, CROP, and Swarm cannot handle
this dataset. Figure 8 shows the NMI curves of each clustering
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FIGURE 6 | Normalized mutual information (NMI) values of different clustering methods on the simulated dataset.

TABLE 2 | Maximum normalized mutual information (NMI) values for different OTU picking methods on the simulated dataset.

DMSC (0.02) USEARCH (0.05) DySC (0.03) ESPRIT-Forest (0.05) CD-HIT (0.05) CROP (0.03)

Max. NMI 0.9503 0.9107 0.9252 0.8979 0.9334 0.9334

OTUs number 9 10 17 13 9 9

VSEARCH (0.07) DNACLUST (0.05) Swarm (d = 15) GramClust (0.07) DBH (0.03) Mothur-AL (0.04)

Max. NMI 0.9334 0.9333 0.9334 0.8795 0.9293 0.9333

OTUs number 9 9 9 9 9 9

The value in the parentheses is the clustering threshold where each method achieves its peak NMI. For the Swarm method, it is the value of parameter d.

method, and Supplementary Figure S4 presents the inferred
OTU number at different clustering thresholds. We can see
that GramClust has higher NMI scores than other approaches
when the distance increases from 0.01 to 0.06. DMSC and
mothur-AL have higher NMI values than the other methods
at distance thresholds from 0.09 and 0.11, and mothur-AL
achieved the highest NMI score at 0.12 threshold. For the
OTU number in Supplementary Figure S4, all methods show
a similar descending trend from 0.01 to 0.15, generating close
OTU number to the ground truth near 0.1 distance except
GramClust and mothur-AL. mothur-AL obtained close OTU
number at 0.08 distance threshold. GramClust produces more
OTUs than the ground truth even in low distance thresholds. The
ARI and AMI curves of each clustering method are described in
Supplementary Figures S5, S6, which show a similar result to
the curve of NMI.

Figure 9 describes the MCC values at different distance
thresholds, and Table 4 reports the maximum, average, and SD

of MCC values for each method. Obviously, from Table 4, we
can find that DMSC, DNACLUST, and mothur-AL achieve higher
average MCC values than other clustering methods, indicating
that these three methods can produce higher clustering quality on
the V4 dataset. The NMI values, OTU number, MCC, ARI, and
AMI values of each method with different distance thresholds can
be found in Supplementary Tables S5, S6.

Benchmarking on Global 16S rRNA
Sequence Dataset
The global 16S rRNA dataset was often employed to test the
scalability of dealing with longer sequences. For this near full-
length 16S dataset, only USEARCH, CD-HIT, VSEARCH, and
DBH can get the clustering results. Other methods fail to hand
with this large-scale dataset.

The NMI values of USEARCH, CD-HIT, VSEARCH,
and DBH with different clustering thresholds are shown in
Supplementary Figure S7. We can observe that CD-HIT
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FIGURE 7 | The Matthews correlation coefficient (MCC) values of 12 OTU picking methods on the simulated dataset.

TABLE 3 | The average, SD, and maximum MCC values of 11 OTU picking methods on the simulated dataset.

DMSC (0.04) USEARCH (0.01) DySC (0.03) ESPRIT-Forest (0.04) CD-HIT (0.03) CROP (0.03)

Max. MCC 0.9980 0.9369 0.9838 0.9947 0.9840 0.9980

OTUs number 9 528 17 16 27 9

Ave. MCC 0.9363 0.8198 0.7929 0.9286 0.9120 0.8347

SD of MCC 0.0343 0.0737 0.1750 0.0366 0.0451 0.1585

VSEARCH (0.01) DNACLUST (0.04) Swarm (d = 15) GramClust (0.05) DBH (0.03) Mothur-AL (0.04)

Max. MCC 0.9349 0.9921 0.9868 0.9106 0.9868 0.9980

OTUs number 1,291 15 9 9 9 9

Ave. MCC 0.8204 0.8891 0.5474 0.7832 0.8879 0.9564

SD of MCC 0.0578 0.0567 0.1385 0.1436 0.0781 0.0270

The value in the parentheses is the clustering threshold where each method achieves its peak MCC. For the Swarm method, it is the value of parameter d.

