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Time-restricted feeding (TRF) mode is a potential strategy in improving the health

and production of farm animals. However, the effect of TRF on microbiota and their

metabolism in the large intestine of the host remains unclear. Therefore, the present

study aimed to investigate the responses of microbiome and metabolome induced

by TRF based on a growing-pig model. Twelve crossbred growing barrows were

randomly allotted into two groups with six replicates (1 pig/pen), namely, the free-

access feeding group (FA) and TRF group. Pigs in the FA group were fed free access

while the TRF group were fed free access within a regular time three times per day

at 07:00–08:00, 12:00–13:00, and 18:00–19:00, respectively. Results showed that the

concentrations of NH4-N, putrescine, cadaverine, spermidine, spermine, total biogenic

amines, isobutyrate, butyrate, isovalerate, total SCFA, and lactate were increased while

the pH value in the colonic digesta and the concentration of acetate was decreased in the

TRF group. The Shannon index was significantly increased in the TRF group; however,

no significant effects were found in the Fisher index, Simpson index, ACE index, Chao1

index, and observed species between the two groups. In the TRF group, the relative

abundances of Prevotella 1 and Eubacterium ruminantium group were significantly

increased while the relative abundances of Clostridium sensu sticto 1, Lactobacillus, and

Eubacterium coprostanoligenes group were decreased compared with the FA group.

PLS-DA analysis revealed an obvious and regular variation between the FA and TRF

groups, further pathway enrichment analysis showed that these differential features

were mainly enriched in pyrimidine metabolism, nicotinate and nicotinamide metabolism,

glycerolipid metabolism, and fructose and mannose metabolism. In addition, Pearson’s

correlation analysis indicated that the changes in the microbial genera were correlated

with the colonic metabolites. In conclusion, these results together indicated that although

the overall microbial composition in the colon was not changed, TRF induced the

gradient changes of the nutrients and metabolites which were correlated with certain

microbial genera including Lactobacillus, Eubacterium_ruminantium group, Eubacterium

coprostanoligenes group, Prevotella 1, and Clostridium sensu sticto 1. However, more

studies are needed to understand the impacts of TRF on the health and metabolism of

growing pigs.
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INTRODUCTION

Recently, a considerable amount of reference highlighted the
contributions of the type, quantity, and composition of nutrients
intake to host health andmetabolism both on animals and human
beings (1–4). By contrast, there are fewer studies concerning the
effects of feeding patterns on health and metabolism. However,
to date, limited literature has already indicated that changes in
feeding patterns may also affect the metabolism, health, and
production of animals (5, 6). Specifically, Rothschild et al. (7)
reviewed that TRF trends to reduce the body weight, total
cholesterol, and concentrations of triglycerides, glucose, insulin,
interleukin, and tumor necrosis factor-α with improving insulin
sensitivity (7). Consistently, TRF was reported to ameliorate
the serum lipid and liver profiles of the individuals and
increased the richness of the gut microbiota on human beings
(8). Zarrinpar et al. (9) reported that compared with the FA
group, TRF has changed the dynamics both in the relative
abundance and compositions of gut microflora on mice as well
as liver metabolism. These studies concerning mice and human
beings together indicated that TRF has profound effects on
the host metabolism and may be a potential remedy for the
prevention of metabolic diseases and promoting a profitable and
safe swine production. However, the mechanisms underpinning
the beneficial effects of TRF on metabolic health remain
largely unknown.

In recent years, more and more evidence has indicated that
the microbiota plays a crucial role in host metabolism and
health (10, 11). Vice versa, factors including diet composition
(12), nutritional concentrations (13), and diet types (14) were
found to shape the microbial communities. Therefore, we
hypothesized that TRF changed the concentration gradient of
nutrients, thus, preferentially stimulating the proliferation of
certain microorganisms in the intestine and further exerting
its beneficial effects on host health and metabolism. As obesity
has become a global concern and has a close relationship with
food taking, related studies mostly focus on indicators such
as glucose and lipid metabolism, which are mostly performed
on mice. More studies concerning the effects of TRF on gut
microbiota and relevant metabolome are needed. Hence, the
present study aimed to explore the metabolome-microbiome
responses of growing pigs induced by a time-restricted feeding
and to study the relationships between the gut microbiota, gut
environment, and metabolites. Specifically, the feeding pattern
used in the present study was similar to the three-meal pattern
in modern society. Considering the high similarity in anatomy,
physiology, polyphagy, habits, metabolism, and gut microbiota
between pigs and human beings (15, 16), findings from this study
will provide information on the applications of TRF on human
beings as well.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Nanjing Agricultural University
Animal Care and Use Committee (Nanjing, Jiangsu Province,
China) (SYXK2019-0066). All animal care procedures in

the experiment were operated according to the standard
of Experimental Animal Care and Use Guidelines of
China (EACUGC2018-01).

