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Abstract

Asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are all chronic pulmonary diseases,
albeit with different etiologies, that are characterized by airflow limitation, chronic inflammation, and abnormal
mucus production/rheology. Small synthetic molecule-based therapies are commonly prescribed for all three
diseases. However, there has been increased interest in “biologicals” to treat these diseases. Biologicals typically
constitute protein- or peptide-based therapies and are often more potent than small molecule-based drugs. In this
review, we shall describe the pros and cons of several different biological-based therapies for respiratory disease,
including dornase alfa, a recombinant DNAase that reduces mucus viscosity and short palate lung and nasal
epithelial clone 1 (SPLUNC1)-derived peptides that treat Na+ hyperabsorption and rebalance CF airway surface
liquid homeostasis.
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Introduction
For hundreds of years, the pulmonary system has been
used to deliver pharmacologically active compounds to
the body [47]. The lungs allow for efficient drug delivery
as they have a large surface area and are well vascular-
ized [35]. For example, inhaled nicotine is readily
absorbed across the pulmonary epithelia into the blood-
stream where it can exert its psychotropic effects on the
brain [5]. Conversely, for many peptides/proteins, an in-
ability to cross the respiratory epithelium after inhaled
delivery may actually be advantageous as it would result
in a high ratio of lung to systemic bioavailability and
thus would reduce off-target effects [25]. As a case in
point, inhaled antibiotics achieve far higher concentra-
tions with far fewer side effects than orally delivered
antibiotics [55, 62]. The majority of drugs in use today
are classed as “small molecules.” That is, organic che-
micals typically bind to their receptor to elicit a re-
sponse [41, 57]. Since these molecules are often

extremely durable, until metabolized by the liver and/or
cleared by the kidney, they can have side effects in
other organs [22]. In contrast, biological therapeutics,
including proteins (e.g., antibodies, enzymes) and pep-
tides, show considerable promise and are emerging as
alternatives to small molecule-based drugs [19]. Some
protein-based therapies have failed in the clinic, since
they are more labile than small molecules and are
prone to proteolytic degradation in the blood [32, 39].
However, protein-based therapies show great promise
for many types of respiratory disease since they can be
delivered to the target organ directly by inhalation.
Additionally, whilst small molecules typically have
nanomolar potency, biologicals often have picomolar to
femtomolar potency due to their increased ability to
bind to their protein target with high affinity. This in-
creased binding is achieved due to the ability of pro-
teins and peptides to change their conformation during
binding to better fit the binding pocket in their recep-
tor [2]. This review concentrates on asthma, cystic fi-
brosis (CF), and chronic obstructive pulmonary disease
(COPD), three respiratory diseases typified by airflow
limitations and poor alveolar gas exchange.
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Review
Characteristics of asthma, CF, and COPD
Asthma is typified by chronic airway inflammation
caused by a combination of environmental and genetic
factors [44]. Symptoms include airway hyperreactivity,
airway narrowing, goblet cell metaplasia/mucus hyper-
production, and eosinophilia [13, 16]. Asthma is typically
treated by a combination of β-agonists and corticoste-
roids to relax smooth muscle and reduce inflammation,
with a subset of patients being non-responsive to these
medications, suggesting an unmet need for new asthma
therapies [31].
CF is a multi-organ inherited disease, caused by muta-

tions in the CF gene product, the cystic fibrosis transmem-
brane conductance regulator (CFTR), a cAMP-regulated
anion channel [53]. The lack of functional CFTR and sub-
sequent epithelial sodium channel (ENaC) hyperactivation
result in Cl− hyposecretion and Na+ hyperabsorption,
respectively, that combine to dehydrate airway surfaces
[3, 12]. CF lung disease is characterized by the accumu-
lation of dehydrated/viscous mucus, leading to chronic
infection/inflammation goblet cell metaplasia, neutro-
philia, and bronchiectasis [26, 38]. The positive effects
from nebulization of hypertonic saline or mannitol by
CF patients indicate that rehydration therapy is a viable
therapeutic mechanism for the treatment of CF lung
disease [14, 46].
COPD is the third leading cause of death world-wide

and can have a number of different causes, with tobacco
exposure being the most common [10]. COPD is typified
by alveolar destruction, coughing/chronic mucus pro-
duction, chronic inflammation, and protease imbalance
which lead to irreversible airflow limitation and a pro-
gressive loss of lung function [30]. COPD treatments in-
clude inhaled bronchodilators and steroids [23]. In
severe cases, long-term oxygen therapy is required but
to date, there are no effective therapies to reverse the
disease, even after smoking cessation.