achieves higher NMI scores than other approaches at distance
thresholds from 0.01 to 0.07, while USEARCH and VSEARCH
obtain higher NMI scores than DBH and CD-HIT with distance
increases from 0.11 to 0.15. The AMI values of USEARCH,
CD-HIT, VSEARCH, and DBH are described in Supplementary
Figure S8, which shows a similar result to the NMI values in
Supplementary Figure S7. Supplementary Figure S9 represents
the OTU number inferred by these four methods. It can be seen
that four OTU picking methods present a similar trend, that is,
the OTU number exponentially decreases when the clustering
distance increases. Four OTU picking methods of USEARCH,
CD-HIT, VSEARCH, and DBH overestimate OTUs in the
distance range from 0.01 to 0.13. Supplementary Figure S10

shows the ARI values of USEARCH, CD-HIT, VSEARCH, and
DBH. We can see that CD-HIT achieves higher ARI values than
other methods at distance thresholds from 0.01 to 0.07, DBH
obtains the highest ARI at distance thresholds from 0.08 to 0.10,
while USEARCH and VSEARCH obtain higher NMI scores than
DBH and CD-HIT with distance ranging from 0.12 to 0.15.
Supplementary Figure S11 describes the MCC values of four
OTU picking methods. Obviously, DBH achieves higher MCC
values than CD-HIT, USEARCH, and VSEARCH at any distance
threshold, indicating that DBH can produce better clustering
quality for this full-length 16S rRNA dataset. The NMI, MCC,
ARI, AMI values, and OTU number of each method are provided
in Supplementary Table S7.

Frontiers in Microbiology | www.frontiersin.org 10 March 2021 | Volume 12 | Article 644012

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-644012 March 18, 2021 Time: 12:15 # 11

Wei et al. OTUs Picking Methods

FIGURE 8 | NMI values of eight OTU picking methods at different clustering thresholds on the V4 dataset.

FIGURE 9 | MCC values of eight OTU picking methods with different clustering thresholds on the V4 dataset.

TABLE 4 | The average, SD, and maximum MCC values of seven OTU picking methods on V4 dataset.

DMSC (0.05) USEARCH (0.04) VSEARCH (0.06) DNACLUST (0.05) DBH (0.05) GramClust (0.08) CD-HIT (0.05) mothur-AL (0.06)

Max. 0.9913 0.9797 0.9746 0.9884 0.9875 0.9083 0.9876 0.9904

Ave. 0.9480 0.8481 0.8444 0.9478 0.8938 0.7671 0.8697 0.9246

SD 0.0330 0.1438 0.0933 0.0283 0.1409 0.1593 0.1382 0.1175

The values in the parentheses are the clustering thresholds where each method achieves its peak MCC.

Computational Complexity Analysis
Finally, in order to evaluate the computational complexity
(including running time and memory usage) of different OTU
picking methods, we used one large volume sequence dataset

(V35) processed by QIIME from the HMP official website2,
which covers V3–V5 hypervariable regions and contains ∼30.3

2https://www.hmpdacc.org/hmp/HMQCP/
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million sequences with an average length of 528 bp. It is
reported that with sequencing coverage or sequences increase,
the probability of duplicate sequences will be observed (Schloss
and Westcott, 2011). Thus, for relatively fair comparisons
across different OTU picking algorithms, the unique sequences
(∼19.8 million) of V35 were used to evaluate the computational
complexity of the OTU picking methods. We only report the
computational complexity of nine heuristic methods of CD-
HIT, DBH, DMSC, DNACLUST, DySC, GramClust, Swarm,
USEARCH, and VESARCH because mothur-AL and CROP
are time consuming for large-scale datasets, and ESPRIT-Forest
always returns a core dumped information. Supplementary
Figure S12A depicts the execution time (wall time) of nine
OTU picking algorithms with different sequence sizes ranging
from 104 to 106. It can be seen that the speed of DMSC
is lower than that of other clustering methods. The speed of
DBH, USEARCH, DNACLUST, and CD-HIT is faster than other
methods when the sequence number increases. Supplementary
Figure S12B graphically describes the memory usage for each
method. We can obverse that DMSC and VESARCH consume
more memory than other clustering methods, while Swarm,
DySC, GramClust, and CD-HIT need less memory usage
than other methods.