Animals, Housing, and Sample
Twelve 105-day growing crossbred barrows (Duroc × Landrace
× Large White, average bodyweight = 56.29 ± 1.38 kg) were
randomly allotted into two groups with six replicates (1 pig/pen)
per group, namely, the free-access feeding group (FA) and TRF
group. Pigs in the FA group were fed free-access to feed while
the TRF group were fed free-access within a regular time three
times per day at 07:00–08:00, 12:00–13:00, and 18:00–19:00,
respectively. All pigs were fed with the same commercial pellet
feed for growing pigs and ad libitum access to water throughout
the experiment period. After a 14-day ad libitum feeding during
the pre-experiment period, the trial started and lasted for 21
days. All pigs were slaughtered and colonic digesta samples were
collected on the 21st day. Aftermeasuring the pH using a portable
pH meter (Hanna Instruments, Villafranca, Italy), all samples
were stored under −80◦C for microbiota, microbial metabolites,
and metabolome analysis.

DNA Extraction, 16S rRNA Gene
Amplification, and Sequencing
Total DNA from colonic digesta was extracted using the
cetrimonium bromide (CTAB) method according to a previous
method (17). The sequencing was finished by Shanghai Biozeron
Biotechnology Co., Ltd (Shanghai, China). Shortly, the V3–
V4 regions of the bacterial 16S rRNA gene were amplified
using a universal primer with the barcode [forward primer
(5′-ACTC CTRCGGGAGGCAGCAG-3′) and a reverse primer
(5′-GGACTACCVGGGTATCTAAT-3′)] (18). Then, sequencing
libraries were generated using the NEB Next R©UltraTMDNA
Library Prep Kit for Illumina (NEB, USA) following the
manufacturer’s recommendations, and index codes were added.
At last, the library was sequenced on an Illumina MiSeq platform
and 250/300 bp paired-end reads were generated.

QIIME (version 1.17) was used to demultiplex and quality-
filter the raw sequence. Reads that were shorter than 50
bp and those that could not be assembled were discarded.
Reads with an exact barcode matching and two nucleotide
mismatches in primer matching, or containing ambiguous
characters, were removed. According to the overlap sequence,
only sequences that overlap longer than 10 bp were assembled
according to their overlap sequence. Reads which could not be
assembled were discarded. Operational taxonomic units (OTUs)
were clustered with a 97% similarity cutoff standard using
UPARSE (version 7.1, http://drive5.com/uparse/), and chimeric
sequences were identified and removed using UCHIME. The
phylogenetic affiliation of each 16S rRNA gene sequence was
analyzed by the RDP Classifier (http://rdp.cme.msu.edu/) against
the silva (SSU115). Rarefaction curve, Shannon and Simpson
diversity indices, and Ace and Chao richness estimators were
assessed using an online website (MicrobiomeAnalyst, https://
www.microbiomeanalyst.ca/). The principal coordinate analysis
(PCoA) was conducted based on the Bray–Curtis distance.
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FIGURE 1 | Differences in the colonic bacterial α-diversity index of growing pigs between the FA and TRF groups. FA, free access group; TRF, time-restricted feeding

group. *Indicates a significant difference between the two groups; ns represents no significant difference.

EdgeR algorithms were used for performing a differential
abundance analysis.

Metabolome Analysis and Data Processing
Metabolome analyses were finished by a commercial company
named BioCluster (Shanghai, China). Briefly, 50mg of the
colonic sample was extracted with 800 µL of 80% methanol.
A total of 200 µL of supernatant was added with 5 µL
of internal standard (140µg/mL, DL-o-Chlorophenylalanine),
then transferred to a vial for LC-MS analysis. LC-MS Analysis
was finished using the analysis of the LC-MS platform
(Thermo, Ultimate 3000LC, Q Exactive) under the following
setups: Column: Hyper gold C18 (100 × 2.1mm 1.9µm);
Chromatographic separation conditions: Column temperature:
40◦C; Flow rate: 0.3 mL/min; Mobile phase A: water +5%
acetonitrile +0.1% formic acid; Mobile phase B: acetonitrile
+0.1% formic acid; Injection volume: 4 µL; Automatic injector
temperature: 4◦C; ESI+: Heater Temp 300◦C; Sheath Gas Flow
rate, 45 arb; Aux Gas Flow Rate, 15 arb; Sweep Gas Flow Rate,
1 arb; spray voltage, 3.0 KV; Capillary Temp, 350◦C; S-Lens RF
Level, 30%. ESI-: Heater Temp 300◦C, Sheath Gas Flow rate,
45 arb; Aux Gas Flow Rate, 15 arb; Sweep Gas Flow Rate, 1
arb; spray voltage, 3.2 KV; Capillary Temp, 350◦C; S-Lens RF
Level, 60%.