Antibody therapies
Monoclonal antibodies (mAbs) are now a well-
established class of FDA-approved drugs used to treat
asthma (e.g., omalizumab/Xolair™) [25]. Therapeutic
mAbs are typically full-length IgGs that have a molecu-
lar weight of ∼150 kDa [42, 52]. Unlike previous genera-
tions of mAbs, most mAbs currently used in clinical
trials are fully human in origin and are produced using
either transgenic animals or phage display technology,
which helps to reduce immunogenicity, increase effector
function, and prolong their serum half-life [9, 52].
Whilst we only highlight what we feel are the advantages
and disadvantages regarding this type of therapeutic, we
direct the readers to several other excellent reviews that
cover this area in more detail [4, 11, 43, 58].

mAbs offer several advantages over small molecules.
First, they bind with high affinity and specificity to a
wide variety of proteins. Second, they are relatively
stable, allowing them to remain active for long periods
of time. Third, since their breakdown products are
amino acids, they are not converted into toxic metabo-
lites [8, 52]. Whilst inhalation offers an attractive route
for delivery of mAbs, perhaps surprisingly, mAbs are de-
livered parenterally for respiratory disorders, with the in-
halation route yet to make it into the clinic. However,
mAbs retain their physical and immunological properties
after aerosolization, suggesting that it is only a matter of
time before mAb inhalation is utilized therapeutically
[25, 37, 42].
When considering the route of administration for

mAbs, matching the delivery route to the therapeutic
target’s location is paramount. This was highlighted by
studies using the mAb omalizumab to treat allergic
asthma. Omalizumab is a chimeric mAb that specifically
binds to and neutralizes IgE, thereby preventing its
interaction with mast cells and the subsequent release of
histamine and other inflammatory mediators [1]. Unlike
intravenous administration, pulmonary delivery of oma-
lizumab failed to attenuate the response to inhaled al-
lergens in asthmatic subjects [15, 17]. The observed
lack of efficacy in the aerosolization trial was likely a
failure of the pulmonary route to deliver sufficient sys-
temic omalizumab to neutralize free systemic IgE [25].
Another possible disadvantage of mAbs compared to
small molecules is their molecular weight. Most small
molecules are hundreds of dalton to a few kilodaltons
whereas mAbs are in excess of 100 kDa, which makes
inhaled delivery less efficient, but would be less of a
problem for systemic delivery [51].
A final consideration regarding the use of mAbs as re-

spired therapeutics that was also illustrated by the
aerosolized omalizumab trial is immunogenicity. Al-
though inhaled omalizumab was generally well-tolerated,
one test subject developed serum IgG and IgA anti-
bodies against omalizumab. This finding led the authors
to speculate that inhaling full-length mAbs may be more
immunogenic than administering them parentally [15].
However, the degree of aggregation of aerosolized omali-
zumab after nebulization was not evaluated, and since
aggregated proteins are known to be highly immuno-
genic, this may have been the cause [52]. Regardless, we
agree that the development of drug-specific IgG and IgA
antibodies are a concern that need to be monitored and
that further studies are needed to better understand the
immunogenicity of inhaled mAbs.