CONCLUSION AND PERSPECTIVES

With the development of high-throughput sequencing
technologies, it has become convenient and cost efficient to
thoroughly profile the microbial community composition and
diversity in various environmental habitats (Deshpande et al.,
2018; Escalona et al., 2018; Rodriguez-R et al., 2018; Fritz
et al., 2019; Huang et al., 2021). Millions of sequencing data
can be generated, and how to utilize this enormous sequence
resource has become a critical concern for microbial ecologists
(Szalkai and Grolmusz, 2018; Qu et al., 2019b). One particular
challenge is the OTU picking in amplicon sequence analysis.
Luckily, this challenge can be directly addressed by sequence
clustering that attempts to group similar sequences (De Vrieze
et al., 2018; Edgar, 2018). Therefore, numerous clustering
methods have been proposed to help to unlock the great wealth
contained in sequence datasets, but none of the methods notably
outperforms all the others, and how to choose an appropriate
method has become a challenge for inexperienced users. A lot
of time and resources can be wasted in selecting clustering
tools and analyzing the clustering results. In this review, we
introduced the recent advance of clustering methods, which
mainly focuses on three aspects: (i) the principles of existing
clustering algorithms, (ii) benchmark dataset construction for
OTU picking and evaluation metrics, and (iii) the performance of
different methods with various similarity/distance thresholds on
benchmark datasets. From the scope of clustering algorithms, we
introduced the key clustering procedures for each category, such
as hierarchical clustering methods, heuristic clustering methods,
model-based methods, and network-based methods. From the
scope of benchmark dataset construction and evaluation metrics,
we introduced how to construct the ground-truth information

for real-life 16S rRNA sequence datasets, presenting different
criteria to evaluate clustering methods.

We compared the performance of the existing 12 state-of-art
OTU picking methods of CD-HIT, USEARCH, DNACLUST,
Swarm, VSEARCH, DBH, DMSC, DySC, ESPRIT-Forest,
GramClust, mothur-AL, and CROP. It is found that the
performance of most methods with different distance thresholds
shows similar clustering results in terms of NMI. DMSC,
DNACLUST, and USEARCH achieved the NMI peak values on
the simulated dataset, V4 dataset, and full-length 16S rRNA
dataset, respectively. In terms of MCC, mothur-AL achieved
better clustering results on simulated dataset, DMSC had
better clustering results for V4 datasets, and DBH obtained
better clustering results on the full-length 16S rRNA dataset.
Although numerous OTU picking methods have been proposed,
mothur still is a competitive tool for amplicon sequence analysis.
Concomitant with the large number of sequences produced by
high-throughput technologies, four future directions to design
the OTU picking algorithms should be paid attention to. One
direction is to design the powerful clustering methods for huge
sequences with longer sequence length. A striking challenge
brought by the advent of sequencing technology is the rapid
growth of sequence length. Several third-generation sequencing
technologies (e.g., PacBio, Nanopore) (Rhoads and Au, 2015;
Han et al., 2018; Ono et al., 2020) claim to have a long read
length of 10∼100 kbp, which can cover the whole region of
16S rRNA gen (Wagner et al., 2016; Pootakham et al., 2017;
Earl et al., 2018). Therefore, OTU picking methods for longer
sequences will be in high demand. Another is clustering stability.
From the comparison results in terms of MCC, we can see that
the MCC curve of each method varies a lot with the distance
threshold changes. The MCC curve should be a straight line
for a stable clustering method, that is, given different distance
thresholds, the OTU picking method should cluster sequences
within the distance threshold into one group and the sequences
beyond the distance threshold into different groups. The third
is the integration of new clustering algorithms to the popular
sequence analysis platforms or pipelines, such as mothur and
QIIME2. When an excellent clustering algorithm was developed,
developers should let their algorithm be expandable or easy
to be applied into the platforms, so that the clustering results
or outputs of a new method can be directly used as the input
of relative commands in platforms, or the outputs from the
platforms can be directly fed into the new method. This will be
very convenient for users to adopt new clustering algorithms
in the platform. The last direction is how to handle sequencing
errors (Ma et al., 2019). Most existing OTU picking methods
are just designed for sequence clustering, while the sequences
generated by the sequencing platform will inevitably contain
sequencing errors (Gaspar, 2018). Removing or reducing the
sequencing errors will improve the accuracy of describing
the microbial community. Although some error-correction
(denoising) methods, such as DATA2 (Callahan et al., 2016),
UNOISE (Edgar, 2016), Deblur (Amir et al., 2017), and SeekDeep
(Hathaway et al., 2017), have been developed, how to combine
these error-correction methods with OTU picking methods
needs attention.
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