All statistical analyses of the metabolites were done based
on the different function modules of a powerful tool, which is

available online (version 5.0,) (19). Features with >30% missing
values were removed, and the missing values of the remaining
features will be replaced by a very small value (half of the
minimum positive value found in the data set) by default.
No missing values were detected with the criterion. The data
then underwent logarithmic transformation and normalization
of auto-scaling. Fold change analysis and T-test were conducted
to determine the fold change and statistical significance of each
metabolite from the colonic samples of growing pigs from the
TRF group compared with the FA group. PLS-DA was employed
to picture the overall difference between the TRF and FA groups,
and to explore the differential metabolites. The metabolites with
variable importance projection (VIP) values above 1.0, P <

0.05 were selected as differential metabolites. The differential
metabolites were used to execute an enrichment analysis to
explore the main pathway changed by the TRF.

Short-Chain Fatty Acids (SCFAs)
The concentrations of SCFAs (acetate, propionate, isobutyrate,
butyrate, isovalerate, valerate) were measured by the gas
chronograph method according to Wang et al. (20). Shortly,
0.25 g of colonic digesta samples was suspended in 1.5mL
distilled water. After vortex-mixing, the suspension was
centrifuged at 12,000× rmp for 10min at 4◦C. A total of 1mL of
the supernatant was taken and mixed with 0.2mL of 25% (w/v)
metaphosphoric acid. The mixture was frozen at 20◦C overnight.
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FIGURE 2 | The relative abundance of bacteria in colonic digesta of growing pigs at the family level. FA, free access group; TRF, time-restricted feeding group.

**Indicates a significant difference between the FA and TRF groups with P < 0.01; while *indicates a significant difference with P < 0.05.

FIGURE 3 | The relative abundances of bacteria in colonic digesta of growing pigs at the genus level. FA, free access group; TRF, time-restricted feeding group.

**Indicates a significant difference between the FA and TRF groups with P < 0.01; while *indicates a significant difference with P < 0.05.

After thawing, the mixture was centrifuged at 12,000 × rmp
for 20min at 4◦C, then 0.5mL of the supernatant was taken
and mixed with an isovolumic ether. Shaking of the mixture

was performed to extract the SCFA in the aqueous phase. The
organic phase was taken for further analysis using an Agilent
7890A gas chromatograph (Agilent Technologies, Wilmington,
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TABLE 1 | The pH value and concentrations of lactic acid, NH4-N, biogenic

amines, and SCFAs in colonic digesta of growing pigs.

Items FAa TRFa P

pH 6.49 ± 0.06 6.26 ± 0.03 0.013

NH4-N (mg/g) 332.79 ± 5.68 376.6 ± 6.78 < 0.001

Methylamine (µmol/g) 24.85 ± 3.75 32.2 ± 0.97 0.085

Tryptamine (µmol/g) 75.07 ± 6.26 87.81 ± 6.81 0.163

Putrescine (µmol/g) 49.77 ± 6 75.99 ± 3.01 0.003

Cadaverine (µmol/g) 40.08 ± 3.75 57.44 ± 4.67 0.010

Tyramine (µmol/g) 27.33 ± 4.24 17.44 ± 2.78 0.063

Spermidine (µmol/g) 173.99 ± 14.76 312.13 ± 17.93 < 0.001

Spermine (µmol/g) 24.04 ± 4.45 52.61 ± 9.54 0.014

Total biogenic amines (µmol/g) 415.12 ± 19.33 635.62 ± 28.09 < 0.001

Acetate (µmol/g) 50.56 ± 0.53 47.11 ± 0.56 0.002

Propionate (µmol/g) 19.67 ± 0.45 19.02 ± 0.45 0.300

Isobutyrate (µmol/g) 2.19 ± 0.11 2.47 ± 0.14 < 0.001

Butyrate (µmol/g) 7.38 ± 0.26 8.03 ± 0.15 0.005

Isovalerate (µmol/g) 2.60 ± 0.17 2.99 ± 0.16 0.001

Valerate (µmol/g) 2.36 ± 0.18 2.48 ± 0.2 0.310

Total SCFA (µmol/g) 81.3 ± 0.7 85.55 ± 0.62 0.008

Lactate (µmol/g) 2.20 ± 0.36 3.68 ± 0.5 0.024

aFA, free access group; TRF, time-restricted feeding group.