Peptides and proteins
Short palate lung and nasal epithelium clone 1
(SPLUNC1) is a ~25-kDa protein that contains an ENaC
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inhibitory domain, which for historical reasons was
called the S18 region [29]. Unlike traditional ion channel
antagonists which block ENaC’s pore, SPLUNC1 in-
hibits ENaC by inducing endocytosis [54] (Fig. 1a).
Since SPLUNC1 fails to regulate ENaC in the CF lung
(Fig. 1b) [21], Spyryx Biosciences is currently develop-
ing a SPLUNC1-derived peptide, which functions in CF
airways as an ENaC inhibitor (Fig. 1c) [18, 59]. This
restoration of CF airway surface liquid (ASL) hydration
is predicted to (i) improve mucociliary clearance and
(ii) decrease infection/inflammation [7, 34]. Addition-
ally, these peptides are intrinsically disordered so they
are heat stable. Another advantage of intrinsically disor-
dered proteins/peptides is that they achieve a greater
contact area with their target protein, thus maximizing
binding efficiency [6]. S18-derived peptides are protease
resistant, do not freely cross the respiratory epithelium,
and do not reach the kidney to induce the hyperkalemia,
as seen with small molecule ENaC antagonists like amilor-
ide [27, 28]. Chronic inhalation therapy using these pep-
tides could produce local immunogenicity and irritation,
but given that SPLUNC1-derived peptides are naturally
occurring in normal but not CF lungs, immunogenicity
would seem unlikely [29]. A limitation of this type of
therapeutic is that it would only ameliorate CF lung dis-
ease and would not treat other CF-affected organs.
Both CF and COPD airways exhibit increased neu-

trophil elastase (NE) activity, which has the potential
to damage the lung and also to cleave and activate
ENaC, exacerbating mucus dehydration and further re-
ducing mucociliary clearance [24, 40, 45, 50]. Alpha-1-
antitrypsin (AAT) is an endogenous NE inhibitor

which is predicted to improve pulmonary function by
blocking NE. Kamada Inc. has an inhaled biological
based on human AAT, which is in phase 2 clinical tri-
als for treatment of CF [20, 33]. A potential limitation
of AAT is that in addition to NE, several other prote-
ases including cathepsins and metalloproteases are also
upregulated in CF/COPD which may also contribute to
the lung damage but would not be blocked by AAT.
CF and COPD airways are characterized by high levels

of DNA [49] and actin [60] in the lung lumen, which
are released by necrotic neutrophils [36]. Excess DNA
and actin adversely alter mucus rheology and increase
viscosity, leading to decreased mucociliary clearance
[48]. Therefore, another approach to increase mucocili-
ary clearance in CF and COPD lungs is to decrease
mucus viscosity by cleaving extracellular DNA. Dornase
alfa is a recombinant version of human Dnase1 pro-
tein that is used as a therapeutic for CF [61]. Dnase1
cleaves extracellular DNA in the lung lumen leading to
reduced DNA length/concentration and, therefore, re-
duced sputum viscosity. Pulmozyme is a recombinant
version of human Dnase1 marketed by Genentech for
the treatment of CF. Pulmozyme is administered via
nebulization and has been shown to reduce the inci-
dence of CF infections [56].

Conclusions
Biotherapies constitute the fastest growing sector of
approved drugs, but their delivery via the lung remains
a nascent field. It is increasingly clear, however, that
inhaled biological therapeutics can offer some strong
advantages over traditional therapeutics including

Fig. 1 Rationale for SPLUNC1-derived peptide therapy for CF lung disease. a In normal airways, bicarbonate secretion through CFTR maintains
ASL pH at ~7.0. At this pH, secreted SPLUNC1 can bind to ENaC, leading to internalization and inhibition of the channel. This helps maintain airways
hydration and mucus clearance. b In CF airways, the acidic ASL, caused by a lack of bicarbonate secretion through dysfunctional CFTR, causes SPLUNC1
to adopt an inappropriate conformation, where the ENaC inhibitory domain (also known as the S18 region) cannot bind to ENaC, leading to Na+

hyperabsorption and ASL dehydration. c S18-derived peptides are pH-independent and can inhibit ENaC to reduce Na+ absorption and help normalize
airway hydration/mucus clearance in acidic CF airways
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increased potency, reduced systemic availability, and
potentially, a longer duration of action. There are sev-
eral biological drugs that are either approved or in the
development pipeline, and here, we have highlighted
some that we feel are showing promise to succeed
where traditional small molecules and the parenteral
delivery route have failed. These examples make it
clear that this is an exciting field that warrants future
investigation.
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