DE) equipped with the flame ionization detector (FID), splitless
injection port. Standard curves are established using the gradient
mixed standards to calculate the concentration of the measured
SCFA. The total SCFAs were calculated by adding the six
SCFAs measured.

Lactate
The concentration of lactate was measured by the colorimetric
method using the reagent kit (PN: A019-2-1, Nanjing Jiancheng
Institute of Biological Engineering, China) following the
instructions in the specification.

Ammonia-N
The concentration of Ammonia-N in the colonic digesta was
analyzed by the colorimetric method according to Shen et
al. (21). Specifically, 0.1 g of colonic digesta were weighed
and suspended in 1.5mL of 0.2M HCl. Following vortex-
mixing, the suspension was centrifuged at 14,000 × g for
20min at 4◦C. A total of 0.5mL of the supernatant was taken
and mixed with 0.5mL of 0.08% (w/v) sodium nitroprusside-
sodium salicylate and 0.5mL of sodium hypochlorite-sodium
hydroxide solution. The mixture was vortex mixed and left to
stand for 10min. Absorbance at 700 nm was recorded. Gradient
ammonium chloride solutions were used to establish a robust
standard curve to calculate the concentration of Ammonia-
N.

Biogenic Amines
Biogenic amines including methylamine, tryptamine,
putrescine, cadaverine, tyramine, spermidine, and
spermine in the colonic digesta were detected by

FIGURE 4 | Partial least squares discriminant analysis (PLS-DA) score plot of

colonic metabolites (both ESI+ and ESI-) of growing pigs in the FA and TRF

groups. FA, free access group; TRF, time-restricted feeding group; QC, quality

control. The ellipse represents the 95% confidence interval of each group.

a high-performance liquid chromatography method
according to Yang et al. (22). Gradient mixed standards
were also analyzed as the samples to establish a
robust curve to calculate the concentrations of the
biogenic amines.

Statistical Analysis
The significance of pH, NH4-N, biogenic amines, SCFAs,
the differential microbiota, and metabolites between the
two groups were analyzed using the unpaired two-tail t-test
(IBM SPSS Statistics for Windows, Version 21.0). Pearson
correlation was analyzed to evaluate the correlation between
the differential microorganisms, microbial metabolites, and
the features identified from the metabolome. P < 0.05
was considered to represent a significant difference. Data
visualization was completed using the GraphPad Prism (version
8.0.1, GraphPad Software, San Diego, CA) and R software
(version 4.0.4).

RESULTS

Bacterial Community Composition in
Colonic Digesta of Growing Pigs Under
Different Feeding Modes
A total of 517,362 clean sequences were obtained after
data filtering under a normal quality control system. Using
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TABLE 2 | Identification of significant differential features in colonic digesta of growing pigs.

NO. Feature FCa log2(FC) P VIPb Mode

1 Hexadecanedioic acid 0.53477 −0.90302 <0.001 1.2162 ESI-

2 dTMP 2.9032 1.5376 0.001 1.2006 ESI-

3 Glycylleucine 0.55638 −0.84587 0.002 1.1357 ESI-

4 Methyl-beta-galactopyranoside 0.36016 −1.4733 0.002 1.0248 ESI-

5 Fructose 1-phosphate 7.7772 2.9593 0.003 1.0098 ESI-

6 Hippuric acid 0.43986 −1.1849 0.003 2.416 ESI-

7 Urobilin 0.53018 −0.91544 0.004 1.0603 ESI-

8 16-Hydroxyhexadecanoic acid 0.65938 −0.60082 0.010 1.1402 ESI-

9 Thymidine 1.5709 0.65161 0.031 1.5147 ESI-

10 Lysophosphatidylethanolamine 1.6385 0.71238 0.041 1.3816 ESI-

11 Serinyl-Leucine 0.52303 −0.93502 0.002 1.0933 ESI+

12 Thymidine 1.7536 0.81031 0.003 1.2584 ESI+

13 Adenosine 1.7304 0.79107 0.006 1.0149 ESI+

14 1-Methyladenosine 2.0063 1.0046 0.009 1.1544 ESI+

15 Monoglyceride 1.9224 0.94294 0.009 2.0194 ESI+

16 D-2-Aminobutyric acid 0.5904 −0.76023 0.011 1.9605 ESI+

17 Asparaginyl-glutamic acid 1.6256 0.70102 0.027 1.2668 ESI+

18 DL-pipecolic acid 2.8771 1.5246 0.030 1.52 ESI+

19 N6, N6, N6-Trimethyl-L-lysine 1.8283 0.87054 0.039 1.4042 ESI+

20 Niacinamide 0.53713 −0.89665 0.039 1.4031 ESI+

21 Cytidine 1.6513 0.72356 0.042 1.3731 ESI+

22 Dihydroartemisinin 1.8634 0.89791 0.043 1.3595 ESI+

aFC, fold change; bVIP, variable importance in the projection.

the standard of 97% similarity level, these clean sequences
were clustered into 784 OTUs. The rarefaction curves were
gradually flattened out with the increasing sampling quantity
(Supplementary Figure 1). The α-diversity indexes of the
colonic bacterial community were shown in Figure 1. To a
large extent, TRF had no significant effects on the Fisher index,
Simpson index, ACE index, Chao1 index, and Observed species
(P > 0.05). However, the Shannon index was significantly higher
in the TRF group (P = 0.040). Also, the Principal coordinate
analysis indicated that TRF could not distinguish the panorama
of the colonic bacterial community (Supplementary Figure 2).
Whereas, at the family level (Figure 2), the relative abundances
of Prevotellaceae (P = 0.023), Campylobacteraceae (P =

0.010), Tannerellaceae (P = 0.012), and Anaeroplasmataceae
(P = 0.021) were significantly higher in the TRF group
compared to those in the FA group, while the relative
abundances of Lactobacillaceae (P < 0.0014) in the FA group
were significantly higher than the TRF group. Meanwhile,
at the genus level (Figure 3), the relative abundances of
Prevotella 1 (P = 0.0029) and Eubacterium ruminantium
group (P = 0.017) were significantly higher in the TRF
group, and the relative abundances of Clostridium sensu sticto
1 (P = 0.022), Lactobacillus (P = 0.002), and Eubacterium
coprostanoligenes group (P = 0.0036) were lower compared with
the FA group.

The pH, Bacterial Metabolites, and the
Metabolome in Colonic Digesta of Growing
Pigs
As shown in Table 1, TRF significantly increased the
concentrations of NH4-N (P < 0.001), putrescine (P = 0.003),
cadaverine (P = 0.010), spermidine (P < 0.001), spermine (P =

0.014), total biogenic amines (P< 0.001), isobutyrate (P< 0.001),
butyrate (P = 0.005), isovalerate (P = 0.001), total SCFA (P =

0.008), and lactate (P = 0.024), while it decreased the pH value
and the concentration of acetate (P = 0.002) in colonic digesta.
TRF had a trend to increase the concentration of methylamine (P
= 0.083) and tended to decrease the concentration of tyramine
(P = 0.063). Using the LC-MS metabolomic technique, a total
of 258 metabolites in the ESI+ mode and 123 metabolites in
the ESI- mode were identified. According to the characteristics
of the detected metabolites in each ion mode, one of the
repeated metabolites detected in both ESI+ and ESI- modes
were eliminated, the remaining 332 metabolites were combined
for further analysis. These metabolites mainly included amino
acids and their derivatives, organic acids, amines, nucleoside,
flavonoid, fatty acids, peptides, etc. As shown in Figure 4, the
PLS-DA analysis revealed an obvious and regular variation
between the FA and TRF groups. Based on the standards of
VIP > 1.0 and P < 0.05, a total of 22 significant differential
features were identified (Table 2). Results of pathway enrichment
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FIGURE 5 | Pathway enrichment of these significant differential metabolites

identified between the FA and TRF groups. The x-axis marks the pathway

impact and the y-axis represents the pathway enrichment. Each node marks a

pathway, with larger sizes and darker colors representing higher pathway

enrichment and pathway impact values.

analysis showed that these differential features were mainly
enriched in pyrimidine metabolism, nicotinate and nicotinamide
metabolism, glycerolipid metabolism, and fructose and mannose
metabolism (Figure 5).

Correlations Between the Bacterial
Genera, Bacterial Metabolites, and
Differential Features in Colonic Digesta of
Growing Pigs
Based on the Pearson correlation analysis, the differential
microbiota at the genus level showed a significant correlation
with bacterial metabolites in colonic digesta (Figure 6).
Specifically, Lachnospiraceae XPB1014 group was negatively
correlated with methylamine (r = −0.86, P < 0.001) and total
SCFA (r = −0.58, P = 0.047), while it was positively correlated
with pH (r = 0.70, P = 0.01). Lachnospiraceae NK3A20 group
was negatively correlated with propionate (r = −0.66, P =

0.020), while it was positively correlated with lactate (r = 0.63,
P = 0.029), isobutyrate (r = 0.64, P = 0.025), and butyrate (r
= 0.58, P = 0.046). Mitsuokella was positively correlated with
NH4-N (r = 0.59, P = 0.045), lactate (r = 0.72, P = 0.0082), and
isovalerate (r = 0.58, P = 0.049). Coprococcus 2 was negatively
correlated with pH (r=−0.69, P= 0.010), while it was positively
correlated with spermidine (r = 0.58, P = 0.046), spermine (r =
0.69, P = 0.012), total biogenic amines (r = 0.66, P = 0.020),
acetate (r = 0.64, P = 0.024), and total SCFA (r = 0.66, P =

0.020). Clostridium sensu stricto 1 was negatively correlated
with methylamine (r = −0.64, P = 0.026) and butyrate (r

= −0.58, P = 0.049). Eubacterium ruminantium group was
negatively correlated with pH (r = −0.74, P = 0.0055), while it
was positively correlated with spermine (r = 0.59, P = 0.045),
total biogenic amines (r = 0.64, P = 0.026), acetate (r = 0.66,
P = 0.018), butyrate (r = 0.60, P = 0.040), and total SCFA (r
= 0.62, P = 0.030). Turicibacter was negatively correlated with
butyrate (r = −0.63, P = 0.028). Lactobacillus was negatively
correlated with putrescine (r=−0.67, P= 0.017) and cadaverine
(r = −0.69, P = 0.013), while it was positively correlated with
tyramine (r = 0.69, P = 0.013).

Based on the Pearson correlation analysis, the differential
microbiota at the genus level showed a significant correlation
with the significant differential features in colonic digesta
(Figure 7). Specifically, Lachnospiraceae XPB1014 group was
negatively correlated with cytidine (r = −0.70, P = 0.011),
dihydroartemisinin (r = −0.61, P = 0.033), asparaginylglutamic
acid (r = −0.80, P = 0.017), and monoglyceride (r = −0.69,
P = 0.014), while it was positively correlated with serinyl-
leucine (r = 0.80, P = 0.0019), glycylleucine (r = 0.68, P =

0.014), and methyl-β-galactopyranoside (r = 0.64, P = 0.025).
Lachnospiraceae NK3A20 group was positively correlated with
DL-pipecolic acid (r = 0.78, P = 0.0029). Campylobacter (r =
−0.74, P = 0.0056), Prevotellaceae NK3B31 group (r = −0.74, P
= 0.0060), Parabacteroides (r = −0.61, P = 0.0034), Prevotella
1 (r = −0.64, P = 0.0024), and Prevotellaceae UCG 001 (r
= −0.73, P = 0.0070) were negatively correlated with D-2-
aminobutyric acid. Mitsuokella was positively correlated with 1-
methyladenosine (r = 0.79, P = 0.0020), N6,N6,N6-trimethyl-
L-lysine (r = 0.66, P = 0.020), DL-pipecolic acid (r = 0.58, P
= 0.047), dTMP (r = 0.67, P = 0.018), fructose-1-phosphate
(r = 0.67, P = 0.018), and Lysophosphatidylethanolamine (r
= 0.61, P = 0.034), while it was negatively correlated with
serinyl-leucine (r = −0.60, P = 0.038) and glycylleucine (r
= −0.67, P = 0.018). Turicibacter was positively correlated
with urobilin (r = 0.62, P = 0.030). Clostridium sensu stricto
1 was negatively correlated with monoglyceride (r = −0.60,
P = 0.040). Eubacterium ruminantium group was positively
correlated with monoglyceride (r = 0.64, P = 0.024), while
it was negatively correlated with hexadecanedioic acid (r =

−0.58, P= 0.046). Lactobacilluswas negatively correlated with 1-
methyladenosine (r = −0.70, P = 0.011), adenosine (r = −0.61,
P = 0.036), thymidine (r = −0.71, P = 0.010), and dTMP (r
= −0.74, P = 0.0056), while it was positively correlated with
niacinamide (r = 0.76, P = 0.004) and D-2-aminobutyric acid
(r = 0.65, P = 0.02).

DISCUSSION

Growing evidence suggests that the nutrients (including
fatty acids, amino acids, and saccharides) and the luminal
environment (e.g., pH) shapes the microbiota community (23–
25). In the present study, the overall composition of the colonic
microbiota communities was not changed between the two
groups, the most likely reason is that all pigs in both groups were
fed with the same commercial feed. However, the Shannon index
was significantly increased in the present study indicating that the
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FIGURE 6 | Correlations between the differential microbiota at the genus level with bacterial metabolites in colonic digesta of growing pigs. Each row in the graph

represents a pH value and bacterial metabolite (including SCFAs, biogenic amines, lactate, and NH4-N), each column represents a genus, each square represents a

Pearson correlation coefficient between a genus and a bacterial metabolite (or pH), while the area of each square represents the size of each correlation coefficient.

Red color represents a negative correlation, while blue color represents a positive correlation. ***Indicates a significant difference between the free access group and

time-restricted feeding group with P < 0.001; while **, *indicates significant difference with P < 0.01, and P < 0.05 respectively.

TRF group improved the evenness of the microbial community.
As reported, metabolite cross-feeding promotes a suboptimal
community growth and shapes the species diversity in the gut
microbiota (26). Therefore, the results may be contributed to

the nutritional variations in the colonic lumen along with the
different feeding rhythms. Under the free-access mode, a growing
pig eats about seven times per day with an average feed intake
of 260 g (27). However, our research found that the phased feed
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FIGURE 7 | Correlation analysis between the differential microbiota at the genus level with the differential features identified from the LC-MS metabolome in colonic

digesta of growing pigs. Each row in the graph represents the differential features, each column represents a genus, each square represents a Pearson correlation

coefficient between a genus and a differential feature, while the area of each square represents the size of each correlation coefficient. Red color represents a negative

correlation, while blue color represents a positive correlation. **Indicates a significant difference between the free access group and the time-restricted feeding group

with P < 0.01; while *indicates a significant difference with P < 0.05.
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intake of growing pigs in a day underwent diurnal rhythmicity
and peaked at 12:00–16:00 (unpublished data), which means that
a fluctuation in nutrients may exist in the colonic lumen. By
contrast, pigs in the TRF group were fed access to feed at identical
intervals which may lead to a relative evenness of the nutrients,
thus, affecting the microbiota community meanwhile.

A plethora of studies has reported that the bidirectional
interactions between the host and the intestinal microbiota
are tightly regulated to maintain health and homeostasis
(28, 29). Gut microbiota plays pivotal roles in maintaining
metabolic hemostasis including the metabolism of amino acids,
carbohydrates, lipid, nucleotide, and vitamins (29). Vice versa,
nutrients in the intestine taking by the host could domesticate
the gut microbes meanwhile (28). Although the overall microbial
composition was not considerably different, the TRF group
significantly altered the relative abundance of certain taxa like
Lactobacillus at the genus level. Surprisingly, we found that the
TRF group has decreased the relative abundance of Lactobacillus,
however, the decrease did not reduce the content of lactate. These
results were inconsistent with those reported previously (30, 31).
Zhang et al. (32) have reported that the oral administration
of the Lactobacillus strain has increased the production of
lactate. The following reasons may explain these results. Firstly,
Bifidobacterium and Enterococcus, as well as Lactobacillus, could
produce lactate (33). Thus, in line with Zhang et al. (32), we
found that the relative abundance of Lactobacillus was not
directly correlated with the concentration of lactate. Secondly,
as a secondary metabolite, the lactate produced was possibly
consumed simultaneously by yeasts or other aerobic bacteria in
the FA group (34). Besides, the production efficiency of lactate
during fermentation by different strains of Lactobacillus was not
identical, especially with different substrates (35). Researchers
have found that Mitsuokella had a positive effect on the serum
free amino acids in weaned piglets (32), while in the present
study, we found that Mitsuokella had a negative correlation with
serinyl-leucine and glycylleucine. Eubacterium coprostanoligenes
group has been reported to have a function of bio-transforming
cholesterol to coprostanol which could further influence the fat
metabolism of the host (36). Cholesterol has been shown to exert
crucial physiological effects on animals (37). While in the present
study, TRF has significantly reduced the relative abundance of
Eubacterium coprostanoligenes group which possibly indicates
that more cholesterol was utilized in the TRF group. Consistently,
differential metabolites were enriched in fat-related metabolism
pathways. Prevotella has been reported to associate with the
increase of host feed intake (38). However, the feed intake was
not affected by TRF in the present study (unpublished data).
The possible reason was that although the relative abundance of
Prevotellaceae at the family level was increased by TRF, it did not
change the relative abundance of Prevotella at the genus level, but
increased the relative abundance of Prevotella 1. Despite relating
to several diseases (39), several members of Prevotellaceae were
reported to produce succinate and could improve the glucose
homeostasis status by activating intestinal gluconeogenesis (40).
Thus, through promoting host health or energy metabolism,
Prevotellaceae was reported to increase the feed efficacy in pigs
(41). Herein, we found that TRF has significantly increased

the relative abundance of Prevotellaceae at the family level
which suggests that TRF would probably improve the production
efficacy of swine production. As an evidence, the FCR was indeed
improved by TRF in the present study (unpublished data).

Microbial metabolic products, mainly including SCFAs and
biogenic amines, are thought to mediate the beneficial health
effects of the intestinal microbial community (42). SCFAs
were the main end-products of microorganisms fermenting
carbohydrates, which are generally believed to have a benefit
to host health (43). Specifically, butyrate, as one of the
most important SCFAs, has extensive effects on improving
immunity and intestinal health and promoting host metabolism
(3, 44). In the present study, we found that TRF has
increased the concentration of butyrate which indirectly reflected
that TRF could improve host metabolism. Accordingly, the
Lachnospiraceae NK3A20 group, which was positively correlated
with butyrate, was found to be increased by TRF treatment
(45). Besides, we also found that D2-aminobutyric acid, an
unnatural chiral α-amino acid, in colonic digesta of growing pigs
had excessive correlations with the differential bacterial genera.
Unfortunately, there are currently few studies concerning the
physiological function of D2-aminobutyric acid, thus, further
research is still needed. Biogenic amines are produced by
intestinal microbiota through the decarboxylation of aromatic
or cationic amino acids (46). In the present study, we found
that the TRF mode had a trend to decrease the concentration
of tyramine. Furthermore, we found that Lactobacillus had
a tight correlation with tyramine. Research has found that
Lactobacillus can deaminate proteins (47). Moreover, researchers
have found that 28% of the Lactobacillus produced tyramine (48).
In the present study, TRF has increased the concentration of
putrescine, spermidine, and spermine. Putrescine was reported
to stimulate the synthesis of epithelial DNA and RNA (49). In
line with this notion, pathway analysis indicates that TRF has
increased the progress of pyrimidine metabolism. Furthermore,
putrescine could mitigate intestinal atrophy by suppressing
inflammatory responses in weanling piglets (50). Spermidine
and spermine were reported to promote adipogenesis (51, 52),
while cadaverine exerts protective effects on epithelial cells
(53). Consistently, researchers have found that Lactobacillus
was negatively correlated with cadaverine (25). The decreased
production of biogenic amines may be contributed to the
inhibitory effects of Lactobacillus on the growth of amine-
positive bacteria (54). However, some genera of amine positive
lactic acid bacteria strains, including Lactobacillus plantarum
(FI8595) and Lactococcus lactis subsp. cremoris (MG 1363), had
a crucial role on the increase of cadaverine and accumulation of
putrescine (55). However, the biogenic amines function probably
depends on the dose and physiological state of the host (56,
57).

CONCLUSIONS

In conclusion, the overall composition of gut microbiota
community between the two groups was not influenced.
However, TRF treatment significantly altered the relative
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abundance of certain families and genera including Lactobacillus,
Eubacterium ruminantium group, Eubacterium coprostanoligenes
group, Prevotella 1, and Clostridium sensu sticto 1. Furthermore,
TRF treatment induced the gradient changes of metabolites in
colonic digesta. Interestingly, the correlation results suggested
that gradients of metabolites induced by TRF were correlated
with the differential microbial genera indicating that the
metabolites might mediate the effect of TFR on the gut
microbiota. However, more research is needed to understand
the benefits and risks of TRF on the health and metabolism of
growing pigs.
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